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Abstract

This paper deals with the theoretical and numerical treatment of the unilateral dynamic contact problem between
two arbitrary elastic bodies without friction. In addition to the classical variational statement that arises from static
problems, a dynamic contact condition is needed and found by adjusting the balance laws of physical quantities to the
impenetrability condition. In the context of infinitesimal deformation, a reciprocal formulation is then used to reduce
this well-posed problem to one involving Green functions defined only on contact surfaces. It is then often possible
to approximate the system using considerably fewer unknowns than with finite difference algorithms. The ability of
the method to predict the contact interaction between two elastic bodies, irrespective of the material constitution and
geometry, is highlighted by analytical and numerical simulations.
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INTRODUCTION

The general problem of the equilibrium of a linear elas-
tic body in contact with a frictionless foundation was for-
mulated by Signorini [1] in 1933, who presented a more
complete account of his theory in 1959 [2]. The first rig-
orous analysis of a class of Signorini problems was pub-
lished by Fichera [3]. The work of Fichera represents the
first treatment of the question of existence and uniqueness
of variational inequalities arising from the minimization
of the total potential energy functional on a convex con-
straint set that expresses the impenetrability between the
body and the foundation.

Since then, the solution of the classical Signorini prob-
lem has been shown to be also the solution of a variational
inequality that arises naturally from the principle of vir-
tual work. See, for instance, Oden and Kikuchi [4] who
laid the mathematical framework for a variational state-
ment of the Signorini’s problem and took up the question
of existence and uniqueness of solutions. They also pro-
vided interpretations of weak solutions and discussed their
relationship to the classical solution. As customary, saddle
point theory (Lagrange multipliers) or penalty formula-
tions were used to handle the contact constraint and finite
element approximations were developed.

All these studies refer to static elasticity. Several au-
thors have attempted to find the numerical solution of
dynamic contact problems using finite element methods.
Among them it is important to mention the work of Hughes

Email address: bensoam@ircam.fr (Joël. Bensoam)

et al. [5] who presented a finite element formulation for
linearly elastic contact-impact problems valid for perfect
frictionless condition on the contact surface. Careful pro-
cedures, compatible with waves propagation theory, were
used to enforce linear momentum balance when the impact
or the release of the contact nodes occurs.

Duvaut and Lions [6] have investigated the frictional
dynamic contact problem with prescribed normal trac-
tions on the contact boundary and were able to prove
existence and uniqueness of solutions. The frictional ef-
fects are included in the variational formulation through a
non-differentiable functional which represents the virtual
power of the friction force. As a consequence of this non-
differentiability, this dynamic contact problem provides
also an example of physical system subject to a governing
variational inequality. Applications of the finite element
method to solve this variational inequality, including er-
ror estimates and adapted algorithms, were presented by
Martins and Oden [7].

For unilateral contact, a variational inequality was also
formulated, (e.g. Panagiotopoulos et al. [8, 9]). By dis-
cretizing this inequality with respect to time and using a
finite element method, these authors also obtained a solu-
tion of the dynamic unilateral contact problem by solving
a static problem at each time step. In this case, the contact
conditions are devised on individual configurations with-
out much regard to the temporal variation of the contact
kinematic measures. Taylor and Papadopoulos [10], in the
90’s, have shown that standard semi-discrete time integra-
tors are unsuccessful in modeling the kinematic contact
imposed on the interacting bodies during persistent con-
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tact.They have bypassed this difficulty by devising a spe-
cial treatment of contact/release conditions. Since then,
Laursen et al. [11] demonstrated that this dynamic kine-
matic condition guarantees the energy conservation for
frictionless contact and proposed a formulation of dynamic
contact problems which enables an exact algorithmic con-
servation of the linear momentum, angular momentum,
and energy in finite element simulations. The ability of the
formulation to produce accurate results where more tradi-
tional integration schemes fail is emphasized by their nu-
merical simulations. Since then, many authors have been
working on similar problems involving viscoelastic mate-
rial (see for instance [12], [13] or [14]).

At this point is important to note that optimization
theory adapted to dynamic contact problem needs, to give
good numerical results, a dynamic condition that garan-
tees the energy conservation. In the works mention above,
this condition was postulated by the authors and a physi-
cal justification is still needed. This the major purpose of
this article.

Usually, the variational inequality is obtained by adding
a constraint to the classical equation of motion. Con-
versely, in the static case, Fichera [3] or Oden and Kikuchi [4]
showed that equations of equilibrium with constraint can
be derived from convex analysis and optimization theory
(optimization of the potential energy here). It is then nat-
ural to seek a functional which is to the dynamic context
what the total potential energy functional is to the static
context.

The first section of this article show that the optimiza-
tion of Hamilton’s functional, on a constraint set that ex-
presses the contact condition, can be used to obtain a for-
mal statement of the two-body dynamic contact problem.
In this framework, general non-linear programming meth-
ods are available and the problem can be formulated using
saddle point theory where the Lagrange multiplier repre-
sents a contact pressure. To this purpose Taylor’s proce-
dure [10] is followed in the linear context.

Unfortunately, this statement is not sufficient since it is
shown here that the energy balance must be considered to
obtain a well-posed problem. In section 2, it is shown that
the kinematic contact condition, derived from the static
one by Taylor [10] and postulated by Laursen [11], is in fact
a consequence of the continuum mechanic balance laws and
represents the way the energy is dissipated during contact
(that is to say under the impenetrability constraint).

Furthermore, in most of works, finite-difference meth-
ods are used to integrate the resulting equations of motion
and can lead to numerical instabilities. In section 3, the
reciprocal formulation, already used for static problems,
is applied to the dynamic context. This method involves
the inverse of the elasticity operator appearing in stan-
dard variational statements of linear problems. One of
the advantages of this method is that the awkward prob-
lem of discontinuities, which arises in contact problems, is
already treated in the definition of this operator usually
called Green function. Moreover, since the contact pres-

sure only occurs at the contact surface, the problem it-
self reduces to one involving functions defined only on this
surface. It is then often possible to approximate the sys-
tem using considerably fewer unknowns than with classical
finite-difference methods. This algorithm was recently im-
plemented in software written in C++. Contact between
arbitrary bodies can now be performed in real-time synthe-
sis at audio frequency 44100 Hz for a contact surface that
involved dozens of candidate contact nodes. This perfor-
mance is possible since the numerical computation can be
split into two phases: computation of the kernels (Green
and Poisson functions - only needed once), and real time
iterative procedure and convolution to obtain the system’s
evolution.

