Ircam-Centre Pompidou

Recherche

  • Recherche simple
  • Recherche avancée

    Panier électronique

    Votre panier ne contient aucune notice

    Connexion à la base

  • Identification
    (Identifiez-vous pour accéder aux fonctions de mise à jour. Utilisez votre login-password de courrier électronique)

    Entrepôt OAI-PMH

  • Soumettre une requête

    Consulter la notice détailléeConsulter la notice détaillée
    Version complète en ligneVersion complète en ligne
    Version complète en ligne accessible uniquement depuis l'IrcamVersion complète en ligne accessible uniquement depuis l'Ircam
    Ajouter la notice au panierAjouter la notice au panier
    Retirer la notice du panierRetirer la notice du panier

  • English version
    (full translation not yet available)
  • Liste complète des articles

  • Consultation des notices


    Vue détaillée Vue Refer Vue Labintel Vue BibTeX  

    Catégorie de document Article paru dans une revue
    Titre Mono-dimensional models of the acoustic propagation in axisymmetric waveguides
    Auteur principal Thomas Hélie
    Paru dans J. Acoust. Soc. Amer. 2003, Vol. 114
    Comité de lecture Oui
    Collation p.2633-2647
    Année 2003
    Statut éditorial Publié
    Résumé

    This paper presents a rigorous modelling of the linear acoustic propagation in axisymmetric waveguides, the pressure depending on a single space variable. The approach consists of writing the wave equation and the boundary conditions for a coordinate system rectifying the isobaric map at each time. The 2D-dependence of the problem is thus transferred from the pressure to the coefficients of the wave equation. From this result, an exclusively geometrical necessary condition is deduced for the admissibility of isobaric maps. However, the knowledge of the waveguide geometry is not sufficient to separate the pressure and the isobaric map solutions. In order to develop a unidimensional wave equation, a geometrical hypothesis is discussed. For lossless and motionless rigid waveguides, the deduced equation leads to exact results for tubes and cones. It may be interpreted as a Webster equation for a particular coordinate system so that the particular profiles for which analytical solutions of the pressure exist are redefined. The wave equation is also established for large pipes with visco-thermal losses and, more generally, for mobile walls having a small admittance. The compatibility of the geometrical hypothesis with the exact model is specified for this general case.

    Equipe Analyse et synthèse sonores
    Cote Helie03c
    Adresse de la version en ligne http://articles.ircam.fr/textes/Helie03c/index.pdf

    © Ircam - Centre Pompidou 2005.