An update on the SOMax project

Laurent Bonnasse-Gahot

September 2014

— internal report —
— not to be publicly distributed —

Contents

1 OMax in a nutshell 3
1.1 Introduction 3
1.2 Description 4
1.3 Limitations)

2 An overview of the SOMax environment 5
2.1 Introduction)

2.1.1 Generalidea 6
2.2 Summary of the main features 6
2.2.1 Segmentation and sequence representation 6
2.2.2 Pulse preservation and synchronization 7
2.2.3 Soft Harmonic Context 8
2.2.4 The SoMax practical environment 11
2.3 Limitations 13
2.3.1 Jumps and context 13
2.3.2 Locality of the decision 14
2.3.3 Cartographical blindness 14

3 Exploring, testing, a few new ideas beyond that 15

3.1 Mapping and navigating the musical memory 15
3.1.1 Introduction L. 15
3.1.2 Mapping and activating the memory 17
3.1.3 Time and partial sequence matching. 19
3.1.4 Combining views 22
3.1.5 Algorithmic implementation 23

3.2 Improvising: planning, updating, and deciding 28

3.3 Synchronization, pulse, and more 29
3.3.1 Inapulsed context 29
3.3.2 Beyond pulse: using a sync track L. 30

3.4 More on modulations 33

3.5 A note on the different representations that were explored so far 36

36 Afewdemos. 38

3.7 A note on the delivered code 40

1 OMax in a nutshell

This section offers a brief description of the OMax system. See Assayag and
Dubnov (2004); Assayag et al. (2006); Assayag and Bloch (2007); Lévy et al.
(2012) for more information. The goal here is to focus on the key elements
of interest that will allow for a quick and simple understanding of the rest,
as we will build upon that.

1.1 Introduction

The OMax software aims at generating musical improvisations that reuse ex-
isting external material. It builds a model of the playing of a musician as it
captures it, which simply involves the detection of common patterns within
the musical material. This analysis serves to find new routes across this mu-
sical corpus. The so-called improvisation then consists in a navigation within
this structure that both follows the original paths (ie replay the original se-
quence) and, at times, ventures into those new passages, thus jumping to
new location, and thereby providing a new version of the captured material.
It can be seen as an advanced version of the Musikalisches Wiirfelspiel, often
associated with the figure of Mozart, which were popular dice games in the
eighteenth century that proposed to generate music from random concate-
nation of precomposed musical material. Here this musical material is either
taken from already existing source or captured from the live recording of
a musician’s playing. Moreover, concatenation is not random, but based on
the Markovian properties of the sequence itself, which replaces the wit of the
composer in composing musical chunks and providing the rules of combina-
tions that will yield a satisfying result.

Within this framework, improvising thus amounts to recombine existing
material in a way that is both coherent with the sequential logic of this
material and so that it actually provides something different than a mere
repetition of the original material while keeping with its statistical property.
In contrast with other generative approaches, the system does not construct
a model that is eventually independent of the material that was used to train
it. Here, the model is directly on top of the data, providing a way of navigat-
ing through it in a relevant way. One way of seeing this is to consider that
some fine-grained aspects of the musical stream are somehow too complex to
be modeled, but will be preserved — to a certain extent — when rereading this
musical material. This is exemplified in the use of audio content by the OMax
system. While it models the audio sequence by some specific representation
(eg. pitch, spectrum, etc), these descriptions account only very partially for

the sound as it unfolds over time (eg. detailed dynamics, articulation, phras-
ing). A system that would generate musical content using exclusively pitch
information would seem pretty bland compared to it. This particularity of the
OMax system has been one of its great strength, making it possible to offer
a very high sound quality, realistic sound conditions, creative environment
as witnessed by the numerous high quality artistic collaborations of the past
few year . Of course, it has to be recognized that the strength of this method
is also a downside somehow. As said before, improvising is somehow reduced
to a smart cut and pasting of pre-existing material, which is very severe re-
duction, very simplistic modeling of what improvisation is understood as a
human skill. Yet, this aspect of the OMax constitutes the fundamental basis
of the project, and all the following attempts at exploring and extending the
model are done with this framework in mind, as a fundamental condition.

1.2 Description

In brief, the processing chain is the following one. The musical stream is first
segmented into discrete units (called slices). To fix ideas, if we consider an
audio stream consisting in a solo monophonic instrument, this segmentation
can be for instance based on the onset of each note (which would produce
MIDI-like segmentation). The next step is to label each slice (this assumes
that such a classification exists, which requires the definition of a certain
metric and of equivalence classes). The final step of this analysis part even-
tually consists in analyzing the resulting string of symbols so as to find the
recurring patterns across the whole musical material. In OMax, this is done
thanks to the Factor Oracle algorithm, which was developed by Allauzen
et al. (1999) (now actually taking advantages of the algorithmic improve-
ments subsequently introduced by Lefebvre et al., 2002).

This common pattern analysis serves as the basis of the generative pro-
cess. By navigating this structure thanks to the Suffix Link Tree (Assayag
and Bloch, 2007), one is able to connect any location within the musical
material of interest to any other location that has a common suffix (called
context thereafter) (Fig. 1). Reading this structure state by state amounts to
playing back the original musical sequence, but navigating through it while
allowing jumps (going from one state to another state different from the
following one) generates a musical sequence that is both different from the
original one and coherent with its internal logic, at least from the point of
view of the segmentation and the labels that were used.

'Some videos are available at http://www.dailymotion.com/RepMus

P N
T N\~~~

Figure 1: Illustration of the context switching mechanism. The black line
depicts the musical material, represented as some parameter that evolves
over time. The red target depicts current location within the musical memory,
while the pink ellipses represent the common suffixes found across the musical
material. At one point in time, one can either continue reading the original
sequence or ‘jump’ to the marked locations.

1.3 Limitations

Although OMax records the playing of a live musician in real-time, it does
not have any listening skill. This capture is only used in order to learn ma-
terial on the fly, which then serves as the basis for its own improvisations.
Yet, when actually generating, OMax does not listen to the current environ-
ment. In other words, its choices are only based on internal considerations.
Moreover, OMax ignores and breaks pulse feeling. When the original material
contains a pulsation (a beat), the improvisation generated by the machine
does not convey this pulse anymore, as each recombination, by ignoring this
information, break this feeling. And as it does not listen, OMax is not able
to synchronize with any external stream.

The SOMax project actually stemmed from these shortcomings — the initial
motivation was to provide the machine with some listening skills.

2 An overview of the SOMax environment

2.1 Introduction

The primary goal was to give OMax some listening abilities that would
make it more reactive to the current musical environment, both in terms
of melodic understanding, so as to harmonize or provide some accompani-
ment to a monophonic stream, harmonic listening, so as to make a chorus,
and rhythmic abilities, so as to synchronize in real-time with live musicians.
This section provides a summary of the key concepts and elements that were
introduced in the SOMax project in order to provide solutions to those prob-
lems. The reader is referred to previous technical reports for more detailed
information about the model and the corresponding Max/Msp code.

