Ircam-Centre Pompidou

Recherche

  • Recherche simple
  • Recherche avancée

    Panier électronique

    Votre panier ne contient aucune notice

    Connexion à la base

  • Identification
    (Identifiez-vous pour accéder aux fonctions de mise à jour. Utilisez votre login-password de courrier électronique)

    Entrepôt OAI-PMH

  • Soumettre une requête

    Consulter la notice détailléeConsulter la notice détaillée
    Version complète en ligneVersion complète en ligne
    Version complète en ligne accessible uniquement depuis l'IrcamVersion complète en ligne accessible uniquement depuis l'Ircam
    Ajouter la notice au panierAjouter la notice au panier
    Retirer la notice du panierRetirer la notice du panier

  • English version
    (full translation not yet available)
  • Liste complète des articles

  • Consultation des notices


    Vue détaillée Vue Refer Vue Labintel Vue BibTeX  

    %0 Conference Proceedings
    %A Huber, Stefan
    %A Roebel, Axel
    %T Voice quality transformation using an extended source-filter speech model
    %D 2015
    %B 12th Sound and Music Computing Conference (SMC)
    %C Dublin
    %P 69-76
    %F Huber15a
    %K Glottal source
    %K voice quality
    %K LF model
    %K source-filter model
    %K speech synthesis
    %X In this paper we present a flexible framework for parametric speech analysis and synthesis with high quality. It constitutes an extended source-filter model. The novelty of the proposed speech processing system lies in its extended means to use a Deterministic plus Stochastic Model (DSM) for the estimation of the unvoiced stochastic component from a speech recording. Further contributions are the efficient and robust means to extract the Vocal Tract Filter (VTF) and the modelling of energy variations. The system is evaluated in the context of two voice quality transformations on natural human speech. The voice quality of a speech phrase is altered by means of re-synthesizing the deterministic component with different pulse shapes of the glottal excitation source. A Gaussian Mixture Model (GMM) is used in one test to predict energies for the re-synthesis of the deterministic and the stochastic component. The subjective listening tests suggests that the speech processing system is able to successfully synthesize and arise to a listener the perceptual sensation of different voice quality characteristics. Additionally, improvements of the speech synthesis quality compared to a baseline method are demonstrated.
    %1 6
    %2 3
    %U http://architexte.ircam.fr/textes/Huber15a/

    © Ircam - Centre Pompidou 2005.