Section 4 is concerned with two dynamic contact ex-
amples. The first one is a collision between two identical
rods. In this one-dimensional case, an analytical solution is
available and can be compared to numerical results. The
second example exhibits nonlinear characteristics in the
three-dimensional contact between two disk-shaped elas-
tic bodies.

1. FORMAL STATEMENT OF THE PROBLEM

1.1. Geometry and conventions
We consider the two-body contact problem show on fig-

ure 1 where two bodies, (a) and (b), are expected to come
into contact during the time interval of interest [0, τ ]. To
simplify notations, a star (⋆) is used to represent indiffer-
ently body (a) or (b). Let Ω⋆ be an open bounded subset
of the three-dimensional Euclidean space R3 with a bound-
ary ∂Ω⋆. The set Ω⋆ is occupied by an elastic body B⋆. A
material point of B⋆ is represented by vector co-ordinate
X⋆ = (X⋆

1 , X⋆
2 , X⋆

3 ) in the undeformed (reference) con-
figuration (doted line in figure 1) while, in the deformed
(actual) configuration at time t, this particule is labeled
by x⋆(X⋆, t) = (x⋆

1, x
⋆
2, x

⋆
3) (solid line).

The material surface ∂Ω⋆ of each body is decomposed
as usual into three mutually disjoint parts Γ⋆

d, Γ⋆
n and Γ⋆

c .
On Γ⋆

d (resp. Γ⋆
n) displacements ū⋆(t) (resp. tractions

t⋆(t)) are given. We denote by Γ⋆
c a portion of body (⋆)

which is a candidate contact surface. The actual surface
on which a body comes into contact with the other one is
not known in advance, but is contained in the portion Γ⋆

c

of ∂Ω⋆. In addition, each body can be subjected to a body
force f⋆(t) (such as gravity for instance).

The displacements of the bodies, relative to the fixed
spatial frame, at time t, are represented by a function

u : t ∈ [0, τ ] −→ u(t) = (ua(t),ub(t)) ∈ E ,

where u⋆(t) is the displacement field1 of body (⋆) at time

1The displacement of a material particule P labeled by vector X⋆

is defined as
u⋆(X⋆, t) = x⋆(X⋆, t) − X⋆.
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Figure 1: Two elastic bodies (a) and (b) in their undeformed (dash line) and current (solid line) configuration. The actual surface on which
the body (a) comes in contact with the other one is not known in advance but is contained in the portion Γa

c of its boundary.

t and E the product of Sobolev spaces of each body

E = (H1 (Ωa))3 × (H1 (Ωb))3.

Throughout this study, standard indicial notation and
summation convention are employed. Superposed dots
(˙) indicate differentiation with respect to time and com-
mas ( ),k denote partial differentiation with respect to xk.
Thus,

u̇i =
∂ui

∂t
, üi =

∂2ui

∂t2
, ui,k =

∂ui

∂xk
, etc

1.2. Contact condition
The contact condition on the displacement field u of a

linear elastic body in contact with a frictionless foundation
is established by Oden and Kikuchi as

u.n ≤ gap, on Γc, (1)

where gap is a given function representing the normalized
gap between the elastic body and the foundation and n
is the outward unit vector normal to the contact surface
Γc. The extension of this contact condition for Signorini
problem to the two-body contact problem has also been
achieved. The corresponding impenetrability condition is
basically of the same form as the kinematic contact con-
dition (1), except that now the relative displacement field
ur = ua − ub is used to give

ur
n ≤ gap, on Γa

c , (2)

where ur
n is the normal component of the relative displace-

ment on the contact surface Γa
c .

1.3. Hamilton’s principle in elastodynamics and variational
formulation

Hamilton’s principle states that a dynamical system
will move so that the time average of the difference, T−V,

between kinetic and total potential energies will be an opti-
mum. In order to be consistent with the static formulation
where variational inequalities arise from the minimization
of the total potential energy, we seek a minimizer of the
Hamilton functional

J (v) =
∫ τ

0

(V − T)dt, (3)

on a constraint set that expresses the impenetrability con-
dition (2). In other word, the objective is to find a dis-
placement u that minimizes the Hamilton functional J
on a constraint set K. This constraint set depends on
the physical problem and its definition plays an important
role in the search of the extremum u. For the two-body
contact problem, we introduce the space Uad of admissi-
ble displacements v which verify the Dirichlet boundary
conditions defined by

Uad = {v ∈ E | va = ūa on Γa
d, vb = ūb on Γb

d}

The constraint set K consists of those displacement fields
v which satisfy the kinematic contact condition (2)

K = {v ∈ Uad | vr
n − gap ≤ 0 on Γa

c}

where vr
n = va

n−vb
n is the normal component of the relative

displacement on Γa
c . This set, K, is not a linear space of

E , but a nonempty closed convex subset of E . Thus, using
Euler inequality [15], and according to (3), the two-body
contact problem has the following variational form{

find u ∈ K such that, ∀t ∈ [0, τ ]
m(ü,v − u) + k(u,v − u) − f(v − u) ≥ 0, ∀v ∈ K

(4)
where the traditional bilinear forms, defined from E ×E →
R, for ”mass” m(., .) and ”stiffness” k(., .) respectively,
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have been introduced as follow

m(u,v) =
∑

⋆=a,b

∫
Ω⋆

ρ⋆u
⋆
kv⋆

k dv,

k(u,v) =
∑

⋆=a,b

∫
Ω⋆

C⋆
klmnu⋆

m,nv⋆
k,l dv.

The symbol ρ⋆ denotes the mass density of body (⋆) and
Cijkl are the components of the Hooke’s tensor of elastic-
ity, which possesses the standard symmetries. In formu-
lation (4), f(.) is a linear function on E representing the
virtual work produced by external forces (body forces ρ⋆f⋆

and prescribed tractions t⋆)

f(v) =
∑

⋆=a,b

[∫
Ω⋆

ρ⋆f⋆ · v⋆ dv +
∫

Γ⋆
n

t⋆ · v⋆ ds

]
.