2.1.1 General idea

With OMax, navigation through the musical memory depends chiefly on the
length of the common context. Here, the goal is to guide the navigation so
as to take into account the playing of the musician in real-time. First, during
the analysis stage, the musical stream is not only analyzed in terms of the
detection of common patterns across the sequence, as done before, but is also
annotated with different relevant descriptions that will be used for matching
with the current live situation. For instance, a monophonic solo might be an-
notated with the corresponding original harmonic description it was played
upon, which will then be used as a way to match the live harmonic situation.

Let us assume that we have arrived at some location within the musical
memory. Some actions (for now either the end of the current slice or the
detection of an outside event) triggers the computation of a new state within
the musical memory. This new state is chosen among the possible states that
are given by the oracle structure, following OMax principle (see Section 1),
ensuring that the internal logic of the sequence is respected (ie according to
its Markovian continuity). Instead of simply choosing this state according to
the length of its common context, states are also evaluated against one or
several external conditions. For example, one might require that the chosen
state contains some specific pitch value, or that its harmonic context matches
the external one. At the end of this evaluation, we enter a selection phase
where one state is picked out according to this evaluation. This solution is
then played, either at the time is was first planned to be played, or at a
slightly corrected time so as to satisfy some rhythmic condition.

In brief, the processing chain leading the search for a new state is as follows:
set of possible jumps — filtering and evaluation of solutions — selection of a
solution — choice of an appropriate playing date — playing of that solution.

2.2 Summary of the main features

Most of the material presented in this section comes from previous internal
report sor2reportD1.1.2wp4, and is reproduced here for ease of reading.

2.2.1 Segmentation and sequence representation

Musical material from the corpus is segmented into different phrases thanks
to the detection of silences (Fig. 2). Rests, defined as silences lasting at least
1000 ms, are detected, and used as a symbol that is taken into account when
analyzing the whole musical sequence. This make it possible to define places

rest phrase 1 rest phrase 2 rest

—_ —_—
C5
u
1
N ™
Ln "]
C4 = n]
[]]
]]
0 2 4 6

time (s)

pitch

: :
] 1=
"
]]
'
'
8 10

-—
12

Figure 2: Example of phrase segmentation

where to start improvising (any state that follows a rest) and where to stop
(any state that precedes a rest). Moreover, rests have an identity on their
own, so they can easily be manipulated, such as being shortened. When
navigating the musical memory (ie improvising), rests can also be avoided,
making the agent more talkative, or conversely be favored, which might be
used to end up the musical discourse properly.

Musical sequences are described and analyzed using an interval-based
representation allowing transposition. The purpose of using transposition is
twofold. First, it makes it possible to manipulate musical material within
different context than the one it originally defines, and thus to satisfy (either
pitch or harmonic wise) constraints that would otherwise be impossible to
satisfy. Second, when analyzing the musical sequence, interval-based repre-
sentation makes it possible to find similar pattern up to some transposition
factor. Recombination possibilities are then strongly increased. Using the
Beethoven’s late string quartets as a corpus, Fig. 3 represents the average
number of potential recombinations (given any position within the corpus)
as a function of the length of the context, which is an important factor of
the recombination quality. One can see that the use of transposition (red)
considerably increases the number of possible recombinations. This is par-
ticular important here given that navigation within the musical memory can
be highly constrained (if we have more recombination possibilities, chances
that constraints are satisfied also increase).

2.2.2 Pulse preservation and synchronization

When learning from a metrically annotated corpus or from a live input with
beat recognition, each state in the model (each segmented musical event) is
annotated with its beat phase, that is its position within the beat structure.

Beethoven Late Quartets

number of potential recombinations

context length

Figure 3: Benefit of interval-based representation

When generating in a context where there some notion of pulse is defined,
states with an original beat position close enough to the current one in the on-
going pulse stream, can be favored. This process captures rhythmic/melodic-
harmonic correlations in the learned corpus and adapts these correlation in
the actual live interaction. When coupled with a mechanism that adjusts the
playing date of each state so as to respect its original micro-timing, the music
generated by the agent can preserve the pulse feeling and the “swing”. This
also allows for pulse synchronization. Each agent can be fed with a bang that
indicates the current pulse. Thanks to a beat-tracker module that extracts
and follows in real time the pulse implied by the playing of a live musician,
each agent is thus able to synchronize its internal clock with an external
input, either midi or audio. Note that the beat-tracker module can also be
used so as to annotate corpora that lack beat phase information (notably
when capturing musical stream live).

2.2.3 Soft Harmonic Context

In the early prototypes, the playing of an agent was either rather free, sim-
ply recombining while possibly synchronizing to an external pulse, or actually
quite constrained, trying to match by inclusion the input pitches to the har-
monic and textural content of the states in the model (pitch-inclusion con-
straints). Although interesting, these latter constraints are of all-or-nothing’
type, in the sense that inclusion is either satisfied or it is not. But there was a
need for exploring the ‘in between’ zone through softer interactions between
the machine and the musician. Moreover, early modes would not allow the
generation of a melody against some accompaniment (played by the user).
The idea was to be able to analyze horizontal (melodic) movement while

Coér
—
C5t [] = =
]
ff.l " > :]
] LB o []] - -
= C4t+ == = -
O [}]]
"é‘_]]
C3t
C2F}
0 2 4 6 8 10 12
time (s)

Figure 4: Example piano roll of foreground vs background musical material

also capturing vertical (harmonic) information. Each part can actually be as
complex as one wishes (i.e. solo, chords, complex polyphonies), but we will
keep with the solo vs accompaniment example so as to make things clearer in
the explanation. In the example depicted by the piano roll shown in Fig. 4,
the red stream corresponds to the improvised chorus we want to model. This
constitutes the musical content that will be played back when generating.
The blurred blue stream behind it constitutes the background, and this will
be used to define the harmonic context of the solo.

