Ircam-Centre Pompidou

Recherche

  • Recherche simple
  • Recherche avancée

    Panier électronique

    Votre panier ne contient aucune notice

    Connexion à la base

  • Identification
    (Identifiez-vous pour accéder aux fonctions de mise à jour. Utilisez votre login-password de courrier électronique)

    Entrepôt OAI-PMH

  • Soumettre une requête

    Consulter la notice détailléeConsulter la notice détaillée
    Version complète en ligneVersion complète en ligne
    Version complète en ligne accessible uniquement depuis l'IrcamVersion complète en ligne accessible uniquement depuis l'Ircam
    Ajouter la notice au panierAjouter la notice au panier
    Retirer la notice du panierRetirer la notice du panier

  • English version
    (full translation not yet available)
  • Liste complète des articles

  • Consultation des notices


    Vue détaillée Vue Refer Vue Labintel Vue BibTeX  

    %0 Conference Proceedings
    %A Zivanovic, Miroslav
    %A Roebel, Axel
    %A Rodet, Xavier
    %T Adaptive Threshold Determination for Spectral Peak Classification
    %D 2007
    %B Digital Audio Effects (DAFx)
    %C Bordeaux
    %P 47-54
    %F Zivanovic07a
    %K classification of spectral peaks
    %K spectral components
    %K noise
    %K sinusoids
    %X A new approach to adaptive threshold selection for classification of peaks of audio spectra is presented. We here extend the previous work on classification of sinusoidal and noise peaks based on a set of spectral peak descriptors in a twofold way: on one hand we propose a compact sinusoidal model where all the modulation parameters are defined with respect to the analysis window. This fact is of great importance as we recall that the STFT spectra are closely related to the analysis window properties. On the other hand, we design a threshold selection algorithm that allows us to control the decision thresholds in an intuitive manner. The decision thresholds calculated from the relationships established between the noise power in the signal and the distributions of sinusoidal peaks assures that all peaks described as sinusoidal will be correctly classified. We also show that the threshold selection algorithm can be used for different types of analysis windows with only a slight parameter readjustment.
    %1 6
    %2 3
    %U http://articles.ircam.fr/textes/Zivanovic07a/

    © Ircam - Centre Pompidou 2005.