Ircam-Centre Pompidou

Recherche

  • Recherche simple
  • Recherche avancée

    Panier électronique

    Votre panier ne contient aucune notice

    Connexion à la base

  • Identification
    (Identifiez-vous pour accéder aux fonctions de mise à jour. Utilisez votre login-password de courrier électronique)

    Entrepôt OAI-PMH

  • Soumettre une requête

    Consulter la notice détailléeConsulter la notice détaillée
    Version complète en ligneVersion complète en ligne
    Version complète en ligne accessible uniquement depuis l'IrcamVersion complète en ligne accessible uniquement depuis l'Ircam
    Ajouter la notice au panierAjouter la notice au panier
    Retirer la notice du panierRetirer la notice du panier

  • English version
    (full translation not yet available)
  • Liste complète des articles

  • Consultation des notices


    Vue détaillée Vue Refer Vue Labintel Vue BibTeX  

    Catégorie de document Article paru dans une revue
    Titre Time Series Data Mining
    Auteur principal Philippe Esling
    Co-auteur Carlos Agon
    Paru dans ACM Computing Surveys 2011
    Comité de lecture Oui
    Année 2011
    Statut éditorial Accepté - publication en cours
    Résumé

    In almost every scientific field, measurements are performed over time. These observations lead to a collection of organized data called time series. The purpose of time series data mining is to try to extract all meaningful knowledge from the shape of data. Even if humans have a natural capacity to perform these tasks, it remains a complex problem for computers. In this paper we intend to provide a survey of the techniques applied for time series data mining. The first part is devoted to an overview of the tasks that have captured most of the interest of researchers. Considering that in most cases, time series task relies on the same components for implementation, we divide the literature depending on these common aspects, namely representation techniques, distance measures and indexing methods. The study of the relevant literature has been categorized for each individual aspects. Four types of robustness could then be formalized and any kind of distance could then be classified. Finally, the study submit various research trends and avenues that can be explored in the near future. We hope that this paper can provide a broad and deep understanding of the time series data mining research field.

    Mots-clés Time series / data mining / distance measures / sequence matching / query by content / sound databases
    Equipe Représentations musicales
    Cote Esling11a

    © Ircam - Centre Pompidou 2005.