This harmonic background is first used to annotate the solo with harmonic
information that will then be exploited as a reference when listening to a
different (live) harmonic context. It is transformed into a 12-dimensional
vector using partials of each pitch, warping of the frequencies, and some
leaky integration. This vector, called a chromagram, basically represents the
relative energy of each of the 12 pitch classes. Fig. 5 shows the contribution of
a pitch to the final chromagram as a function of time during a 2 seconds note.
The contribution first increases, up to some point where it starts to reach its
maximum value (this simulates durational accent; see e.g. Parncutt, 1994).
When the note is released, its contribution does not go to zero immediately,
but smoothly after a certain time, as if the note was still resonating in the
mind (cognitive memory persistence). This process aims at capturing local
harmonic color behind the specific details of the musical realization (see also
the work on tonality induction by Toiviainen and Krumhansl, 2003, that

0.5

pitch contribution

0 2 4 6

time (s)

Figure 5: Contribution to the harmonic context of a single pitch that lasts 2
seconds.

pitch class

time (s)

Figure 6: Harmonic context corresponding to the harmonic background de-
picted in Fig. 4.

uses similar equations and provides experimental support). Fig. 6 presents
the harmonic context as a function of time that results from this process
applied to the harmonic background of Fig. 4. Within this harmonic space,
a certain chord (say C major seventh) occupies a specific location. Within
a small radius lie all the different voicings and inversions of that chord. If
one increases the allowed radius, one will find common substitutions of that
chord, such as A minor seventh or E minor seventh. Note that if current
system somehow encompasses this kind of traditional knowledge, it can also
adapt to other type of harmonic color.

At generating time, these harmonic annotations are used to guide the nav-
igation within the musical memory. During a live performance, harmonic con-
text can be extracted in real time from both audio and midi input, typically

10

the accompaniment section. The virtual agent will then try to generate mu-
sical content whose harmonic annotations match the harmonic constraints.
Similarity (implemented as Pearson correlation) between the chroma used for
the constraint and the one in memory (harmonic context) can either be used
simply as a preference while navigating or can be set to lie above a specific
threshold. The usual accompaniment situation (Solo input, Harmonic gener-
ation) benefits from the Soft Harmonic representation, as harmonic context
can be extracted from a solo line (or any contrapunctic input) just by the
same echoic memory process and chromagram annotation. The input an-
notation is then matched to the memory in just the same way. Thanks to
this non-symbolic representation of harmonic context, and in line with the
agnostic approach undertaken by the OMax project, SoMax can adapt to
any harmonic content, beyond the use of traditional chords, such as for in-
stance the famous texture of Les Augures printaniers from Stravinsky’s Rite
of Spring (see pedagogical performance Reconstruire le Sacre, leaded by Fab-
rice Guedy, at Conservatoire & Rayonnement Régional de Paris on Jan 26th,
2013).

2.2.4 The SoMax practical environment

The Max implementation of the SoMax kernel object is pictured in Fig. 7. It
can receive different commands that control the object (from start/stop to
commands that changes the different parameters of the object), pitch con-
straints, harmonic constraints and the current pulse. Likewise, it outputs
midi content as well as other information that can be used to communicate
between agents. The behavior /interaction of each agent can be dynamically
programmed, offering new musical possibilities. Finally, it is now possible
to learn material on the fly (capturing not only the musical stream itself,
a la OMax, but also its harmonic and rhythmic contexts). As SoMax can
be instantiated is as many instances as needed, it is possible to have multi-
ple independent agents playing simultaneously while synchronizing with and
listening to each other, as well as with external (human) agents. The modu-
lar architecture, all-centered around a single versatile object (SoMaxPlayer),
allows the user to easily write whatever conductor he/she needs (e.g. a Con-
ductor for a situation where a live musician interacts with three artificial
improvisers, 1 mostly harmonic and the 2 others mostly solists, agent A lis-
tening to human plus agent B, etc.).

Several Max patch models (called conductors) exemplify different typical
musical situation — audio (see Fig.8) or midi input, one human / one agent
interaction, multi-agent interaction, etc.

11

misc pitch harmonic
commands constraints constraints pulse

~S L

somaxPlayer bob

e ~

midi out harmonic pulse
context

clt out

Lkl

(

corpus

-- click to load a corpus —

All Mates Off

master bpm: |} 12

SIETTY

arase memary

current state info

state # !
ariginal bpm: 0

number of solutions:
relative transposition factor 0

from :

context length

jump >

threshaid tempo seecthity (1) + use criginal baat phase value
miss ! [play anyway restpenalty -1)+ || O hek nates made
() shorten underground research taboo penalty -] + max continuity
~— advanced configuration
phase adjustment parameters h selecivity sute-canfig
{ms) 50. presets - note against note

global transposition factor E

matching parameters

inclusion (0
e -+
[=opranc selectivity

O bass

harmonic distance

rdensity penalty -1+

allowed relative transpa range @ . @
min context length E

fima in ms before sanding

favar lang contexts

beat mode

anANO 2000 favor lang contexts but avoid repetitions.

[hard taboo preferance

[awod rests [use soMax-vsL
i command

[shorten rests

min duration of a rest (ms) » 1000) context length 29 debug mode

Figure 7: The somaxPlayer object and its basic control interface.

audio player
11| —

open) G [usemic

megration tm (m) |:|

[cnrpus

;)

Chet_Baker_Trumpetjson

Al Nates OFf

master bpm: > 183.5

A AR

)T e [[oess womory)

current state info

state # 3083 7546
ariginal bpm: 150

from

context length
number of solufions: 2
relative ransposition factor 1
MIDI_CBaker_Look for_the_Siver_Lining_keyEbMID

next state jump>

global transposiion factor ([0
matching parameters

allowed relative transpo range (5)

-3

inclusion (D)

O sopreno

‘Adaptaion aigeritn : [Large g
on/off
L=
o () s
ey
auto-config
(audioPlayer ap1 role sgainst nola
start and stop beetmode
[frcer s
e
(03 us icn v wahcretot)
O SRR D
oh @ o) | mamer | RS
Quality Proba | Yint
(e=) [mEE—
T
[somaxPlayer sp1
p— e oo) v
from MaxMSP 1 [from MaxMSP 1 | 5

Oeass
hamani dstance
resnata

miss! (] play anyway

00 shoren underground ressanch

neatate (T)+
beat phase.
ey, IO

raensiy ety -1)+
tempa seiectivty -1+
st penaly

taboa penalty

i corton gt (1)

use original baat phase value

O hed notes' mode

]

phase adusiment parameters
ims) 50, 200

tima in ms befora sanding
anANO 2000

o ofaboo st

(] o taboa

(D ovost st

) shortn rsts

min duration of a rest (ms) + 1000 |

nssecny (5] (05)
proses

Toer g o

foer o ook avoid oot

auto-config
note against note
beat mede

relative
preferance
[use sOMax-vsL
eitcommand
0 ‘context length 29 debug mode

Figure 8: Conductor Interface Patches (left audio input, right Midi Input)
for live input harmonic arrangement.

12

2.3 Limitations
2.3.1 Jumps and context

As we have seen, the musical memory is first analyzed with the Factor Oracle
in order to detect repetitions within the sequence. This analysis is then used
to navigate within the musical memory, by providing places where to ‘jump’
that are compatible with current musical generated content, thanks to the
common suffix property.