1.4. Method of Lagrange multipliers
Constrained minimization problems can be reformu-

lated as saddle point problems using the method of La-
grange multipliers (see Refs. [4] and [15]). Such formu-
lation makes it possible to seek minima of functionals in
linear spaces rather than closed convex sets. This is done
by introducing, instead of the constraint set K, the space
W = E × Z ×N where

Z = H−1/2 (Γa
d) × H−1/2

(
Γb

d

)
(5)

is the dual space of displacements on the Dirichlet surfaces
while N is the admissible set for the Lagrange multipliers
pn defined by

N = {pn ∈ H−1/2 (Γc) | pn ≤ 0 on Γa
c}. (6)

The set N is a subset of the dual space of displacements
on Γc containing negative force. The minimization prob-
lem (4) is then equivalent to the determination of the sad-
dle point (u, χ, σn) ∈ W of the Lagrangian L(v, κ, pn) ∈ R
defined by

L = J (v)−
∫ τ

0

[ ∑
⋆=a,b

(κ⋆|v⋆ − ū⋆)Γ⋆
d
+(pn|vr

n − gap)Γc

]
dt

where ( . | . )Γ⋆
d

and ( . | . )Γc
are the duality pairing on H−1/2 (Γ⋆

d)×
H1/2 (Γ⋆

d) and H−1/2 (Γa
c ) × H1/2 (Γa

c ) respectively. This
saddle point satisfies the following equations and inequa-
tion

Find (u, χ, σn) ∈ W such that
m(ü,v) + k(u,v) = b(v) ∀v ∈ E (7a)∑
⋆=a,b

(κ⋆|u⋆ − ū⋆)Γ⋆
d

= 0 ∀κ ∈ Z (7b)

(pn − σn|ur
n − gap)Γa

c
≥ 0 ∀pn ∈ N (7c)

where b(v) represents the forces acting on solids (a) and
(b)

b(v) = f(v)+
∑

⋆=a,b

(χ⋆|v⋆)Γ⋆
d
+(σn|vr

n)Γa
c
, ∀v ∈ E . (8)

The first equation (7a) represents the principle of virtual
work (power) applied to the bodies (a) and (b) subjected,
on one hand, to external forces f(v) and to reaction forces
χ⋆ on their respective Dirichlet surface Γ⋆

d, and on the
other hand, to a contact pressure σn normal to the contact
surface Γa

c . Note the sign reversal in the contact pressure
in (8) according to Newton’s third law,

(σn|vr
n)Γa

c
= (σn|va

n)Γa
c
−

(
σn|vb

n

)
Γb

c

(n is the outward unit vector normal to Γa
c ). The second

equation (7b) expresses the Dirichlet boundary conditions.
Finally, the variational inequality (7c) expresses the uni-
lateral and frictionless contact condition on Γ⋆

c .

1.5. Equation of motion
Using the Green formula, the classical strong form of

the two-body contact problem can also be obtained from
the formulation (7)

ρ⋆ü
⋆
k = σ⋆

kl,l + ρ⋆f
⋆
k in Ω⋆ × [0, τ ] (9a)

σ⋆
kln

⋆
l = t⋆k on Γ⋆

n × [0, τ ] (9b)

σ⋆
kln

⋆
l = χ⋆

k

u⋆
k = ū⋆

k

}
on Γ⋆

d × [0, τ ] (9c)

ur
n − gap ≤ 0

σn ≤ 0, σ⋆
Tk

= 0
σn(ur

n − gap) = 0
σn = σ⋆

kln
⋆
l n

⋆
k

ur
n = ua

n − ub
n

 on Γc × [0, τ ] (9d)

This step is not a straightforward exercise. In fact, it can
be shown that any sufficiently smooth solution of (4) or (7)
is also a solution of (9). Conversely, taking u and v in the
convex set K, multiplying (9a) by v⋆

k − u⋆
k and integrating

by parts over Ω⋆, it is possible to obtain the variational
inequality (4) and consequently (7). The relationship be-
tween the solution of the variational inequality (4) (or,
equivalently (7)) and the solution of the classical prob-
lem (9) can be found in Ref. [4]. More precisely, these
relationships are established by Kikuchi and Oden [4] only
in the static context where inertial effects are not taking
into account.

To our knowledge, the question of existence and espe-
cially of uniqueness for the frictionless dynamic contact
problems stated above is still open. Uniqueness of solu-
tion, in the dynamic context, is only proved by Duvaut
and Lions [6] for frictional contacts assuming prescribed
normal tractions. Their demonstration, based on energy
considerations, can not be applied in our case where the
normal unilateral traction is an unknown.

In fact, the two body contact problem is not yet well-
posed since several solutions can be obtained from the vari-
ational statement (4) or, equivalently (7). Appendix A.1
is an illustration of such a case.
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2. DYNAMICAL CONTACT CONDITION

2.1. Energy dissipation during contact
As it is illustrated in appendix (A.1), any physically

relevant solution of the contact problem has to be found
by explicitely adressing the energy equation. How the en-
ergy is dissipated in the two-body contact problem ? To
answer to this question, let us compute the total time rate
of change in energy (kinetic T and internal W ) by replac-
ing the virtual velocity v ∈ E by the real velocity u̇ in (7a)
to obtain

dE

dt
=

d(T + W )
dt

= b(u̇)

where the linear form b(v) is given by (8). This variation of
energy, according to the first principle of thermodynamics,
balances the total supply of energy per unit time through
external forces and heat: P + Q. According to (8), it is
clear that the rate of work of all external forces is

P = f(u̇) +
∑

⋆=a,b

(χ⋆|u̇⋆)Γ⋆
d
.

Thus, the heat energy that enters into the body per unit
time, i.e. the heat rate, is given by

Q = (σn|u̇r
n)Γa

c

where u̇r
n = u̇a

n−u̇b
n is the normal component of the relative

velocity on Γa
c . In order to obtain a well-posed problem a

new contact condition must be found specifying the value
of this dissipation term. This the purpose of section 2.
This condition is called the dynamical contact condition
as it is not necessary for static problems.

2.2. Balance laws on the contact surface
The dynamical contact condition will be found by ad-

justing the balance laws2 of physical quantities on the con-
tact surface to the impenetrability condition (see Refs. [16,
17, 18, 19] and the thesis [20]). This condition, used in in-
equality (2), can be also formulated by

Two bodies do not penetrate if the flux of
mass through their separation surface Γc (see
figure 2), of velocity w, vanishes, i.e,

ρ⋆(u̇⋆
k − wk)nk = 0 on Γc (10)

where ρ⋆ is the mass density of body (⋆) and
n the unit vector normal to Γc outgoing from
body (a).

