Recherche
Recherche simple
Recherche avancée
Panier électronique
Votre panier ne contient aucune notice
Connexion à la base
Identification
(Identifiez-vous pour accéder aux fonctions de mise à jour. Utilisez votre login-password de courrier électronique)
Entrepôt OAI-PMH
Soumettre une requête
| Consulter la notice détaillée |
| Version complète en ligne |
| Version complète en ligne accessible uniquement depuis l'Ircam |
| Ajouter la notice au panier |
| Retirer la notice du panier |
English version
(full translation not yet available)
Liste complète des articles
|
Consultation des notices
%0 Conference Proceedings
%A Obin, Nicolas
%A Roebel, Xavier
%A Bachman, Grégoire
%T On Automatic Voice Casting for Expressive Speech: Speaker Recognition vs. Speech Classification
%D 2014
%B IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP),
%C Florence
%F Obin14c
%K voice casting
%K voice similarity
%K speaker recognition
%K speech classification
%X This paper presents the first large-scale automatic voice casting system, and explores the adaptation of speaker recognition techniques to measure voice similarities. The proposed system is based on the representation of a voice by classes (e.g., age/gender, voice quality, emotion). First, a multi-label system is used to classify speech into classes. Then, the output probabilities for each class are concatenated to form a vector that represents the vocal signature of a speech recording. Finally, a similarity search is performed on the vocal signatures to determine the set of target actors that are the most similar to a speech recording of a source actor. In a subjective experiment conducted in the real-context of voice casting for video games, the multi-label system clearly outperforms standard speaker recognition systems. This indicates evidence that speech classes successfully capture the principal directions that are used in the perception of voice similarity.
%1 6
%2 2
%U http://architexte.ircam.fr/textes/Obin14c/
|
|