Now, consider the following situation, depicted in Figure 9. Letters here could
refer to actual pitches, but could correspond to any other labeling. At the
top of the figure, the original sequence, called the memory, used for the re-
combinations. Below, the generated sequence. Assume that the sequence - - -
A B has already been produced, copied from part I of the original sequence.
Then, assume that, for some reasons, notably motivated by the common B
element, but not only, the generative process jumps to part II, and the C slice
is produced. The generated sequence so far is thus --- A B C. Now, consider
the possible jumps III and IV. Both are legitimate based on the common
suffix property. Yet, within the current framework, taking the point of view
of the original sequence itself, solution III will be evaluated as better than
IV, for the common suffix is actually longer (D B C), and E would then be
subsequently produced. Yet, from the point of view of what has already been
generated, ie A B C, jumping to part IV is actually a better solution, as the
common suffix it shares is actually longer. The element thus produced, F, is
actually more coherent with the logic of the sequence. Thus, the best contin-
uation from the point of view of the generated sequence or from the point of
view of the original sequence is not necessarily the same one. One should note
that this kind of situation was not problematic in the original OMax version,
as the continuity mechanism was the only one at work, thereby ensuring that
both points of view are actually identical (the fact that each slice has its own
label and that this label is preserved during the generation is also important
though). But external influences can make that a common situation in the
new SOMax improvisation environment.

We will see that the solution we have proposed to this issue will actually
bring symmetry in the way internal and external constraints are considered,
and both self-listening and listening of outside live musical elements will be
handled in a similar fashion.

13

memory A B DBC DBCE ABCF

N/

impro ABC |E=?

Figure 9: Basic example illustrating the difference between using internal
context or generated context during generation of the musical improvisation
(see text for details).

2.3.2 Locality of the decision

External influences on the decisions undertaken by the SOMax improviser
are always very local, in the sense that they affect current navigation only,
but are then forgotten. For example, an external pitch might constrain the
musical generation towards states that contain it, regardless of the previous
pitches that were played?. This information loss is notably responsible for
the fact that if you play a melody that is actually present within the musical
memory, the machine will usually have hard time finding it and playing the
corresponding accompaniment. Note that other difficulties, especially timing
and alignment issues, are also responsible for that, but all those questions
will be tackled in the next sections.

In the case of the harmonic listening, although influence only concerns the
moment of the decision, this information loss issue was dampened by the
echoic memory mechanism (see sec 2.2.3) that actually broadened the time
span of the decisional influence.

All in all, this calls for some sort of evidence accumulation mechanism that
will make it possible to follow and take into account the temporal evolutions
of the playing of the live musical environment.

2.3.3 Cartographical blindness

At some point in time, the machine only ‘sees’ the set of possible jumps,
places within the musical memory that stand as potential continuations.
The rest of its whole memory is simply ignored at that point. Note that

2The first version of SOMax actually considered a slightly more complex mechanism
that took the past few pitches that were played into account when evaluating melodic
match with current memory location. Yet, this was some sort of a very ad hoc patch-up
job working only for pitches.

14

going abruptly to a region that is not a possible continuation would break
the continuity markovian principle underlying OMax. Yet, it might actually
happen that it is better to make an unjustified jump and eventually lie in
a matching relevant zone than to keep blindly with its own path. We want
to have the choice between those two extreme situations (maintaining self
internal coherence, following one’s own idea wvs listening, adjusting, reacting
to the external influences). There is some sort of an inherent trade-off here,
that should be left as a parameter. With the current version of SOMax, the
internal logic is maintained, but at the cost of never realizing that there is
actually a place that would be a perfect fit to the present situation. In brief, if
an external salient sequence of events happen and actually match some places
within the musical memory, we want the system to be able to (possibly) take
it into account.

3 Exploring, testing, a few new ideas beyond
that

This section introduces the few new ideas that were developed during the
last months of this project. Those new explorations were directly motivated
by the issues raised just above, while keeping with the musical and scien-
tific framework already set by the omax/somax project, that is the creative
navigation through a musical memory.

3.1 Mapping and navigating the musical memory
3.1.1 Introduction

Let say you hear the first notes of the Star-Spangled Banner (or any other
melody that you actually know). This will automatically activates the mem-
ory of that melody, that should then keep singing in your head even in the
absence of the external input. This simple phenomenon serves as the basic
idea for the present work. The main idea is thus the following. When un-
folding over time, a musical stream draws some trajectory within a space
that is relevant for the musical situation. Different views can be used to
describe this stream: for instance, it can be a sequence of pitch, of mfcc
vectors, chromagrams, to name but a few. Any view can be used to listen
to either the improvisation that is currently generated by the machine (an
internal view) or some external stimuli, such as an harmonic stream. When
a element or a sub-trajectory is recognized (a fragment of a melody, a chord
progression, or a rhythmic pattern), corresponding portions of the musical

15

memory get activated. At all times, the machine tries to ‘understand’ the
current musical situation, which comprises both its own playing and the live
environment. The most activated parts of the memory points towards parts
of the memory that are relevant for the current situation and constitutes
material that could be played to fit current musical flow. Again, note that
those observations can either come from self-listening of the material that
was just generated (possibly anticipating it) or from truly external listening,
for example of the melodic playing of a live musician.

Let us reconsider the example depicted in Fig. 9. After stage II, the machine
has played A B C. Thanks to self-listening, this A B C subsequence acti-
vates the A B C subsequence present in the memory, which can then serve
as the basis to orient the improvisation to that part of the memory, thus
playing subsequently F, which provides the best continuation here, contrary
to a situation where the choice of the continuation would be based solely
on the internal representation (D B C), as in OMax and alike. This mech-
anism will thus provide, by definition, an answers to the problem described
in section 2.3.1. Note that it also provides a solution to the cartographical
blindness issue (see Section 2.3.3), as anything that can be recognized will
be tracked as a potential candidate for a relevant musical case. The whole
memory is used when trying to recognize the musical patterns that are cur-
rently played, not just the set of the possible continuations as characterized
by the suffix link tree.

Of course, brutaly and exhaustively comparing the listened material with
the entire memory each time a new observation arrives is not computation-
nally possible. We will make use of the fact that the memory is to be explored
several times, and that intense preprocessing can be done beforehand. Here,
we will index each element (or small sequence of elements) of the view under
consideration. This will make it possible to quickly access the musical mem-
ory and activate the parts that are similar to the listened part. Moreover,
by keeping a parsimonious trace of the different places that were activated
and by accumulating evidence for places that are relevant sequentially and
in time, the process will be able to detect the places in the memory that are
relevant to the current musical situation, while taking into account recent
past activity, hence proposing a solution to the locality issue described in
Section 2.3.2. Finally, the different views will be combine so as to give an ac-
tivation profile that points to places in the musical memory that best match
the current musical flow. Depending on the relevance of each view (how much
they get activated), as well as the weights attributed to each view, the ma-
chine will be either more prone to respect its internal logic and follow its own
idea or match as closely as possible the current external musical situation.