2Conservation of mass, momentum, moment of momentum, en-
ergy and second thermodynamic law.

body(a)

body (b)

n

Γc

Figure 2: The surface Γc is called contact surface or sliding surface.

According to this hypothesis, the balance laws 3 of physical
quantities give rise to the following properties on ΓcJu̇kKΓc

nk = u̇b
n−u̇a

n = −u̇r
n = 0 mass conservation (11)

JσklKΓc
nl = 0 momentum conservation (12)Jσkl.u̇kKΓc

nl = JqlKΓc
nl energy conservation (13)JqlKΓc

nl ≥ 0 2nd thermodynamic law (14)

where σ is the Cauchy stress tensor and q the heat flux vec-
tor. The jump J.KΓc

is a spatial jump through the contact
surface: these brackets indicate the difference of their en-
closure at the surface Γc approached from the positive and
negative sides of its positive normal, e.g., JfK ≡ f+ − f−

and thus the product JfKnk is independent of the normal’s
orientation or coordinate system.

According to (11), the velocity u̇ undergoes a discon-
tinuity through Γc, but this discontinuity is purely tan-
gential. Equation (12) stipulates that the stress vector is
continuous through Γc. Decomposing the stress vector and
the velocity into their normal and tangential components

σklnl = σnnk + σTkJu̇kKΓc
= (Ju̇iKΓc

ni)nk + Ju̇Tk
KΓc

,

the conservation of energy through the contact surface (13)
yields, according to (12)

σn Ju̇kKΓc
nk + σTk

Ju̇Tk
KΓc

= JqlKΓc
nl ≥ 0 on Γc (15)

Taking into account the conservation of mass (11), this
leads to the tangential contact condition

σTk
Ju̇Tk

KΓc
= JqlKΓc

nl ≥ 0 on Γc

3These balance laws refer to the current (deformed) configura-
tion of the bodies (Eulerian configuration). For contact problems,
the boundaries of the bodies are unknown at the outset and must be
determined from the solution of differential equations. It is then con-
venient to employ a formulation based on the reference (undeformed)
configuration where the boundary conditions are known (Lagrangian
configuration). This provides a reasonable amount of simplicity in
dealing with contact problems even though the field equations may
be more complicated. Fortunately, within the infinitesimal defor-
mation theory there will be no distinctions among Lagrangian and
Eulerian forms of balance laws and jump conditions (see Ref. [16]).
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and to the normal contact condition

σn Ju̇kKΓc
nk = 0, on Γc

or, equivalently (since Γc can be replaced by Γa
c in the

linear theory)
(σn|u̇r

n)Γa
c

= 0 (16)

These conditions indicate that only tangential tractions
can generate energy dissipation by friction between parti-
cles on the contact surface. In this article only frictionless
contact problems are considered so σT = 0 on Γc, but the
contact condition (16) is still valid even if the contact is
considered with friction.

According to the contact condition (16) a non-zero
traction may only be generated if the normal velocity u̇n

is continuous through the contact surface. In other words,
during interaction the normal velocities of both bodies
must be equal on the contact area, which is quite intu-
itive. This condition (16) is sometimes called the persis-
tency condition and it is of particular importance in the
design of numerical algorithms for dynamic contact prob-
lems (see Laursen et al [21, 11, 22] and Taylor et al [10]).

In fact, the impact between portions of the boundaries
of elastic bodies is expected to produce propagating stress
and velocity discontinuities. Indeed, just before contact,
the relative normal velocity u̇r

n could be non-zero: this
velocity must thus make a jump to vanish during contact.
That is to say that at least one of the bodies endures a
brutal change in its velocity in the direction normal to
Γc. Thus, a particular attention must be dedicated to this
additional difficulty.

In conclusion to this section: the contact problem is
now well posed by added contact condition (16) to the
variational constrained problem (7).

3. RECIPROCAL FORMULATION

To compute a solution of the two-body contact problem
in case of stress and velocity discontinuities we will pre-
fer to use an integral representation with Green functions
rather than finite difference algorithms such as Newmark
and central difference schemes. This method is usually
called reciprocal formulation as it involves the inverse of
the elasticity operator appearing in standard variational
statements of linear elastodynamic problems. This inverse
operator is the Green function. One of the advantage of
this method is that the awkward problem of discontinu-
ities, mentioned just above, is already treated in the defi-
nition of the Green function without the complications of
contact problems. Moreover, since the contact pressure
occurs only on the contact surface Γc the reciprocal for-
mulation uses functions defined only on this surface. It is
then often possible to approximate the system using con-
siderably fewer unknowns than with classical formulations
and then save computational time.

To deal with integral representation using Green func-
tions, it is convenient to first investigate the unconstrained

problem by considering one of the two bodies. This is the
purpose of the next subsection where the mathematical
tools needed for the reciprocal formulation will be defined.
A semi-analytical method will also be described to com-
pute those tools. In the following subsection 3.2, the recip-
rocal formulation will be applied to the two-body contact
problem and this will lead to a very simple numerical al-
gorithm described in subsection 3.3 and 3.4.

3.1. The unconstrained problem
3.1.1. Green and Poisson functions

For the time being, let us consider one of the two bod-
ies, say body (⋆) for example, and suppose that the contact
pressure σn is a given prescribed traction on a Γ⋆

c . If the
sources ρ⋆f⋆, t⋆ and the Dirichlet boundary condition ū⋆

on Γ⋆
d are also prescribed, the displacement field u⋆, so-

lution of the variational formulation (7a-7b) (written for
one solid) is unique and can be expressed by an integral
representation (see Refs. [23, 24]) using Green and Poisson
functions, namely

u⋆
k(x; t) = < Gk|ρ⋆f⋆ >Ω⋆ + < Nk|t⋆ >Γ⋆

n

+ < Nk|σnn⋆ >Γ⋆
c

+ < Dk|ū⋆ >Γ⋆
d

(17)

where the notation < .|. >A expresses the spatio-temporal
convolution

< Ok|ϕ >A=
∫ t

0

∫
A

Ok
i (x,y; t − τ)ϕ⋆

i (y; τ)dAydτ

whenever A is a surface or a volume in R3. In the for-
mula (17), the Green function Gk(x,y; t) is the solution
of the variational unconstrained problem (7a-7b) with van-
ished sources, excepted

ρ⋆f⋆ = δ(t)δ(x − y)ek, x ∈ Ω̄⋆, y ∈ Ω⋆

where ek is k-th unit basis vector of R3. The Poisson func-
tions Nk and Dk are the displacement fields correspond-
ing to an impulsive source (force and displacement respec-
tively) placed on the surface of the body. This yields,
on the Neumann’s surface Γn, to the Poisson function4

Nk(x,y; t) with the source

t⋆ = δ(t)δ(x − y)ek, x ∈ Ω̄⋆, y ∈ Γ⋆
n

and, on the Dirichlet’s surface, to the Poisson function
Dk(x,y; t) with the source

ū⋆ = δ(t)δ(x − y)ek, x ∈ Ω̄⋆, y ∈ Γ⋆
d

It is important to note that the integral representation (17)
has the same form for a point x in the domain Ω⋆ or on
the boundary ∂Ω⋆ = Γ⋆

n ∪ Γ⋆
d. This is an alternative to the

integral representation that uses the fundamental solution
(free-space Green’s function). In this case, a different ex-
pression exists depending on the position of the point field
x (see Ref. [25]).

