Ircam-Centre Pompidou

Recherche

  • Recherche simple
  • Recherche avancée

    Panier électronique

    Votre panier ne contient aucune notice

    Connexion à la base

  • Identification
    (Identifiez-vous pour accéder aux fonctions de mise à jour. Utilisez votre login-password de courrier électronique)

    Entrepôt OAI-PMH

  • Soumettre une requête

    Consulter la notice détailléeConsulter la notice détaillée
    Version complète en ligneVersion complète en ligne
    Version complète en ligne accessible uniquement depuis l'IrcamVersion complète en ligne accessible uniquement depuis l'Ircam
    Ajouter la notice au panierAjouter la notice au panier
    Retirer la notice du panierRetirer la notice du panier

  • English version
    (full translation not yet available)
  • Liste complète des articles

  • Consultation des notices


    Vue détaillée Vue Refer Vue Labintel Vue BibTeX  

    %0 Conference Proceedings
    %A Gong, Rong
    %A Obin, Nicolas
    %A Dzhambazov, Georgi
    %A Serra, Xavier
    %T Score-informed Syllable Segmentation For Jingju A Cappella Singing Voice With Mel-frequency Intensity Profiles
    %D 2017
    %B International Workshop on Folk Music Analysis (FMA)
    %C Malaga, Spain
    %F Gong17a
    %K singing voice
    %K syllable segmentation
    %K score-informed
    %X This paper introduces a new unsupervised and score-informed method for the segmentation of singing voice into syllables. The main idea of the proposed method is to detect the syllable onset on a probability density function by incorporating a priori syllable duration derived from the score. Firstly, intensity profiles are used to exploit the characteristics of singing voice depending on the Mel-frequency regions. Then, the syllable onset proba-bility density function is obtained by selecting candidates over the intensity profiles and weighted for the purpose of emphasizing the onset regions. Finally, the syllable duration distribution shaped by the score is incorporated into Viterbi decoding to deter- mine the optimal sequence of onset time positions. The proposed method outperforms conventional methods for the segmentation of syllable on a jingju (also known as Peking or Beijing opera) a cappella dataset. An analysis is conducted on precision errors to provide direction for future improvement.
    %1 6
    %2 2
    %U http://architexte.ircam.fr/textes/Gong17a/

    © Ircam - Centre Pompidou 2005.