Ircam-Centre Pompidou

Recherche

  • Recherche simple
  • Recherche avancée

    Panier électronique

    Votre panier ne contient aucune notice

    Connexion à la base

  • Identification
    (Identifiez-vous pour accéder aux fonctions de mise à jour. Utilisez votre login-password de courrier électronique)

    Entrepôt OAI-PMH

  • Soumettre une requête

    Consulter la notice détailléeConsulter la notice détaillée
    Version complète en ligneVersion complète en ligne
    Version complète en ligne accessible uniquement depuis l'IrcamVersion complète en ligne accessible uniquement depuis l'Ircam
    Ajouter la notice au panierAjouter la notice au panier
    Retirer la notice du panierRetirer la notice du panier

  • English version
    (full translation not yet available)
  • Liste complète des articles

  • Consultation des notices


    Vue détaillée Vue Refer Vue Labintel Vue BibTeX  

    %0 Conference Proceedings
    %A Depalle, Philippe
    %A Tassart, Stéphan
    %T Fractional delay lines using Lagrange interpolators
    %D 1996
    %B ICMC: International Computer Music Conference
    %C Hongkong
    %V 1
    %P 341-343
    %F Depalle96a
    %K signal processing
    %K fractional delays
    %K physical modeling
    %K lagrange interpolation
    %X Many studies have been undertaken on the modeling of physical systems by means of waveguide filters. These methods consist mainly in simulating the propagation of acoustic waves with digital delay lines. These models are constrained to have a spatial step fixed by the sampling rate which becomes a serious drawback when a high spatial resolution in the geometry of the model is needed or when the length of the waveguide needs to vary. One can use digital filters for approximating the exact fractional delay, but length variations usually induce audible distortions because of local instabilities or modification of the filter's structure. Lagrange Interpolation theory leads to FIR filters which approximate fractional delays according to a maximally flat error criterion. Major drawbacks of current implementations of Lagrange Interpolator Filters (LIF), such as the Farrow structure, are a high computation cost and a lack of control over the delay which can only vary in a narrow range of values. Furthermore, there is no explicit method for shrinking or enlarging the fractional delay line. We propose a new implementation for fractional delay lines based on the formal power series expansion of the exact z-transform. We have developed different fast and modular algorithms for fractional delay lines which make them usable for real-time delay-varying applications. Modularity in the structure is a key point here as it enables one to switch between filters of different order while preserving the continuity of the z-transform. Thus the delay may vary over an unlimited range of values. Furthermore, any arbitrary integer part of the fractional delay can be simulated by a classical delay line so that the actual size of the fractional delay line may be maintained within reasonable limits. We have written a real-time implementation in a MAX-FTS environment. Different examples will illustrate its time-varying properties and its numerical stability.
    %1 7
    %2 3

    © Ircam - Centre Pompidou 2005.