Ircam-Centre Pompidou

Recherche

  • Recherche simple
  • Recherche avancée

    Panier électronique

    Votre panier ne contient aucune notice

    Connexion à la base

  • Identification
    (Identifiez-vous pour accéder aux fonctions de mise à jour. Utilisez votre login-password de courrier électronique)

    Entrepôt OAI-PMH

  • Soumettre une requête

    Consulter la notice détailléeConsulter la notice détaillée
    Version complète en ligneVersion complète en ligne
    Version complète en ligne accessible uniquement depuis l'IrcamVersion complète en ligne accessible uniquement depuis l'Ircam
    Ajouter la notice au panierAjouter la notice au panier
    Retirer la notice du panierRetirer la notice du panier

  • English version
    (full translation not yet available)
  • Liste complète des articles

  • Consultation des notices


    Vue détaillée Vue Refer Vue Labintel Vue BibTeX  

    %0 Journal Article
    %A Hélie, Thomas
    %T Volterra series and state transformation for real-time simulations of audio devices including saturations: application to the Moog ladder filter
    %D 2010
    %B IEEE Transactions on Audio, Speech and Language Processing
    %V 18
    %N 4
    %P 747-759
    %F Helie10a
    %X Volterra series are known to be efficient to represent weakly nonlinear systems and take into account the first distortions. Their truncated versions allow to derive realizations (in the sense of system theory) leading to networks composed of linear filters, sums and instantaneous products of signals, without instantaneous feedback loops, from which low cost digital simulations are obtained. Nevertheless, if saturation phenomena arise, truncating the series at low order is not sufficient and the convergence can also be lost. This paper introduces a change of state which preserves the efficiency of Volterra series expansions in such a case, even at a very low truncation order. The deduced digital system to simulate preserves the properties mentioned above and includes two delay lines (possibly of 1 sample) and a nonlinear (static) function, given by the method.
    %1 1
    %2 3

    © Ircam - Centre Pompidou 2005.