16

Note that there is an inherent trade-off between the different features that
are listened to, and there is not necessarily one ‘best’ solution. This choice
might depend on the will of the user (hence the existence of weights that
can be parametrized). But the symmetry in the way the different views are
handled (regardless of whether they are external or internal) will allow for a
very simple algorithmic treatment of all possible combinations of views that
one decides to use.

The following sections describe the process in more detail. Given the
limited amount of time dedicated to these explorations, certain decisions were
undertaken based on the will of saving time but not on a careful scientific
examination, with a clear knowledge of the literature. The goal was to be
able to rapidly test the main ideas that we were interested in (handling of
time, mixing of views, etc). Each part of the process is quite independent of
the others, and should be studied in more depth, improved and expanded.

3.1.2 Mapping and activating the memory

Let us start with a few notations. Let ¢ denote some relative time represen-
tation, which is a fonction of time ¢, £ = ¥(¢). Everything will be internally
represented with this MIDI-like relative time. If beat information is present,
then the pulse happens at relative time with phase (the decimal part) equal
to 0.

The musical memory is defined as a set of ‘views’, each view consisting in a
particular segmentation of the musical stream associated with a particular
space of representation (those will be called k-space hereafter). For instance,
one might think of the set of pitches, or the harmonic space defined by a self-
organizing map with a toroidal structure trained with western tonal music
(see Section 3.5). We will first consider only one view, and then introduce the
mechanism that is used to combine the information extracted by the different
views.

Mapping.

At time ¢, after ‘hearing’ a certain observation o; (again, this element could
come either from the self-generated musical material itself or from outside
listening), a particular place k; is activated, with activity «;, that quantifies
the similarity between the current observation and the element x;. This el-
ement could be the quantified pitch value C, for instance. In this case, the
activity is either 1 or 0. It could also be a small sequence, such as C D E, with
activity simply equal to 1 when matching, and 0 otherwise. More generally,
«; could take any value between, for instance, 0 (no match) and 1 (perfect

17

match). For instance, here, in practice, when using a self-organizing map of
chromagrams as k-space, this value «; is related to the Euclidean distance
d; between the normalized chromagrams: o; = exp(—cd;), where ¢ is some
scalar.

As previously mentioned, scanning the whole corpus each time a new
element is observed to find the locations that match would be computation-
ally very demanding. Here, we preprocess the memory in order to store and
index all elements (or small sequences of elements, ie n-grams) present in
the sequence. More advanced indexing methods such as suffix trees could be
used. Note that it could also be done using a factor oracle, expanding the one
built from the musical memory under consideration. This particular choice
was mainly driven by the need of finding a quick and efficient way to access
the musical memory, so as to spend time and test the rest of the process
described here, but more thought is needed on that part. In brief, the goal
here is to directly access relevant material while keeping the computational
load manageable, hence the use of n-grams, that act as a pre-filter, when
n > 1. The value of the n-gram is for now chosen empirically, depending on
the size of the stream and the properties of the representational space that is
used. The mapping thus constructed allows to locate the k associated places
of interest within the musical memory, that translates into the activation of
all the events §;, j = 1...k, with activity a; = o;.

Basic activity.
Let us call I'(§) the activity at each point £ of the memory. We define it as
the sum of each individual activation:

F(&) = Z’YU(& gjvaj) (1)

where

Vo (&5 &> a;) = aj exp <—(§_§])2) (2)

202

represents the basic activation of a single event. The width of the ~ function,
o, corresponds to some temporal uncertainty.

Probabilistic interpretation.
At time ¢, given observations o, the activity I' can be turn into probabilities
thanks to the classic softmax function:

exp(BL(€))
ng exp(BT(£))

18

P(lo)

(3)

where [is some scalar, that will actually receive an interpretation later
on. P(£]o) can be seen as the probability of choosing ¢ as a best match to
the current musical flow (again, considering either only internal or external
views, or both). Alternatively, this probability can be seen as the probability
that everything that has been observed comes from some unknown process
that ends at £&. What follows next in the musical memory is thus a potential
candidate for a future match.

Event selection.

In the end, we want to select and play the event é that offers a best match
for the current musical situation, 7e that maximizes the probability defined
above, or, equivalently, that maximizes the activity I':

¢ = argmax P(£|o) = argmax I'(€) (4)
3 3

Note that we are not actually interested in any &, but one that do corre-
spond to an event, so that the argmax operation is actually performed among
the set of events under consideration.

3.1.3 Time and partial sequence matching.

Previous equations have described the basic activation evoked by the recogni-
tion in the musical memory of a given observation. Now, in practice, another
mechanism is at work which makes it possible to accumulate information
over time thanks to the combination of past and present activities.

In the absence of any new observation, activity undergoes a translation in
time while decreasing as an exponential function. At time ¢t + At, activity
LCiyae(§) thus writes:

Froan(€) =T - 86) <o -5 5)

where A{ = W(At), and 7 is a scalar that quantifies the decay of the activity
(e the speed of oblivion).

The time translation simply comes from the fact that time keeps flow-
ing. Remember the Star Spangled Banner example formulated above. After
hearing the first few notes of the melody, the memory of that melody gets
activated. It then keeps running in your head even in the absence of any new
input. If one were to look at the location in your musical memory say two
beats after the external stimulation had stopped, it would find it situated at,
precisely, two beats after.

19

As for the decrease, one way to see this process is to consider that, in the
absence of any new observation, the similarity between the observed pattern
and the one in memory (or analogously, the confidence in the relevance of
that observation) decreases as an exponential function of relative time. Note
that in that case, the probability itself simply translates within the corpus.

Upon arrival of a new observation, final activity results of the combination
of the previous activity with the newly-evoked one?:

final A w
RO = e - Agew (55 + e ©)
The scalar 7 can be seen as parameterizing the influence of past observations
on current activity. Equation 6 will receive a more precise interpretation in
terms of probabilities in Section 3.1.4.

Example. Using a simple pedagogical example, we will see how the above-
explained mechanism is used to locate places of interest within a musical
memory. This will illustrate both evidence accumulation and partial matching
features.

Figure 10 presents the score that corresponds to the musical memory.
In Figure 11, the x-axis corresponds to relative time &, labeled with the re-
spective pitch of each event. We look at the behavior of the activity during
the presentation of an input that consists of the three consecutive quarter
notes A B C (again, this ‘input’ can either come from self-generated material,
which would correspond to a situation of self-listening, or from external live
playing, corresponding to a situation of melodic listening). Here, this example
is constructed so that the indexing is made on each individual pitch. Thus,
after observing the first A, all the A’s in the memory get activated (see Fig 11
top). Then, one beat later, B appears, which entails the activation of all the
B’s. This activity adds up with the previous one to give the profile depicted
in Fig 11 middle. Finally, one beat later C is presented, which yields the sit-
uation presented on Fig 11 bottom. It shows that the place that receives the
greatest activity actually corresponds to the sequence A B C. Then the next
best match corresponds to the subsequence B C. Finally, A D C is evaluated
as being better than plain C, given the past pitch and rhythmic match of
A D C with A B C, contrary to a situation where only the last C would
match (the rightmost peak). The video activity_dynamics.mp4 enclosed in

3Note that, in practice, a ceiling function is applied to final activity so that, when self-
listening, current location does not get too much evaluated compared to other possible
locations, given the improvisatory context we have chosen.