4Same procedure can be done for the contact surface Γc.
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3.1.2. Modal theory
The major problem of reciprocal method is to find the

Green and Poisson functions related to an elastic body. In
practice only a few physical systems allow an analytical
calculation of such functions. Discontinuities in the fields
make difficult to compute pure numerical solutions of the
unconstrained variational problem with impulse sources.
Modal theory5 gives an opportunity to compute semi-analytical
function: the Green function Gk (and even the Poisson
Nk) for any point x and time t may be represented by a
normal-mode expansion

Gk(x,y; t) =
∞∑

n=1

ϕ⋆
n(x)an(y; t) (18)

where ϕ⋆
n is the n-th mode of the body (⋆) satisfying ho-

mogeneous boundary conditions. Substitution of the se-
ries representation into the variational formulation (7a-7b)
with the convenient choice of v = ϕ⋆

m gives an ordinary
differential equation which can be solved analytically by
Laplace transform method. This yields to the Green func-
tion, valid for (x,y) ∈ Ω̄⋆ × Ω⋆,

Gk(x,y; t) =
∞∑

n=1

ϕ⋆
n(x)Y (t)

sin ωnt

mnωn
ϕ⋆

n(y) · ek, (19)

where mn and ωn are respectively the modal mass and
modal angular frequency associated to the n-th mode re-
spectively and Y (t) is the Heaviside function. A similar
expression can be built for the Poisson function where the
point y lie on the Neumann surface6: (x,y) ∈ Ω̄⋆ × Γ⋆

n,

Nk(x,y; t) =
∞∑

n=1

ϕ⋆
n(x)Y (t)

sin ωnt

mnωn
ϕ⋆

n(y) · ek, (20)

Those formulae are also valid for rigid body modes where
the eigen frequency vanish, since limωn→0

sin ωnt
mnωn

= t
mn

.
The Poisson function Dk can also be computed using normal-
mode expansion. But, since the modes vanish on the
Dirichlet surface Γ⋆

d, a more complicated approach must
be used (see Ref. [26] for details).

3.2. Two-body contact problem
Applying this result to the variational constrained prob-

lem (7), the displacement and the velocity on the contact
surface can be expressed as functions of the contact pres-
sure. The two-body contact problem is then reduced to the
impenetrability (7c) and to the dynamical contact condi-
tion (16) with only one unknown: the contact pressure.

5Althought Green functions are computed, in this article, by
modal theory please note that other methods exist to obtain those
kernels (finite difference algorithms, integral formalism . . . ).

6instead of being in the domain Ω⋆

find σn ∈ N , such that
(pn − σn|Gd(σn) + g̃ap)Γc

≥ 0, ∀pn ∈ N (21a)

and(
σn|Gv(σn) + ˜̇ur

n

)
Γc

= 0 (21b)

where Gd and Gv

Gd(σn) =
∫

Γc

N(x,y; t) ∗ σn(y; t) dsy

Gv(σn) =
∫

Γc

Ṅ(x,y; t) ∗ σn(y; t) dsy

g̃ap = ũr
n − gap.

Let us see how this substitution is made. The normal
displacement on the contact surface Γ⋆

c of the body (⋆),
u⋆

n(x; t) = u⋆
k(x; t)nk(x), have been decomposed as contact

and external contributions

u⋆
n(x; t) = u⋆

cont.(x; t) + ũ⋆
n(x; t), x ∈ Γ⋆

c .

In this way, the part of the displacement due to the contact
pressure is

u⋆
cont.(x; t) =

∫
Γ⋆

c

N⋆
n(x,y; t) ∗ σn(y; t) dsy (22)

where here, the Poisson function

N⋆
n(x,y; t) = ni(y)Nk

i (x,y; t)nk(x), x,y ∈ Γc

represents the normal displacement at point x ∈ Γ⋆
c result-

ing from an impulse force applied, at time t = 0, at point
y ∈ Γ⋆

c in the direction normal to Γ⋆
c .

The displacement, ũ⋆
n, is a known function for a given

set of external contributions ρ⋆f⋆, t⋆ and ū⋆ and can be ex-
pressed, using (17), by the integral representation (normal
projection)

ũ⋆
n(x; t) = < Gknk|ρ⋆f⋆ >Ω⋆ + < Nknk|t⋆ >Γ⋆

n

+ < Dknk|ū⋆ >Γ⋆
d

In the same manner, normal velocity can be decom-
posed as contact and external contributions as follows

u̇⋆
n(x; t) =

∫
Γ⋆

c

Ṅ⋆
n(x,y; t) ∗ σn(y; t) dsy + ˜̇u⋆

n(x; t) (23)

where now, Ṅ⋆
n is the Poisson velocity function of body

(⋆) which represents the normal velocity at point x ∈ Γ⋆
c

resulting from the same excitation force as for the Poisson
function. So, the relative normal displacement, ur

n(x; t) =
ua

n − ub
n, and velocity, u̇r

n(x; t) = u̇a
n − u̇b

n are functions of
the contact pressure

ur
n(x; t) = ũr

n(x; t)

+
∫

Γc

N(x,y; t) ∗ σn(y; t) dsy (24)

u̇r
n(x; t) = ˜̇ur

n(x; t)

+
∫

Γc

Ṅ(x,y; t) ∗ σn(y; t) dsy (25)

7



where N(x,y; t) = Na
n(x,y; t) + N b

n(x,y; t) represents the
relative Poisson function defined for y on the contact sur-
face (the plus sign (+) is due to opposite normal unit
vectors na and nb). Finaly, these integral representa-
tions (24) and (25) have been replaced into the contact
condition (7c) and (16) respectively to give the reciprocal
variational problem (21).

