Ircam-Centre Pompidou

Recherche

  • Recherche simple
  • Recherche avancée

    Panier électronique

    Votre panier ne contient aucune notice

    Connexion à la base

  • Identification
    (Identifiez-vous pour accéder aux fonctions de mise à jour. Utilisez votre login-password de courrier électronique)

    Entrepôt OAI-PMH

  • Soumettre une requête

    Consulter la notice détailléeConsulter la notice détaillée
    Version complète en ligneVersion complète en ligne
    Version complète en ligne accessible uniquement depuis l'IrcamVersion complète en ligne accessible uniquement depuis l'Ircam
    Ajouter la notice au panierAjouter la notice au panier
    Retirer la notice du panierRetirer la notice du panier

  • English version
    (full translation not yet available)
  • Liste complète des articles

  • Consultation des notices


    Vue détaillée Vue Refer Vue Labintel Vue BibTeX  

    Catégorie de document Rapport
    Titre On the numerical inversion of the Laplace transform in the context of physical models with realistic damping
    Auteur principal Karim Trabelsi
    Co-auteurs Denis Matignon, Thomas Hélie
    Collection Département TSI, Groupe AAO
    Commanditaire Telecom ParisTech
    Année 2009
    Statut éditorial Non publié
    Résumé

    This technical report sums up the research carried out under the title: Numerical optimisation of physical models with realistic damping for real-time sound synthesis which was supported by the CONSONNES (CONtrˆole de SONs instrumentaux Naturels Et Synth´etiques - in english: Control of natural and synthetic instrumental sounds) project. The context of this work is the real-time simulation of wind instrument resonators. Some realistic physical models as, for instance, the wave equation with viscothermal losses in a flared duct (The Webster-Lokshin model, cf. [63]; see also [45], [46] and [37]), possess non standard Green (transfer) functions with poles, branchpoints and cuts in Laplace’s left halfplane, which entails, in the time domain, impulse responses that decay slowly due to the non-purely-exponential damping. This accounts for the the long memory label tagged to such a model. A straightforward consequence to this phenomenon is the need of simulation for long times. Moreover, the time responses to such systems are obtained through the inversion of the Laplace transform which adds a second numerical issue, since the exponential factor is highly oscillatory on the Bromwich line. Over the years, methods have been devised to deal with the numerical inversion of the Laplace transform. The efficiency of most of these depends on some parameters that are tuned heuristically. Furthermore, most of them are not adapted to the nonstandard Green functions we are concerned with. To our knowledge, the most efficient algorithms may be divided along four directions. The first one is based on Fourier series expansion. The second one uses collocation methods. A third procedure is founded on Talbot’s idea [75] which consists in deforming the Bromwich contour into a curve that allows for a better numerical integration. Last but not least is an approach that comes from automatic control and which consists in the approximation of diffusive integral representations of the system. The last two approaches seem more efficient and suitable for our purposes. Therefore, these were the tracks we investigated with the goal of obtaining optimal deformations of the Bromwich contour so as to work out algorithms that are at least as good as the diffusive approach with the advantage of being automatic, i.e., without parameters that have to be tuned or whatsovever.

    Equipe Analyse et synthèse sonores
    Cote Trabelsi09a
    Adresse de la version en ligne http://articles.ircam.fr/textes/Trabelsi09a/index.pdf

    © Ircam - Centre Pompidou 2005.