20

Figure 10: Simple melodic example: score.

activity

?inp?ut:?A

I T N B I 1 1
C EDBU CG#A DCEDTETCF
musical memory

I
DEFG

1.5¢

1.0}

activity

0.5

0.0

|

’lnp’ut ’A B’

G#A D C E DE C F
musical memory

D E F G

2.0

1.5}

1.0}

activity

0.5

0.0

?inp?ut: A B?C

Figure 11

musical memory

: Simple melodic example: sequence

21

U_
-
ol

matching.

the files folder shows the same example but dynamically.

3.1.4 Combining views

We have seen so far the way one stream view is handled, in particular with
respect to time. One of the main goal and interest of the present investigation
is to be able to combine two or more representations (such as harmony and
melody, or pitch, rhythm and spectrum, or, ...). Note that here the mecha-
nism will be all the more interesting as it does not assume the different views
to share the same segmentation, or even to be aligned. Completely different
views, yet relevant for the musical situation at hand, can thus be simultane-
ously taken into account.

Let us consider a case involving two views, corresponding to observations
o)) and 0| and with respective activities I'; and T'y (generalization to more
than two views is straightforward). In line with Section 3.1.2, we want to
find the event that best matches the current musical flow, 7e that maximizes
P(£loMo®?). Following Bayes’ rule, this probability can be written as:

P(oMo®|5)P(E)

P<§|0(1)0(2)) = P(oMo®) (7)

Assuming independence and conditional independence given ¢ of the ob-
servations o) and 0?, we can write:

P(oj6) P(o[E) P(e) N
P(oM)P(0®)

P(gloMo) =

Using Bayes’ rule one more time yields:
P(gloVo®) = P(§)~'P(&]o) P(¢|o™) (9)

Assuming a uniform prior, we can write P(£)™! as a constant K. Taking
the log of Eq. 9 and making use of Eq. 3 to views (1) and (2) thus gives:

log P(£]oWo®) = —log K + iT(€) — log (Z exp (B rl(g’)))
7

+62I'5(&) — log (Z exp(3a F2(€'))) (10)

é‘/

Given that we are only interested in the argmax, we finally have that:
log P(£[o™M0®) oc Bi11(€) + Bala(8) (11)

22

e
argmax P(£loMo®) = argmax (8,1 (€) + Bol'5(€)) (12)
3 3

In other words, considering total activity I' as the weighted sum of the
two activities I'y and I's is actually motivated by Bayesian considerations.
Note that this is reminiscent of multimodal cue integration (see e.g. Landy
et al., 2011; Fetsch et al., 2012). The weight given to each of the views can
be seen as the confidence in the relevance of the corresponding view.

Example. To illustrate the process, let us consider the example depicted
in Fig.12. At a given time ¢, specific activities I'; (top, first row) and I'y
(top, second row) and total activity I' (bottom) are shown (the whole recon-
structed activity is presented, as a function of relative time &). The weights
are set equal (8 = B2 = 0.5).

First activity I'y corresponds to self-listening of the musical stream that is
currently generated by the machine, hence the highest peak of activity, which
corresponds to current location in the musical memory; the other smaller
peaks correspond to places where to jump so as to drive the improvisation
to another place within the musical memory. The second activity, I'y, corre-
sponds to another view which is influenced by external listening, let say some
harmonic listening. Here, places that are activated correspond to locations
within the musical memory that are relevant to current external musical
situation (a live musician playing). Finally, the combination of these two
activities yields the resulting activity I'. The highest peak still corresponds
to current location within the musical memory, due to self-listening (hence
‘perfect’ matching). That would mean in practice that the machine would
keep on with its musical idea. Yet, by decreasing the activity of the current
location in order to encourage new directions in the improvisation (see Sec-
tion 3.4), or simply by setting the weights so as to favor external listening,
the improvisation would jump to a place that both follows the current self
logic and matches the musical situation at hand (note the peak between ab-
scissa 7 and 8).

3.1.5 Algorithmic implementation

The mechanism that has been presented so far might look algorithmically
quite demanding, as one needs to keep a trace of all the possibly relevant
places in the musical memory, that, if not necessarily useful right now, might
happen to be useful in a few minutes. Now, a strong constraint of the project
is to be able to respond in ‘real-time’ to changes in the environment, ie

23

activity

oo
o U

activity

activity
OrRrNWPAL

=N
oo

3.0
2.5
2.0
1.5
1.0
0.5
0.0

| A/\/\ | |
4 6 8 10 12

musical memory

VAN /;\/\/\ ‘ U A

6 8 10 12
musical memory

Figure 12: Example of the combination of two views.

24

quickly enough so that it feels like almost instantaneous. This imposes to use
a process that does not take too long to take a decision. Although there is
a inherent load due to the fact that one considers all possible solutions at
the same times (but the n-gram prefiltering helps to make that manageable),
the algorithmic implementation is actually not as complex as it might look,
thanks to the particular properties that are explained below.

Parsimonious representation. The activity I' is represented as a list of
basic activities, in the form of pairs (&;, a;), which is sufficient to recover the
whole I', simply knowing the -, function (o comes as a parameter). From
a given activity, one can easily compute the activity at any later moment
by simply translating the &’s and multiplying the a;’s by the corresponding
exponentially decreasing factor (see Eq. 5).

Threshold for minimum activity. If new places were detected without
removing ancient traces, the list of possible locations would always keep grow-
ing. As the exponential function exp(—A¢&/7) tends to zero as A increases,
there would be many locations with a non-relevant very low activity a;. A
threshold is thus introduced so that when any activity a; fall below it the
corresponding place is forgotten (ie the corresponding &; is removed from the
list of tracked places).

Exponential form and oblivion. The basic exponentiation identity
(exp(z + y) = exp(x) exp(y)) is copiously used in order to simplify the com-
putations. Thanks to this property?, two basic activities that coincide in
time and finally merge into a single activity can equivalently be stored as
a single peak, thus forgetting the details of its origin, while conserving the
same information. Indeed, consider the following example. Assume that (1)
at time t; & is activated, (2) at time t5 > ¢; & is activated, and that (3)
12 —t1 = U(& — &) (in other words, each element has been recognized, and
their succession in the memory matches the time interval between them as
they were played). At a time ¢ > t9, both activation then points to the same
location & = &+ W (t —t1) = &+ W (t —ty). At this location, the total activity
[' thus writes as:

(&) = ajexp <—£_T£1> + ag exp (_ﬁ—&) (13)

T

4The exponential form was actually chosen here because of this very property.

