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Abstract

The mathematical study of the diatonic and chromatic uni-
verses in the tradition of David Lewin (9) and John Clough
(6) is a point of departure for several recent investigations.
Surprisingly, Lewin’s original idea to apply finite Fourier trans-
form to musical structures has not been further investigated
for four decades. It turns out that several music-theoretically
interesting properties of certain types of musical structures,
as the partial symmetry of Fourier balances, maximal even-
ness (5) and well-formedness (4), allow alternative charac-
terizations in terms of their Fourier transforms. The paper ex-
plores two particularly interesting cases: vanishing Fourier
coefficients as an expression of chord symmetry and maxi-
mal Fourier coefficients as a reinterpretation of maximally
even scales. In order to experimentally explore the Fourier
approach we design an interactive playground for rhythmic
loops. We propose a Fourier-based approach to be integrated
as an ”Scratching”-interface in the OMAX environment (built
on OpenMusic and MaxMSP) which allows to interactively
change a rhythm through a gestural control of its Fourier im-
age. A collection of theoretical tools in OpenMusic visual
programming language helps the improviser to explore some
new musical situations by inspecting mathematical and visual
characteristics of the Fourier image.

1 David Lewin’s call for Fourier
In a few lines at the end of his very first paper (9), David

Lewin tantalizingly alludes to Fourier transforms and convo-
lution products to explain how he was led to the special sym-
metries he considers in his paper about the relative intervallic
content of two chords.

In the present paper we elaborate some of Lewin’s ideas
by applying the Finite Fourier Transform (FT) to more several
of musical structures. To begin with, we model the set of
notes modulo octave by Zc (c = 12 in the equal division
of the octave in twelve parts) and define, in this section, the
Fourier transform of a subset A as a FT of its characteristic
function:

FA : t !→
∑

k∈A

e−2iπkt/c

The usual properties of FT apply and are indeed elementary
in this simple discrete case. It is worthwhile to note that the
usual musical operations (transposition, retrogradation, even
complementation) do not change the modulus (i.e. length)
of the FT: this means already that |FA| is a good musical
invariant.

The most interesting property is that the FT of the rela-
tive intervallic content of two chords (a function stating the
number of occurences of any interval between A,B) is sim-
ply the product of their respective Fourier transforms, as FT
turns convolution product into ordinary product:

F(IC(A,B)) = FA × F−B

Interestingly, this line of thought leads to a ”one line” proof of
Babbitt’s hexacord theorem on which Babbitt and Lewin were
both working hard at the same time. It was also the basis of
Dan Tudor Vuza’s original work (13) on ’Vuza canons’ which
has been also implemented in OpenMusic.

1.1 Vanishing Fourier Transform of Charac-
teristic Functions

Lewin’s interest though was in a kind of inverse prob-
lem, reconstructing (say) A from B and the intervallic con-
tent. This is possible when F−B is non vanishing, and this
excludes precisely the five cases that Lewin put forward as
’augmented-triad property’ and the like in (9), and simply
’FOURPROP(i)’ in (10). See (12), chap. 3 for more details.
Of interest to us is the fact thatF−B(k)will vanish essentially
when set B exhibits a notion akin to periodicity, the Fourier
balance. For instance the set B = (0, 4, 5), like the aug-
mented triad (0, 4, 8), has FOURPROP(4), as it is evenly dis-
tributed among the three diminished seventh chords. Suffice
to say here that the Fourier transform enables to give an inter-
esting generalization of periodic subsets (or Messiaen trans-
position limited modes) of Zc.



1.2 Maximal Fourier Coefficients andMaximal
Evenness

On the other hand, when the FT is as far as possible from
vanishing (for some value k of its argument), it must char-
acterize other interesting subsets of Zc. As noticed in (12),
and later formally proved by one of the authors, this case cor-
responds to the well known family of Maximally Even Sets
(ME sets), as defined in the general case by (5).

Theorem 1 A subset A ∈ Zc of cardinality d is Maximally
Even if |FA(d)| ≥ |FB(d)| for all subsets B of cardinality d.

