Ircam-Centre Pompidou

Recherche

  • Recherche simple
  • Recherche avancée

    Panier électronique

    Votre panier ne contient aucune notice

    Connexion à la base

  • Identification
    (Identifiez-vous pour accéder aux fonctions de mise à jour. Utilisez votre login-password de courrier électronique)

    Entrepôt OAI-PMH

  • Soumettre une requête

    Consulter la notice détailléeConsulter la notice détaillée
    Version complète en ligneVersion complète en ligne
    Version complète en ligne accessible uniquement depuis l'IrcamVersion complète en ligne accessible uniquement depuis l'Ircam
    Ajouter la notice au panierAjouter la notice au panier
    Retirer la notice du panierRetirer la notice du panier

  • English version
    (full translation not yet available)
  • Liste complète des articles

  • Consultation des notices


    Vue détaillée Vue Refer Vue Labintel Vue BibTeX  

    %0 Conference Proceedings
    %A Mignot, Remi
    %A Hélie, Thomas
    %A Matignon, Denis
    %T Acoustic Modelling of a Convex Pipe Adapted for Digital Waveguide Simulation
    %D 2010
    %B Conference on Digital Audio Effects (DAFx-10)
    %C Graz
    %V 13
    %P 1-7
    %F Mignot10c
    %X This work deals with the physical modelling of acoustic pipes for real-time simulation, using the “Digital Waveguide Network” approach and the horn equation. With this approach, a piece of pipe is represented by a two-port system with a loop which involves two delays for wave propagation, and some subsystems without internal delay. A well-known form of this system is the “Kelly-Lochbaum” framework, which allows the reduction of the computation complexity. We focus this work on the simulation of pipes with a convex profile. But, using the “Kelly-Lochbaum” framework with the horn equation, two problems occur: first, even if the outputs are bound, some substates have their values which diverge; second, there is an infinite number of such substates. The system is then unstable and cannot be simulated as such. The solution of this problem is obtained with two steps. First, we show that there is a simple standard form compatible with the “Waveguide” approach, for which there is an infinite number of solutions which preserve the input/output relations. Second, we look for one solution which guarantees the stability of the system and which makes easier the approximation in order to get a low-cost simulation.
    %1 6
    %2 3
    %U http://articles.ircam.fr/textes/Mignot10c/

    © Ircam - Centre Pompidou 2005.