25

Using the exp property just mentionned:

I'(¢) = ayexp (—5 — 52) exp <—§2 — €1> + asexp (_f — €2> (14)

T T T

Finally, setting

(s = ay exp (—&;&> + as (15)

and factorizing Eq. 14 lead to:

F@%=@@m<—§_&> (16)

.
Instead of remembering both (£, a1) and (&, as), it is thus equivalent to
remember (&3, a3). One can ‘fuse’ two coinciding activities without any loss

of information, which help reducing the number of elements to be kept in
history.

Approximate fusing mechanism. The above mechanism works when
the two basic activities coincide perfectly. But in reality, because of noise in
the measurement, in the generation, or simply because external live playing
does not match perfectly the data in memory, small deviations represent the
common conditions. We thus introduce the possibility of fusing two nearby
basic activities into a single one, as described thereafter.

Consider two peaks centered in &; and & with respective activities a; and
as. The sum I' of this two activities writes as:

'(€) = ay exp <—(’5_§1)2> + ay exp (— (€= 52)2) (17)

202 202

We are interested here in a case where the two activities are close enough to
be fused. Introducing & as the center of the resulting peak, one can write:

() = o ()
X@p&@—@@—&w

s oxp (@53> (18)

202

26

Assuming that £ is close enough to & and & (more precisely, |€ — & |0 < 1
and £ — &|o < 1), and using the above form for both x; and xs, one can
expand Eq. 17 in the following way:

[(€) =7.(&¢a) + E(€) (19)
where
a=a;+ as (20)

and E(§) is an error term whose first order term E;(€) in € — & and € — &
is given by:

€—€exp<(£—£)2

B = - Srow (0 - raE-a)] @

and second order term FEs(&):

B0 = (5~ 3) o0 (G52) [- a7 + -] 22

02\ 202 2 202

Zeroing first order term yields the expected barycentric value of ¢ that

minimizes the error:
a1&1 + axés
ai + as

§= (23)

The remaining error is maximal at £ = £. There, it is equal to ﬁ P (&a—
£1)?. Assuming equal values a = a; = ay, if we want this error to be inferior to
a certain amount of the activity, F < aa, we need to have |{; — & | < 2v/2a0.
In practice, we use o = 10%, which means |£; — &;| < 0.90. By the way, this
also gives an interpretation of the ¢ parameter in terms of temporal resolu-

tion.

All in all, in order to simplify the computations, when close enough, we
thus replace the two activities (£;,a1) and (&, a2) by a single one (§,a) (as
defined by Eqgs. 20 and 23).

Insertion and sorted lists. Finally, we make use of a sorted time repre-
sentation. The activity is represented as a list of (relative) time values that
is kept in ascending sorted order. The list of new values to insert is directly
retrieved in ascending order. Inserting these new values can thus be done in
a very efficient way (in a log sense) thanks to a divide and conquer approach.

27

2) listenin
2) 9 (3) computing

& updating next move
(1) planning | | —| -
: I = - —>
w
now & decision Etarget relative time

Figure 13: Planning, listening, updating and selecting next location to be
played within the musical memory.

3.2 Improvising: planning, updating, and deciding

This section explains in more depth how navigation through the musical
memory is done. It is actually very similar to the way it works in previous
versions of SOMax (see Bonnasse-Gahot, 2012, §2.3 and §4). One of the main
difference with previous versions of SOMax lie in the listening mechanism,
and when it is used. Instead of simply taking into account and evaluating
outside elements during the selection phase, the system take them into ac-
count as they come, updating the corresponding activities simultaneously
and independently, while accumulating this information.

Consider the situation depicted in Fig. 13. At current time (now), some
event from the musical memory has been played, and, for some time, the ma-
chine simply plays what follows in the memory. The machine thus ‘knows’
what to play next for a certain amount of time: this is what is planned (the
grey area in Fig. 13), yet subject to a possible revision, due to the revalu-
ation of the musical situation (which includes, as we have seen, both inner
and outer elements). For instance, in the case of audio content, this simply
corresponds to filling up a buffer.

Now, some event triggers the computation of a new location within the musi-
cal memory, so as to possibly drive the improvisation elsewhere. This change
is asked at & = Egecision and is planned to happen at £ = Earger (this leaves
some time to actually compute the decision, delay that depends on the differ-
ents parameters involved — size of the corpus, length of the ngrams, notably
— but in practice it can be less than 10 ms). In practice two situations are
considered. The triggering event either comes from an inner impulse, namely
here the anticipation of the arrival of the next event, or from an outside event
(see also Bonnasse-Gahot, 2012, §2.3 and §4). In the former case, if desired,
the date &arget When next event is played can be actually adjusted so that its
original phase is respected, assuming this adjusted playing date lies within a
certain time window W that surrounds &iarget (cf. phase adjustement mech-

28

anism described in previous reports and in Section 3.3.1). The latter case,
usually coupled with a modification of the musical material (‘held notes’),
serves as the basis for the ‘note-against-note’ mode, which was used exten-
sively in concert, both with this version and with the previous versions of
SOMax (cf. demos). Note that other cases, such as a regular update, could
be imagined.

In order to compute the next location, the machine first combines the differ-
ent activities that have been possibly updated in the meantime thanks to the
listening process (as described in Section 3.1.4). The resulting activity is then
possibly subject to different modulations, so as to take into account rhythmic
pulse influence (see Section 3.3.1), or the other modulations that have been
designed (such as taboo for instance, see Section 3.4). Finally, a new location
is chosen (which can actually correspond to the one that was planned), and
it is played at the expected date, the (possibly adjusted) &arget- Note that
the audio buffer is modified only when it is necessary (modification that is
then smoothly handled by a simple crossfade), ie when a jump occurs, or
when the planned chunk arrives at its end.

3.3 Synchronization, pulse, and more
3.3.1 In a pulsed context

The phase preservation and synchronisation mechanism is directly inherited
from previous versions of SOMax (see Section 2.2.2 and Bonnasse-Gahot,
2012). Here, preference for events that have an original beat phase close
to the current one in the ongoing musical stream is simply implemented
as a multiplicative modulation of the total activity (see Section 3.4). This
modulation, depicted in Fig. 14, is described by the following equation:
exp(n[cos (27 (€ —Etarget)) —1]), Where Earger corresponds to the targeted phase,
and 7 is a parameter that control the selectivity of the modulation (the
greater 1), the greater the selectivity around the targeted phase).