Intuitively, this means thatA approximates as well as possible
for a discrete subset an even division of cardinality c by d
terms. For instance, in the simplest case when d is a divisor
of c, and A = {0, c/d, 2c/d, }

FA(d) =
∑

k∈A

e2iπkd/c = 1 + 1 + . . . = d

which is clearly maximal for a sum of d terms, each of which
has length 1. In less clear-cut cases, like the major scale (c =
12, d = 7), the maximum is strictly less than d.

Aside from characteristic functions there is another sim-
ple way to encode scales and periodic rhythms; namely as
points on the unit circle. In this approach we do not need a
chromatic universe where the scales are embedded. The no-
tion of maximal evenness can be defined relative to any col-
lection of N-note scales. A scale X = {e2πit1 , ..., e2πitN }
will be called Maximally Even among all scales within a
given family S if its Fourier coefficient a1 has maximal ra-
dius among the corresponding Fourier coefficients a′1 for all
members of the family S.

This recovers the ordinary definition of maximally even-
ness, where theS consists of all N-note subscales of a equally
distributed chromatic universe. Scales in step order, whose
zero’th Fourier coefficient a0 is bigger than a1 can be charac-
terised as clusters.

The unit-circle representation of scales is the point of de-
parture for our modeling of periodic rhythms in the following
section.

2 Fourier ”Scratching”
Musical Rhythms are often described as sequences of inter-

onset intervals or simply as sets of musical onsets. The for-
mer manner of description focusses on the internal connectiv-
ity of a rhythm while the latter one conceives rhythms as sets
of events. The sequencial temporal order of the single events
is then implicitely given by the order of the linear order on
the onset axis. The following model introduces a concept of

sequentiality independently from the temporal order. Iden-
tity of temporal and sequential order serves only as a point
of departure for the exploration of a variety of other kinds
of solidarity between the two. For example, think of the lin-
ear order of musical pitch. An ascending scale exemplifies a
strict solidarity between both orders. A systematic exchange
of each second note with its predecessor destroys this strikt
solidarity, but still exemplifies a generalized solidarity prin-
ciple. The manipulation of the finite Fourier transforms of
the rhythms thereby allows to intuively perform slight global
changes on the rhythms without changing each single event
”by hand”.

2.1 Rhythmic Loops
In this application we assume a cyclic organisation of mu-

sical time with a fixed abstract period d = 1. Practically, the
actual interpretation of this abstract period (in terms of physi-
cal time in a performance) might vary, but we do not elaborate
this further. Let U = {φt = e2πit | 0 ≤ t < 1} denote the
unit circle and let UN = {φk/N = e2πik/N | 0 ≤ k < N}
denote the discrete subcircles of cardinality N (i.e. N’th roots
of unity). Of all the parameters which might be postulated
for the specification of a musical event we isolate just the fol-
lowing two: phase φt ∈ U and intensity r ≥ 0 (r ∈ R). For
all additional parameters we postulate a musical space S. The
selected parameters phase and intensity may vary indepen-
dently with one exception: vanishing intensity implies zero
phase. This trick allows us to identify musical events with
pairs (z, s) ∈ C × S. Intensity and phase are thus jointly
encoded in terms complex numbers z = rφt.

The musical space S may encode several aspects such as
pitch, timbre, direction (orthophony). In order to motivate
the idea of rhythmic loops we assume a modality for creating
loops (closed curves) within this space λ : U → S or discrete
loops λN : UN → S. For simplicity we assume that all
the discrete loops λN are restrictions of a previously chosen
continuous loop λ. As in the case of the period d this loop
may vary within the space S, but we do not elaborate on that
here. By definition, we conceive a rhythmicN -loop as a map

ρ× λN : UN → C× S.

In the sequel we focus on the purely rhythmic part of this
map, namely ρ : UN → C. However, it is important to notice
that the musical motivation for this is encoded in the other
map λN : UNS. which embodies a sequentiality with regard
to the space S. We claim that the manipulation of Fourier
Coefficients of ρ results in a manipulation of the musical sol-
idarity between sequentiality in S on the one hand and cyclic
time on the other.



