Ircam-Centre Pompidou

Recherche

  • Recherche simple
  • Recherche avancée

    Panier électronique

    Votre panier ne contient aucune notice

    Connexion à la base

  • Identification
    (Identifiez-vous pour accéder aux fonctions de mise à jour. Utilisez votre login-password de courrier électronique)

    Entrepôt OAI-PMH

  • Soumettre une requête

    Consulter la notice détailléeConsulter la notice détaillée
    Version complète en ligneVersion complète en ligne
    Version complète en ligne accessible uniquement depuis l'IrcamVersion complète en ligne accessible uniquement depuis l'Ircam
    Ajouter la notice au panierAjouter la notice au panier
    Retirer la notice du panierRetirer la notice du panier

  • English version
    (full translation not yet available)
  • Liste complète des articles

  • Consultation des notices


    Vue détaillée Vue Refer Vue Labintel Vue BibTeX  

    %0 Generic
    %A Françoise, Jules
    %T Realtime Segmentation and Recognition of Gestures using Hierarchical Markov Models
    %D 2011
    %C Paris
    %I UPMC - Ircam
    %F Francoise11a
    %K gesture modeling
    %K gesture segmentation
    %K hierarchical models
    %K HMM
    %K segment models
    %X In this work, we present a realtime system for continuous gesture segmentation and recog- nition. The model is an extension of the system called Gesture Follower developed at Ircam, which is an hybrid model between Dynamic Time Warping and Hidden Markov Models. This previous model allows for a realtime temporal alignment between a template and an input gesture. Our model extends it by proposing a higher-level structure which models the switching between templates. Taking advantage of a representation as a Dynamic Bayesian Net- works, the time complexity of the inference algorithms is reduced from cubic to linear in the length of the observation sequence. We propose various segmentation methods, both offline and realtime. A quantitative evaluation of the proposed model on accelerometer sensor data provides a comparison with the Segmental Hidden Markov Model, and we discuss several sub-optimal methods for realtime segmentation. Our model reveals able to handle signal distortions due to speed variations in the execution of gestures. Finally, a musical application is outlined in a case study about the segmentation of violin bow strokes.
    %1 8
    %2 1
    %U http://articles.ircam.fr/textes/Francoise11a/

    © Ircam - Centre Pompidou 2005.