Recherche
Recherche simple
Recherche avancée
Panier électronique
Votre panier ne contient aucune notice
Connexion à la base
Identification
(Identifiez-vous pour accéder aux fonctions de mise à jour. Utilisez votre login-password de courrier électronique)
Entrepôt OAI-PMH
Soumettre une requête
| Consulter la notice détaillée |
| Version complète en ligne |
| Version complète en ligne accessible uniquement depuis l'Ircam |
| Ajouter la notice au panier |
| Retirer la notice du panier |
English version
(full translation not yet available)
Liste complète des articles
|
Consultation des notices
%0 Conference Proceedings
%A Assayag, Gérard
%A Bejerano, Gill
%A Dubnov, Shlomo
%A Lartillot, Olivier
%T Automatic modeling of musical style
%D 2001
%B 8èmes Journées d'Informatique Musicale
%C Bourges
%P 113-119
%F Assayag01a
%K Unsupervised learning
%K Musical style
%K Compression
%K Predition Suffix Tree (PST)
%K Probabilistic Finite Automata (PSA)
%K Lempel-Ziv (LZ)
%K Stochastic
%K Quantization
%K Constraints
%K Loop
%K Redundancy
%K Musical Parameters
%K Markov predictor.
%X In this paper, we describe and compare two methods for unsupervised learning of musical style, both of which perform analyses of musical sequences and then compute a model from which new interpretations / improvisations close to the original's style can be generated. In both cases, an important part of the musical structure is captured, including rhythm, melodic contour, and polyphonic relationships. The first method is a drastic improvement of the Incremental Parsing (IP) method, a method derived from compression theory and proven useful in the musical domain. The second one is an application to music of Prediction Suffix Trees (PST), a learning technique initially developed for statistical modeling of complex sequences with applications in linguistics and biology.
%1 6
%2 3
%U http://articles.ircam.fr/textes/Assayag01a
|
|