2.2 Analysis and Resynthesis of Rhythms
The application of finite Fourier transform is inspired by

the surprising success of this method in sound processing
and works more or less straight forward. However, finite
Fourier transform serves in signal processing as a approxima-
tion of the continuous case. The present application to musi-
cal rhythm — such as the applications to Chords and Scales
mentioned previously — is based on finite Fourier transform
as an autonomous analogue to the continous case. The finite
Fourier transform is a linear bijection of C

2.3 Dragging, Eliminating and Inserting
of Fourier Coefficients

The section title ”Fourier Scratching” refers to a manipu-
lation of rhythms through gestural distortions of their Fourier
images. The ”Fourier DJ” grabs a Fourier coefficient and
moves it in order to modify the entire rhythm in a subtle way.
The theory guarantees the existence of the inverse transform.
Of course, the musical interpretation depends on a suitably
chosen quantification of the musical time and intensity. Fig-
ure 1 shows an example for a series of progressive rhythm
deformations.

Figure 1: The OpenMusic Voice object displays a series of
progressive deformations of an initial rhythmic pattern

Aside from a purely experimental exploration of the mu-
sical effects like in the previous example, we propose some
theoretical feedback to the improviser (see next section).

The number of events per rhythm does nod need to be
fixed. Our postulate that all discrete loops λN : UN → S
are restrictions of a continuous loop λ : U → S allows to let
the rhythmic loop to vary in cardinality. Filter techniques as
well es zero-padding offer modalities for contiguous transi-
tions between rhythms of different cardinality.

3 Towards a Guided Improvisation in
the OMAX Environment
Computer-Aided approaches to musical improvisation need

not to be restricted to gestural interaction and sound process-
ing. We would like to support the challenging idea of using
theory-oriented tools, enhancing the improvisers’ conscious
knowledge about their own creative activity. In this section
we describe a concrete instance of an architecture which com-
bines the realtime capacities of MAX/MSP for live perfor-
mance with the exploratory power of OpenMusic visual pro-
gramming language. This architecture, which has been pro-
posed by (1), allows the combination of realtime interaction
with high level operations such as the inspection of musi-
cal properties of the ongoing process. Fourier transforms
on rhythms and other musical objects provide a particularly
interesting case study, as these give instantaneous snapshots
of the global tendency of the musical process. Aside from
merely inspecting the actual Fourier transform; the environ-
ment offers a the interactive comparison of an actual diagno-
sis with families of previously investigated musical situations.
Three simple examples may illustrate the general philosophy
of such an interaction.
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Figure 2: Localisation of the Fourier coefficients of the di-
atonic scale on the characteristic curve for generated 7-note
scales



1. Suppose the improvisor attempts to turn his actual rhyth-
mic pattern into a palindromic one. While the visual
inspection of the rhythm itself may be as complicated
as listening to it, the Fourier transforms of palindromes
correspond to alignments of the coefficients along lines.
The best linear fit to the actual Fourier image can serve
as an oracle for a path toward the desired palindromic
state.

2. Wellformed rhythms, i.e. the rhythmic analogues to
wellformed scales, have the property of being being
palindromic and as well as having their Fouriercoeffients
positioned on a characteristic curve. This curve is the
balanced sum of the first N (complex) partials, where
N denotes the number of beats and parametrizes the
Fourier-images of the generation-order encoding all gen-
eratedN -rhythms. Wellformed rhythms keep this align-
ment also in sequential-order encoding (see Figure 2).

3. The improviser may find his actual music particularly
fascinating without understanding it in the live situa-
tion. A Fourier snapshot can offer him a characteristic
picture, which can be interactively manipulated (see the
previous section) or saved as a potential component of
an oracle.

Although the full integration of this playground in OMAX
is still under development we can alredy present some instruc-
tive OpenMusic implementations.
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