For static problems, the dynamic contact condition (21b)
does not exist and the reciprocal variational problem can
be alternatively formulated as a constrained minimization
problem, on the convex set N , of the functional

F (pn) =
1
2

(pn|G0(pn))Γc
+ (pn|g̃ap)Γc

where G0(pn) =
∫
Γc

N(x,y)pn(y) dsy and N(x,y) is a
time-independent Poisson function. An iterative scheme
to obtain a solution of such a problem, using a variant of
Uzawa’s method, can be found in [4] and in [20]. These
procedure can accelerate convergence during an iteration
of the scheme which deals with a set of candidate con-
tact nodes (or surfaces). The dynamic problems are not
so straightforward and the reciprocal formulation can be
simplified using a time discretization that transforms con-
volutions into discrete sums.

3.3. Time discretization and algorithm
A time discretization of the two-body contact problem

is obtained by introducing a partition of the time domain
[0, τ ] in consideration in M intervals of length ∆t such
that 0 = t0 < t1 < . . . < tM = τ , with tk+1 − tk = ∆t.
In addition, the contact pressure σn is postulated, in this
model, to be a succession of impulse forces such that

σn(x, t) ≃
M∑

k=0

σn(x, tk)δ(t − tk) ≡
M∑

k=0

σn(x, k)δk.

Thus the convolution that appears in formula (24) can be
replaced by the discrete sum

N(x,y; t) ∗ σn(y; t) ≃
k∑

l=0

N(x,y; k − l)σn(y, l)

and then can be split, with respect to the contact pressure,
into instantaneous7 and historical terms

≃ N(x,y; 0+)σn(y, k) +
k−1∑
l=0

N(x,y; k − l)σn(y, l).

Thus, the normalized distance between body (a) and (b),
at time tk, which should exist in absence of contact, can
be evaluated by

ûr
n(x; k) = ũr

n(x; k) +
∫

Γc

k−1∑
l=0

N(x,y; k − l)σn(y, l) dsy.

(26)

7Here N(x,y; 0+) is in fact the jump N(x,y; 0+) − N(x,y; 0−),
but N(x,y; 0−) is zero by causality.

This relative distance can be greater than the normalized
gap function on a portion Γc(k) of the candidate contact
surface Γc (see the contact condition (2)). If this surface
is not empty, a contact occurs between the time tk−1 and
tk producing a pressure to avoid the penetration of the
bodies. In order to obtain a very simple algorithm, the
contact pressure is postulated to act at discrete time tk
(and not between tk−1 and tk). In other word a small
penetration8 is tolerated. On the extended contact area
Γc(k), which varies on time, the particles velocities can be
computed in the same way

u̇r
n(x; k) = ̂̇ur

n(x; k) +
∫

Γc(k)

Ṅ(x,y; 0+)σn(y; k) dsy (27)

where the velocity

̂̇ur

n(x; k) = ˜̇ur

n(x; k) +
∫

Γc

k−1∑
l=0

Ṅ(x,y; k − l)σn(y, l) dsy

(28)
is a known function consisting of external and historical
contributions and does not depend on the contact pressure
at time tk. Finally, according to the dynamical contact
condition (16), equation (27) must vanish in order to create
non-zero tractions and give the opportunity to calculate
the contact pressure at time tk by the integral equation∫

Γc(k)

Ṅ(x,y; 0+)σn(y; k) dsy = −̂̇ur

n(x; k). (29)

The contact algorithm can be summarized as:

initialize σn to 0 for all k ∈[1,sample-length]
for k = 1 . . .sample-length

compute ûr
n(k) by Eq. (26)

if ûr
n(k) > Gap then

compute ̂̇ur

n(k) by Eq. (28)
compute σn(k) for positive relative velocity by Eq. (29)

end
k = k + 1

end
(30)

Note that the relative velocity ̂̇ur

n(k) is positive when a
contact occurs between the bodies. But, since a small
penetration is tolerated, a negative velocity could be com-
puted and a positive contact pressure would be produced.
To avoid such an error a test is done.

3.4. Approximation and numerical analysis
A finite element approximation of the variational un-

constrained problem (7a-7b) is now considered in order

8This small penetration is not a restriction in the model: by cal-
culating the exact moment of contact, an algorithm without any pen-
etration can be built. This procedure slows down calculation without
making real improvement and it is not chossen for ours applications.
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to compute the Green and Poisson functions. Each do-
main Ω̄⋆ is partitioned into a mesh of finite elements Ω̄⋆

h

over which piecewise polynomial approximations of the
displacement field u at each time are introduced. This
process can lead to the construction of a family {E⋆

h} of
finite-dimensional subspaces of each Sobolev space E⋆ =
(H1 (Ω⋆))3. Here h is an appropriate mesh parameter (typ-
ically h is the diameter of the largest element in the finite
element mesh). The vector u⋆

h of E⋆
h, finite-dimensional

counterpart of the displacement vector u⋆, can be ex-
pressed as

u⋆
h(x, t) =

N⋆
h∑

α=1

Uα
⋆ (t)ψ⋆

α(x), x ∈ Ω̄⋆
h ⋆ = a or b (31)

where ψ⋆
α denote basis functions spanning E⋆

h, and N⋆
h is

the total number of node of the finite element mesh Ω̄⋆
h.

Since9 ψ⋆
α(xβ) = δβ

α at a node xβ ∈ Ω̄⋆
h, Uα

⋆ (t) = u⋆
h(xα, t)

holds. If the summation convention is extended to the case
aαbα =

∑Nh

α=1 aαbα, the time derivatives of u⋆
h are

u̇⋆
h(x, t) = U̇α

⋆ (t)ψ⋆
α(x), ü⋆

h(x, t) = Üα
⋆ (t)ψ⋆

α(x)

The finite element method applied to the variational
problem (7a-7b) makes it possible to compute, for each
discrete time tk and for each body (⋆), a matrix N⋆(k)
using normal-mode expansion (20). This matrix is an ap-
proximation of the Poisson functions N⋆(x,y; t) of size
(Mc × Mc) where Mc is the total number of nodal points
on the candidate contact surface Γc. The matrix compo-
nents N⋆

ij(.) is a discrete time function representing the
displacement at node i due to an impulse force applied on
node j.

