Recherche
Recherche simple
Recherche avancée
Panier électronique
Votre panier ne contient aucune notice
Connexion à la base
Identification
(Identifiez-vous pour accéder aux fonctions de mise à jour. Utilisez votre login-password de courrier électronique)
Entrepôt OAI-PMH
Soumettre une requête
| Consulter la notice détaillée |
| Version complète en ligne |
| Version complète en ligne accessible uniquement depuis l'Ircam |
| Ajouter la notice au panier |
| Retirer la notice du panier |
English version
(full translation not yet available)
Liste complète des articles
|
Consultation des notices
Catégorie de document |
Article paru dans une revue |
Titre |
On the singularities of fractional differential systems, using a mathematical limiting process based on physical grounds |
Auteur principal |
Remi Mignot |
Co-auteurs |
Thomas Hélie, Denis Matignon |
Paru dans |
Physica Scripta, Octobre 2009, n° 136 |
Comité de lecture |
Oui |
Collation |
p.1-7 |
Année |
2009 |
Statut éditorial |
Publié |
Résumé |
Fractional systems are associated to irrational transfer functions for which non unique analytic continuations are available (from some right-half Laplace plane to a maximal domain). They involve continuous sets of singularities, namely cuts, which link fixed branching points with an arbitrary path. In this paper, an academic example of the 1D heat equation and a realistic model of an acoustic pipe on bounded domains are considered. Both involve a transfer function with a unique analytic continuation and singularities of pole type. The set of singularities degenerates into uniquely defined cuts, when the length of the physical domain becomes infinite. From a mathematical point of view, both the convergence in Hardy spaces of some right-half complex plane and the pointwise convergence are studied and proved. |
Mots-clés |
Boundary value problem / Generalized linear systems / Integral representations / Laplace transforms / Singularities / Heat equation / Scattering problems. |
Equipe |
Analyse et synthèse sonores |
Cote |
Mignot09c |
Adresse de la version en ligne |
http://articles.ircam.fr/textes/Mignot09c/index.pdf |
|
|