Ircam-Centre Pompidou

Recherche

  • Recherche simple
  • Recherche avancée

    Panier électronique

    Votre panier ne contient aucune notice

    Connexion à la base

  • Identification
    (Identifiez-vous pour accéder aux fonctions de mise à jour. Utilisez votre login-password de courrier électronique)

    Entrepôt OAI-PMH

  • Soumettre une requête

    Consulter la notice détailléeConsulter la notice détaillée
    Version complète en ligneVersion complète en ligne
    Version complète en ligne accessible uniquement depuis l'IrcamVersion complète en ligne accessible uniquement depuis l'Ircam
    Ajouter la notice au panierAjouter la notice au panier
    Retirer la notice du panierRetirer la notice du panier

  • English version
    (full translation not yet available)
  • Liste complète des articles

  • Consultation des notices


    Vue détaillée Vue Refer Vue Labintel Vue BibTeX  

    %0 Journal Article
    %A Bouhoula, Adel
    %A Jacquemard, Florent
    %T Sufficient Completeness Verification for Conditional and Constrained Term Rewriting Systems
    %D 2012
    %E Dov M. Gabbay, Sarit Kraus, Jörg Siekmann
    %B Journal of Applied Logic
    %V 1
    %N 10
    %P 127-143
    %F Bouhoula12a
    %X We present a procedure for checking sufficient completeness of conditional and constrained term rewriting systems containing axioms for constructors which may be constrained (by e.g. equalities, disequalities, ordering, membership…). Such axioms allow to specify complex data structures like e.g. sets, sorted lists or powerlists. Our approach is integrated into a framework for inductive theorem proving based on tree grammars with constraints, a formalism which permits an exact representation of languages of ground constructor terms in normal form. The procedure is presented by an inference system which is shown sound and complete. A precondition of one inference of this system refers to a (undecidable) property called strong ground reducibility which is discharged to the above inductive theorem proving system. We have successfully applied our method to several examples, yielding readable proofs and, in case of negative answer, a counter-example suggesting how to complete the specification. Moreover, we show that it is a decision procedure when the TRS is unconditional but constrained, for an expressive class of constrained constructor axioms.
    %1 1
    %2 1
    %U http://architexte.ircam.fr/textes/Bouhoula12a/

    © Ircam - Centre Pompidou 2005.