Ircam-Centre Pompidou

Recherche

  • Recherche simple
  • Recherche avancée

    Panier électronique

    Votre panier ne contient aucune notice

    Connexion à la base

  • Identification
    (Identifiez-vous pour accéder aux fonctions de mise à jour. Utilisez votre login-password de courrier électronique)

    Entrepôt OAI-PMH

  • Soumettre une requête

    Consulter la notice détailléeConsulter la notice détaillée
    Version complète en ligneVersion complète en ligne
    Version complète en ligne accessible uniquement depuis l'IrcamVersion complète en ligne accessible uniquement depuis l'Ircam
    Ajouter la notice au panierAjouter la notice au panier
    Retirer la notice du panierRetirer la notice du panier

  • English version
    (full translation not yet available)
  • Liste complète des articles

  • Consultation des notices


    Vue détaillée Vue Refer Vue Labintel Vue BibTeX  

    Catégorie de document Contribution à un colloque ou à un congrès
    Titre Bifurcation Sequence in a Physical Model of Trumpet-like Instruments
    Sous-titre From a Fixed Point to Chaos
    Auteur principal Christophe Vergez
    Co-auteur Xavier Rodet
    Colloque / congrès NOLTA. Crans Montana : Septembre 1998
    Comité de lecture Indéterminé
    Volume 2
    Collation p.751-754
    Copyright Presses Polytechniques et Universitaires Romandes
    Année 1998
    Statut éditorial Publié
    Résumé

    We have built a numerical model of trumpet-like instruments. Since the understanding of the model's behavior is desirable for a musical usage, we have studied the model in the framework of the theory of the nonlinear dynamical systems. The blowing pressure has been chosen as the bifurcation parameter. We have been able to predict, according to the frequential version of the Hopf theorem, the critical threshold at which a stable fixed point looses its stability and gives birth to a unique stable limit cycle. Moreover, amplitude and frequency of the limit cycle have been forecasted to an excellent approximation. By still increasing the blowing pressure, a secondary supercritical Hopf bifurcation has been obtained, leading to a quasi-periodic motion on a two-torus. Finally, with a further increase in blowing pressure, the progressive destruction of the two-torus has been observed, leading to a chaotic motion.

    Mots-clés Physical models / Bifurcation analysis / Trumpet / Hopfquasi-periodicity / chaos
    Equipe Analyse et synthèse sonores
    Cotes Vergez98a / 98-110-VER-BIF-VIN-AS

    © Ircam - Centre Pompidou 2005.