Ircam-Centre Pompidou

Recherche

  • Recherche simple
  • Recherche avancée

    Panier électronique

    Votre panier ne contient aucune notice

    Connexion à la base

  • Identification
    (Identifiez-vous pour accéder aux fonctions de mise à jour. Utilisez votre login-password de courrier électronique)

    Entrepôt OAI-PMH

  • Soumettre une requête

    Consulter la notice détailléeConsulter la notice détaillée
    Version complète en ligneVersion complète en ligne
    Version complète en ligne accessible uniquement depuis l'IrcamVersion complète en ligne accessible uniquement depuis l'Ircam
    Ajouter la notice au panierAjouter la notice au panier
    Retirer la notice du panierRetirer la notice du panier

  • English version
    (full translation not yet available)
  • Liste complète des articles

  • Consultation des notices


    Vue détaillée Vue Refer Vue Labintel Vue BibTeX  

    %0 Conference Proceedings
    %A Lallemand, Ianis
    %A Schwarz, Diemo
    %A Artières, Thierry
    %T Content-based Retrieval of Environmental Sounds by Multiresolution Analysis
    %D 2012
    %B SMC2012
    %C Copenhague
    %F Lallemand12a
    %K Environmental sounds
    %K Content-based retrieval
    %K Wavelets
    %K Features
    %K Similarity Measure
    %K Sound textures
    %X Query by example retrieval of environmental sound recordings is a research area with applications to sound design, music composition and automatic suggestion of metadata for the labeling of sound databases. Retrieval problems are usually composed of successive feature extraction (FE) and similarity measurement (SM) steps, in which a set of extracted features encoding important properties of the sound recordings are used to compute the distance between elements in the database. Previous research has pointed out that successful features in the domains of speech and music, like MFCCs, might fail at describing environmental sounds, which have intrinsic variability and noisy characteristics. We present a set of novel multiresolution features obtained by modeling the distribution of wavelet subband coefficients with generalized Gaussian densities (GGDs). We define the similarity measure in terms of the Kullback-Leibler divergence between GGDs. Experimental results on a database of 1020 environmental sound recordings show that our approach always outperforms a method based on traditional MFCC features and Euclidean distance, improving retrieval rates from 51% to 62%.
    %1 6
    %2 2
    %U http://articles.ircam.fr/textes/Lallemand12a/

    © Ircam - Centre Pompidou 2005.