Ircam-Centre Pompidou

Recherche

  • Recherche simple
  • Recherche avancée

    Panier électronique

    Votre panier ne contient aucune notice

    Connexion à la base

  • Identification
    (Identifiez-vous pour accéder aux fonctions de mise à jour. Utilisez votre login-password de courrier électronique)

    Entrepôt OAI-PMH

  • Soumettre une requête

    Consulter la notice détailléeConsulter la notice détaillée
    Version complète en ligneVersion complète en ligne
    Version complète en ligne accessible uniquement depuis l'IrcamVersion complète en ligne accessible uniquement depuis l'Ircam
    Ajouter la notice au panierAjouter la notice au panier
    Retirer la notice du panierRetirer la notice du panier

  • English version
    (full translation not yet available)
  • Liste complète des articles

  • Consultation des notices


    Vue détaillée Vue Refer Vue Labintel Vue BibTeX  

    %0 Conference Proceedings
    %A Hélie, Thomas
    %A Laroche, Béatrice
    %T Convergence of series expansions for some infinite dimensional nonlinear systems
    %D 2010
    %B IFAC SSSC
    %C Ancone
    %V 4
    %P 1-7
    %F Helie10f
    %K Nonlinear systems
    %K perturbation analysis
    %K partial differential equations
    %K convergence proofs
    %X Volterra series expansions have been extensively used to solve and represent the dynamics of weakly nonlinear finite dimensional systems. Such expansions can be recovered by using the regular perturbation method and choosing the input of the system as the perturbation: the state (or the output) is then described by a series expansion composed of homogeneous contributions with respect to the input, from which kernels of convolution type can be deduced. This paper provides an extension (based on this approach) to a class of semilinear infinite dimensional systems, nonlinear in state and affine in input. As a main result, computable bounds of the convergence radius of the series are established. They characterize domains on which the series defines a mild solution of the system. The convergence criterion is established for bounded signals (infinite norms on finite or infinite time intervals) as follows: first, norm estimates of the series expansion terms are derived; second, the singular inversion theorem is used to deduce an easily computable bound of the convergence radius. In the formalism proposed here, non zero initial conditions can be also considered as a perturbation so that no precomputation of nominal trajectories is required in practice. The relevance of the method is illustrated on an academic example.
    %1 6
    %2 3
    %U http://articles.ircam.fr/textes/Helie10f/

    © Ircam - Centre Pompidou 2005.