Ircam-Centre Pompidou

Recherche

  • Recherche simple
  • Recherche avancée

    Panier électronique

    Votre panier ne contient aucune notice

    Connexion à la base

  • Identification
    (Identifiez-vous pour accéder aux fonctions de mise à jour. Utilisez votre login-password de courrier électronique)

    Entrepôt OAI-PMH

  • Soumettre une requête

    Consulter la notice détailléeConsulter la notice détaillée
    Version complète en ligneVersion complète en ligne
    Version complète en ligne accessible uniquement depuis l'IrcamVersion complète en ligne accessible uniquement depuis l'Ircam
    Ajouter la notice au panierAjouter la notice au panier
    Retirer la notice du panierRetirer la notice du panier

  • English version
    (full translation not yet available)
  • Liste complète des articles

  • Consultation des notices


    Vue détaillée Vue Refer Vue Labintel Vue BibTeX  

    Catégorie de document Article paru dans une revue
    Titre A class of damping models preserving eigenspaces for linear conservative port-Hamiltonian systems
    Auteur principal Denis Matignon
    Co-auteur Thomas Hélie
    Paru dans European Journal of Control 2013, Vol. 19, n° 6
    Comité de lecture Oui
    Collation p.486-494
    Année 2013
    Statut éditorial Publié
    Résumé

    For conservative mechanical systems, the so-called Caughey series are known to define the class of damping matrices that preserve eigenspaces. In particular, for finite-dimensional systems, these matrices prove to be a polynomial of one reduced matrix, which depends on the mass and stiffness matrices. Damping is ensured whatever the eigenvalues of the conservative problem if and only if the polynomial is positive for positive scalar values. This paper first recasts this result in the port-Hamiltonian framework by introducing a port variable corresponding to internal energy dissipation (resistive element). Moreover, this formalism naturally allows to cope with systems including gyroscopic effects (gyrators). Second, generalizations to the infinite-dimensional case are considered. They consist of extending the previous polynomial class to rational functions and more general functions of operators (instead of matrices), once the appropriate functional framework has been defined. In this case, the resistive element is modelled by a given static operator, such as an elliptic PDE. These results are illustrated on several PDE examples: the Webster horn equation, the Bernoulli beam equation; the damping models under consideration are fluid, structural, rational and generalized fractional Laplacian or bi-Laplacian.

    Mots-clés Energy storage / Port-Hamiltonian systems / Eigenfunctions / Damping / Caughey series / Partial differential equations / Fractional Laplacian
    Equipe Analyse et synthèse sonores
    Cote Matignon13a

    © Ircam - Centre Pompidou 2005.