Ircam-Centre Pompidou

Recherche

  • Recherche simple
  • Recherche avancée

    Panier électronique

    Votre panier ne contient aucune notice

    Connexion à la base

  • Identification
    (Identifiez-vous pour accéder aux fonctions de mise à jour. Utilisez votre login-password de courrier électronique)

    Entrepôt OAI-PMH

  • Soumettre une requête

    Consulter la notice détailléeConsulter la notice détaillée
    Version complète en ligneVersion complète en ligne
    Version complète en ligne accessible uniquement depuis l'IrcamVersion complète en ligne accessible uniquement depuis l'Ircam
    Ajouter la notice au panierAjouter la notice au panier
    Retirer la notice du panierRetirer la notice du panier

  • English version
    (full translation not yet available)
  • Liste complète des articles

  • Consultation des notices


    Vue détaillée Vue Refer Vue Labintel Vue BibTeX  

    %0 Thesis
    %A Cont, Arshia
    %T Modeling Musical Anticipation: From the time of music to the music of time
    %D 2008
    %C Paris
    %I University of Paris 6 (UPMC), and University of California San Diego (UCSD)
    %F Cont08b
    %K Anticipatory Modeling
    %K Information Geometry
    %K Music Information Retrieval
    %K Machine Learning
    %K Score Following
    %K Computer Music
    %K Automatic Improvisation
    %X This thesis studies musical anticipation, both as a cognitive process and design principle for applications in music information retrieval and computer music. For this study, we reverse the problem of modeling anticipation addressed mostly in music cognition literature for the study of musical behavior, to anticipatory modeling, a cognitive design principle for modeling artificial systems. We propose anticipatory models and applications concerning three main preoccupations of expectation: What to expect? How to expect? and When to expect? For the first question, we introduce a mathematical framework for music information geometry combining information theory, differential geometry, and statistical learning, with the aim of representing information content and gaining access to music structures. The second question is addressed as a machine learning planning problem in an environment, where interactive learning methods are employed on parallel agents to learn anticipatory profiles of actions to be used for decision making. To address the third question, we provide a novel anticipatory design for the problem of synchronizing a live performer to a pre-written music score, leading to Antescofo, a preliminary tool for writing of time and interaction in computer music. Despite the variety of topics present in this thesis, the anticipatory design concept is common in all propositions with the following premises: that an anticipatory design can reduce the structural and computational complexity of modeling, and helps address complex problems in computational aesthetics and most importantly computer music.
    %1 8
    %2 1
    %U http://articles.ircam.fr/textes/Cont08b/

    © Ircam - Centre Pompidou 2005.