Ircam-Centre Pompidou

Recherche

  • Recherche simple
  • Recherche avancée

    Panier électronique

    Votre panier ne contient aucune notice

    Connexion à la base

  • Identification
    (Identifiez-vous pour accéder aux fonctions de mise à jour. Utilisez votre login-password de courrier électronique)

    Entrepôt OAI-PMH

  • Soumettre une requête

    Consulter la notice détailléeConsulter la notice détaillée
    Version complète en ligneVersion complète en ligne
    Version complète en ligne accessible uniquement depuis l'IrcamVersion complète en ligne accessible uniquement depuis l'Ircam
    Ajouter la notice au panierAjouter la notice au panier
    Retirer la notice du panierRetirer la notice du panier

  • English version
    (full translation not yet available)
  • Liste complète des articles

  • Consultation des notices


    Vue détaillée Vue Refer Vue Labintel Vue BibTeX  

    %0 Book Section
    %A Rasamimanana, Nicolas
    %A Fléty, Emmanuel
    %A Bevilacqua, Frédéric
    %T Gesture Analysis of Violin Bow Strokes
    %D 2006
    %E Sylvie Gibet, Nicolas Courty, Jean-François Kamp
    %B Lecture Notes in Computer Science, Vol. 3881 : Gesture in Human-Computer Interaction and Simulation: 6th International Gesture Workshop, GW 2005, Berder Island, France, May 18-20, 2005, Revised Selected Papers
    %I Springer Berlin / Heidelberg
    %P 145-155
    %F Rasamimanana06a
    %K Gesture Analysis
    %K Bow Strokes
    %K Violin
    %K Augmented Instruments
    %X We developed an ”augmented violin”, i.e. an acoustic instrument with added gesture capture capabilities to control electronic processes. We report here gesture analysis we performed on three different bow strokes, detache, martele and spiccato, using this augmented violin. Different features based on velocity and acceleration were considered. A linear discriminant analysis has been performed to estimate a minimum number of pertinent features necessary to model these bow stroke classes. We found that the maximum and minimum accelerations of a given stroke were efficient to parameterize the different bow stroke types, as well as differences in dynamics playing. Recognition rates were estimated using a kNN method with various training sets. We finally discuss that bow stroke recognition allows to relate the gesture data to music notation, while a bow stroke continuous parameterization can be related to continuous sound characteristics.
    %1 4
    %2 3
    %U http://architexte.ircam.fr/textes/Rasamimanana06a/

    © Ircam - Centre Pompidou 2005.