At the third step of the contact algorithm (30), the
relative Poisson function N = Na + Nb is used to compute
the normal displacement, at time tk, which should exist in
absence of contact

Ûr
n(k) = Ũr

n(k) +
k−1∑
l=0

N(k − l)Pn(l) (32)

where Pn represents the numerical approximation of the
unknown contact pressure σn. In case of contact, the rel-
ative velocity

̂̇Ur

n(k) = ˜̇Ur

n(k) +
k−1∑
l=0

Ṅ(k − l)Pn(l) (33)

is computed using a similar matrix Ṅ = Ṅa + Ṅb. This
velocity is evaluated only on the time dependent surface
Γc(k) which is represented by a set Λk of nodal points in
contact at time tk. Finally, to solve the integral equa-
tion (29), the relative velocity Poisson matrix Ṅ is evalu-
ated for k = 0, and leads, for each time tk, to the linear
system

ṄΛkPn(k) = − ̂̇Ur

n(k) (34)

9Here δ is the Kroeneker symbol

where ṄΛk is the restriction of the matrix Ṅ(0+) to the
set Λk. The solution Pn(k) of this linear system will give
the possibility to continue the contact algorithm for time
k = k + 1.

3.5. Numerical performance of the algorithm
The performance of the proposed algorithm is related

to the fact that the overall computation cost can be split
in two phases:

1. computation of the kernels (Green and Poissons func-
tions) to express a integral solution as a function of
the contact force

2. real-time iterative procedure to obtain this force to
predict by convolution the evolution of the system.

Since a integral solution is proposed, the reader is in-
vited to consider the fact that no differential equation has
to be solved and thus finite difference methods are not el-
igibled. Futhermore no integral equation has also to be
solved in a sense of the boundary element method.

Once Green and Poisson functions have been computed
and stored, as can be seen in the pseudo code (30), the
computation cost is mostly due to the determination of the
contact force σn since the convolution cost, used to com-
puted displacements and velocities, can be negleted. At
each time step, a linear system (34) has to be solved. An
examination of the admittance matrix’s properties, Ṅ(0+),
reveals that this system is almost diagonal since the ma-
trix quantifies the information propagation between nodes
on the contact surface (here lies the major difference be-
tween the present method and boundary element methods,
where the matrices are dense).

In theory, the continuous admittance operator is per-
fectly diagonal, since the speed of sound is finite. This
property guarantees the convergence of the iterative solu-
tion of the nonlinear equations. But, the influence of the
numerical approximation of such an operator on the con-
vergence criterion is still needed an will be a perspective
of this work. In practice, the iterative scheme converges
in few iterations.

The slowness of the iterative procedure, used to find
whether a contact occurs or not, depends also on the dis-
tance computation algorithm chosen. Since distance com-
putation is necessary for all contact algorithms, it is not
the purpose of the present article to assess this particular
aspect of the performance.

4. NUMERICAL EXAMPLES

Two dynamic contact examples are presented in this
section. The first one is a collision between two identical
rods. This is a representative example which has been
treated, at least, in three articles [5, 10, 11]. In this case,
an analytical Poisson function is available and used to test
the contact algorithm. A comparison is made between
analytical and numerical results . The second example deal
with a three-dimensional contact between two disk-shaped
elastic bodies that exhibits nonlinear characteristics.
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4.1. Impact between identical rods
Two identical rods, one initially stationary and the

other moving with constant velocity v = 1 unit, come into
contact at time t = 0 (see figure 3). The material and
geometric properties for each rod are

• density ρ = 1 unit,

• cross-sectional area A = 1 unit,

• length L = 10 unit,

• Young’s modulus E = 1 unit

• Poisson’s ratio ν = 0

4.1.1. Analytical results
For a rod of length L, the analytical Neumann Poisson

function giving the displacement at point x ∈ [0, L] that
follow an impact at x = 0 and t = 0 is

N(0, x; t) =
1
ρc

[
Y (t − x

c
)

+
+∞∑
k=1

Y (t +
x − 2kL

c
) + Y (t − x + 2kL

c
)

]

where c =
√

EA
ρ is the wave velocity in the rod (see

Ref. [27]). In this case c = 1 unit. A time discretization
of this analytical Poisson function and its time derivative,
represented in figure 4(i), are used in the contact algorithm
with a sample rate set to 100 Hz. The displacements, ve-
locities and contact pressure, plot in figures 5(i) and 5(ii),
fit the plots found in Taylor and Papadopoulos [10].

4.1.2. Numerical results
The rod is modeled by two-node, one-dimensional, lin-

ear elastic elements. A uniform mesh of 100 elements is
considered and the sample rate is also set to 100 Hz. The
two numerical Poisson functions (displacement and veloc-
ity), plot in figures 4(ii) and 4(iii), differ essentially from
analytical ones (Fig. 4(i)) since they are computed using
normal-mode expansion (20) with a number of modes re-
stricted to the number of elements in the rod (i.e. 100).
This truncation, in the infinite modal series, produces os-
cillations where accurate dicontinuities should exist (at
time t = 0, t = 20 s, t = 40 s etc).

These numerical Poisson functions are used in the con-
tact algorithm and the results are ploted in figure 5(iii) and
zoomed in figure 5(iv). The Velocity artefacts are linked to
the modal truncation. It is then clear that the errors seen
in the numerical solution are correlated to the numerical
approximations of the Poisson functions independently of
the contact algorithm.

Table 1: Material and geometric characteristics for the three-
dimensional numerical example

Elastic disks

Density ρ = 11.3 103 Kg.m−3

Young’s modulus E = 10.4 106 Pa
Poisson’s ratio ν = 0.37
Dimensions Rout = 0.05 m
Thickness e = 5 10−3 m
Initial gap h = 0.01 m
Initial velocities (disk1) V0 = 1 m.s−1 and 6 m.s−1

4.2. Three-dimensional numerical example
For curved contact surfaces, the unilateral behavior on

the boundaries may have a substantial influence on the re-
sponse of the structures: the structural systems, even in
cases of linear elasticity and small deformations, exhibits
nonlinear characteristics. A collision between two elastic
disks is considered here as an illustration of such a phe-
nomenon. An elastic disk, subjected to gravity, is dropped
with two different initial velocities (V0 = 1 m.s−1 and 6
m.s−1) on an other disk clamped on its edges (see fig. 6).
For each initial velocity, the contact algorithm uses the
material and geometric characteristics given in table 1 to
predict the temporal evolution of the two bodies by com-
puting the distributed contact pressure.

