Ircam-Centre Pompidou

Recherche

  • Recherche simple
  • Recherche avancée

    Panier électronique

    Votre panier ne contient aucune notice

    Connexion à la base

  • Identification
    (Identifiez-vous pour accéder aux fonctions de mise à jour. Utilisez votre login-password de courrier électronique)

    Entrepôt OAI-PMH

  • Soumettre une requête

    Consulter la notice détailléeConsulter la notice détaillée
    Version complète en ligneVersion complète en ligne
    Version complète en ligne accessible uniquement depuis l'IrcamVersion complète en ligne accessible uniquement depuis l'Ircam
    Ajouter la notice au panierAjouter la notice au panier
    Retirer la notice du panierRetirer la notice du panier

  • English version
    (full translation not yet available)
  • Liste complète des articles

  • Consultation des notices


    Vue détaillée Vue Refer Vue Labintel Vue BibTeX  

    %0 Conference Proceedings
    %A Schwarz, Diemo
    %T Distance Mapping for Corpus-Based Concatenative Synthesis
    %D 2011
    %B Sound and Music Computing (SMC)
    %C Padova
    %F Schwarz11a
    %K corpus-based synthesis
    %K concatenative synthesis
    %K unit selection
    %K constraints
    %K content-based retrieval
    %K audio descriptors
    %K audio mosaicing
    %K databases
    %X In the most common approach to corpus-based concatenative synthesis, the unit selection takes places as a content-based similarity match based on a weighted Euclidean distance between the audio descriptors of the database units, and the synthesis target. While the simplicity of this method explains the relative success of CBCS for interactive descriptor-based granular synthesis — especially when combined with a graphical interface — and audio mosaicing, and still allows to express categorical matches, certain desirable constraints can not be formulated, such as disallowing repetition of units, matching a disjunction of descriptor ranges, or asymmetric distances. We therefore propose a new method of mapping the individual signed descriptor distances by a warping function that can express these criteria, while still being amenable to efficient multi-dimensional search indices like the kD-tree, for which we define the preconditions and cases of applicability.
    %1 6
    %2 3
    %U http://articles.ircam.fr/textes/Schwarz11a/

    © Ircam - Centre Pompidou 2005.