The figures 7 and 8 help to see the spatial pressure
distribution on the contact surface. The nodes on the can-
didate contact surface of the ring are numbered from 1 to
17 according to Fig. 6. The contact surface extends it-
self for increasing impact velocity and provides a different
behavior of the solids.

5. DISCUSSION AND CONCLUSION

This work state a well-posed contact problem by tak-
ing into account the balance laws postulated in continuum
mechanics. As a consequence in addition to the classi-
cal static contact condition, a dynamic condition, already
postulated by Taylor [10] and Laursen [11], has been ob-
tained from the fundamental physical principles and ex-
presses the way the energy is dissipated during contact.
This result contribute to a better basic understanding of
contact constraints in the dynamic context. In addition,
this condition, used here in a frictionless context, is still
true for frictional contact problems. The perspective of
this work is to extend this study to dynamical contacts
with friction where both tangential and normal tractions
have to be determined. To our knowledge this problem is
still open.

As mention by Talaslidis and Panagiotopoulos [8], due
to unilateral constraints, the estimation of the eigenvalue
and eigenvector of the overall system is not possible. Nev-
ertheless, in the present article and within the infinites-
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rod (b) initially at rest

L L

rod (a): V=1 unit

Figure 3: Two identical rods, one initially stationary and the other moving with constant velocity v = 1 unit, contact each other at time
t = 0.
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Figure 4: (i) Time discretization of the analytical Poisson functions valid for rod (a) or (b). (ii) Numerical Poisson functions computed using
normal-mode expansion and zoomed in subfigure (iii).

imal deformation theory, semi-analytical Green (or Pois-
son) functions are computed using individual mode ex-
pansion for each body. The treatment of wave propaga-
tion in the solids is then disconnected from the contact
problem by itself and the reciprocal formulation is used
in numerical computations reducing the number of un-
known and giving a stable solution. As the first numer-
ical example shows, the prediction capacity of the con-
tact algorithm is restricted to the numerical quality of the
Poisson function. Since this function is pre-processed, the
computational time to solve the contact algorithm remain
constant for any desired degree of approximation. Dis-
sipative Green and Poisson functions arising from visco-
elastic unconstrained problem are also considered in the
contact algorithm. The result is a dissipative system with
a dissipative-less contact. At this point, it is important to
mention that this method is only applicable to small strain
elasticity problems where Green functions make sense. But
the Green function can be considered as the first-order
term of Volterra kernels expansion, and investigations are
done to extend this algorithm to non-linear elastodynamic
using Volterra series.

The possibility to predict, with a reasonable comput-
ing time, the sound produced by the interaction of two
elastic bodies irrespective of the material constitution and
geometry constitute the major interest of this study.

A. APPENDIX

A.1. Energy dissipation during contact
Here under is an example to show that the variational

statement (4) or, equivalently (7) is not well-posed since

several solutions can be obtained. This appendix emphases
the fact that any physically relevant solution of the contact
problem has to be found by explicitely adressing the energy
equation.

Let us take the simple example of a rigid body, of mass
m, dropped from altitude h on a rigid foundation. In ab-
sence of strain, the variational formulation (7) is reduced
to

find (u, σn) such that
mü · v = P · v + σn · vn ∀v (35a)
(pn − σn) · un ≥ 0 ∀pn ≤ 0 (35b)

where P = mg is the weight of the solid and g the gravity
constant. Figure 9 represents two possible configurations
(trajectory, velocity) corresponding to two types of inter-
action between the body and the foundation.

case (a) The interaction force is an impulse force acting
at time t = tc of magnitude 2mv0

σn(t) = 2mv0δtc , v0 = −
√

2gh, tc =

√
2h

g

where v0 is the velocity just before the impact time
t = tc and δ the Dirac distribution. No dissipation
occurs in this case.

case (b) The interaction force is also an impulse force but
its magnitude is half the one of the first case. After
time tc, the interaction force remains constant and
represents the weight of the body

σn(t) = mv0δtc − Y (t − tc)P.
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Contact algorithm using analytical Poisson functions
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or numerical Poisson functions
(iii) (iv)
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Figure 5: Impact of identical rods. Subfigure (i) : contact algorithm predictions using analytical Poisson functions. Displacements, velocities
and contact pressure at contact point of rod (a) (solid line) and rod (b) (dotted line). (ii) First 200 millisecond of interaction. In this model,
the contact pressure σn is postulated to be a succession of impulse forces. (iii) Impact modeled by finite element method using numerical
Poisson functions. The wave reflection at time t = 20s and t = 40s creates artifacts in the velocities. (iv) First 200 millisecond of interaction.
A small penetration is observed in the displacement curves.

12



Vo

h Gravity

1

. . .
. . .

2

9

17

R

Figure 6: An elastic disk is dropped on an other one clamped on its lowered hemisphere edges. The candidate contact nodes are numbered
from 1 to 17.

Here Y is the Heaviside function. The kinetic energy
is completely lost at the first contact, and then, the
energy is dissipated.

In both cases, the momentum conservation, stated by the
variational formulation (35a), is satisfied in the sense of
distributions. Moreover, since the product σnun is always
null, the formulation (35b) is also checked (note that, the
unit vector is directed, as it must be, toward the foun-
dation). In fact, an infinity of solutions exists between
these two configurations depending on the way the energy
is dissipated during impacts.
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[18] J. Salençon. Mécanique des milieux continus. Ellipse, Paris,
1988.

[19] M. Bruneau. Manuel d’acoustique fondamentale. Hermes, Paris,
1998.
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Figure 7: Nine snapshops of a collision between two disks and contact force (in mPa) excerted on the contact surface for an initial velocity :
V0 = 1 m.s−1. The contact surface is localized around the central node 9 and involves exceptionally the node 8 and symetric 10. The ninth
node stay in contact.
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Figure 8: Nine snapshops of a collision between two disks and contact force (in mPa) exerted on the contact surface for an initial velocity :
V0 = 6 m.s−1. When the contact surface extends itself beyond the node 8 (and symmetric 10) the ninth node is no longer in contact and a
gap appears (compare with figure 7)
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Figure 9: Trajectory and velocity of a rigid body dropped on a rigid foundation for two different interaction forces. Case (a): energy is
conserved. Case (b): the kinetic energy is lost at the first contact. This simple example illustrates the non uniqueness of the contact problem
if the dynamical contact condition is not imposed.
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