Following this evaluation phase, the playing date of a new state can be
adjusted so as to be played at its original phase, thus preserving the micro-
timing of the original sequence. This is done only if the resulting date of the
selected place lies within a certain temporal window (see previous Fig. 13).
In the end, such mechanism makes it possible to maintain a pulse feeling
when generating a new improvisation, contrary to the classic OMax situa-
tion, where the pulse was broken when navigating the musical memory even
though it was present in the original musical stream. This also allows for syn-

29

phase modulation
o
[9,]

0 1 2 3 4 5
relative time

Figure 14: Phase modulation function, exp(n[cos(27 (£ — &iarget)) — 1]). In this
illustration, iarger = 0.5 and n = 2.0.

chronization to an external pulse, such as the one extracted real-time from
the live playing of a musician.

The benefits of this phase preservation mechanism are illustrated in Fig. 15.
This example assumes that an external pulse is given, imposed to the sys-
tem. The corresponding rolling phase is pictured as the continuous light pink
curve. In practice, this constraint could either come from an external metro-
nomic indication, or from the output of a real-time beat-tracker. The top
figure corresponds to a situation where no phase influence nor adjustment
is made. In that case, one can see that each time the improvisation jumps
to another place within the musical memory (at dates marked with a down-
ward arrow), the corresponding phase curve is disrupted, which means that
the regularity of the conveyed pulse is broken. It is also obviously not able to
synchronize with the rhythmic constraint, as in OMax (note though that the
classic OMax situation would actually picture a worse scenario, as the speed
of the different chunks would not even follow the one imposed). On the con-
trary, when the phase influence and adjustment mechanisms are employed,
the unfolding of the phase is not disrupted, and the improvisation line up
nicely with the external rhythmic constraint (see bottom figure).

3.3.2 Beyond pulse: using a sync track

Traditionally, two opposite rhythmic situations are considered. Either a to-
tally free situation, where no rhythmic constraint is taken into account, or a
pulsed context, defined by the presence of well-defined pulse. So far, classic
OMax has been used in the former kind of situation, as it completely ignores
this kind of information at all stages of the process. This has yet given rise to
interesting musical situation. The other situation is also of interest, where a
well-defined pulse is present in the musical environment. The challenge here
is not only to be able to detect the pulse within the live musical context,

30

jqu jump jump

}

'
1
-1
0 5 10 15 20 25
relative time

phase

jump jump jump
' ' '

phase

0 5 10 15 20
relative time

Figure 15: Illustration of the phase preservation and synchronization mecha-
nisms (with (bottom) and without (top) such a mechanism). The light pink
curve corresponds to the external imposed pulse, while the black curve repre-
sents the inner phase of the improvisation as it unfolds over time. The black
dots represent onsets of the notes that are played. Jumps are marked with
the downwards arrows.

but also to be able to synchronize to that external pulse. We have just seen
how the SOMax prototype has answered this issue, namely a mechanism that
maintain the ongoing pulse during generation, in spite of the multiple jumps
within the musical memory. This has also been integrated in the most recent
versions of mainstream OMax. Note also that an old version of OMax ac-
tually contain a ‘beat-mode’ (Assayag et al., 2006), where the machine was
able to synchronize with a regular beat structure, thanks to a regular slicing
of the musical material into regular beat chunks. The mechanism presented
hereafter works with any kind of segmentation.

Here, we got interested in a situation where one would like to get some
level of synchronization without the need to assume that a pulsation actually
exists. This could be used in quite free musical context, but would allow for
some sort of rhythmic listening and adaptation to the musical environment,
beyond pulsed context. In practice, the following exploration was done in a
very short amount of time (though le temps ne fait rien d Uaffaire as Alceste
put it), and conceived in a pretty naive way for now, but as it gave rise to
interesting musical situations, it is described anyway.

The idea is the following. Given an external list of onsets (the last few
notes that have just been played by the live musician), we want to change

31

the speed of the improvisation generated by the machine so that this new
speed would provide a more relevant rhythmic match to the current musical
situation. This is done by maximizing the alignment between these exter-
nal onsets and the pattern of onsets given by current location in the musical
memory. It can somehow be seen as a generalization of the pulsed case, which
would correspond to the use of a comb of onsets, to cases that involve any
type of patterns of onsets, not necessarily regularly spaced. In practice, the
track used for synchronization could be a completely dedicated view, or some
existing view can be reused for the purpose. The musical applications that
were so far undertaken actually made use of the view dedicated to melodic
listening. Such a mechanism requires some notion of quality of alignment,
which is evaluated for different possible time stretch. The new speed that
maximizes the synchronization is then taken as the new speed. By applying
this process periodically, the machine adapts itself to the speed of the current
musical situation.

We thus need, given two list of onsets, a function that quantifies the de-

gree of alignment. Again, we want to be able to make these computations
as fast as possible, given the ‘real-time’ objectives of our system, and this
constraint has driven many of the choices that are presented below.
Before seeing how this function of alignment is used within our context, let
us first consider an abstract case involving two lists of onsets, {a;} and {b;}.
In the spirit of the previous will to give some flesh to an onset (see Eq. 2),
we define A;(x) and Bj(x) as a function of the center of the onsets a; and
b;, where x lies within the same space as the a;’s and 0;’s, and o represents
some sort of time uncertainty:

Axx)zexp(—tr_a02>,BAx)Eexp(—Cr_bﬂ2> (24)

202 202

The degree of alignment, let us call it @), is quantified as the overlap
between the two series of onsets, which is measured as the integral of the
product of the two summed respective lists of onsets:

o=/ (z Ai<m>) (; Bj<x>> d (25)

Assuming o is small enough compared to the typical distance between
two onsets, we then make the following simplification:

szf&@%mww (26)

32

where 7 (i) is defined as the closest element to a; among the b;’s.
Finally, evaluating each integral product leads to:

0= S (55)

In our case, we try to find the best change of speed that would pro-
vide a better understanding of the external events with current location in
the musical memory. From the current time, we look back within a certain
time window to the past few onsets and see how they get align with the
corresponding recent past within the musical memory, not only considering
current speed, but also a certain range of speed around current one. In other
words, we compute Q(a), where « is a stretch factor, for a range of a val-
ues. In the end, we are interested in argmax,, Q(«) (provided that it actually
corresponds to a peak) and set the speed of the improvisation to this more
relevant speed (which is equal to « times the current speed). Note that given
the form of this quantity, and once again taking advantage of the fact that
the a;’s and the b;’s are given as sorted lists, we are able to make the required
computations sufficiently fast for our purposes.

Figure 16 pictures an example of the use of such a synchronization mech-
anism. The top figure presents the situation before the speed change: the
alignment is pretty poor. The middle figure shows the evaluation of Q(«) for
a between 0.9 and 1.1. It shows that by reducing the speed of its playing
(the optimal « is equal to 0.92 here), the machine should have a speed that is
more synchronized with the external situation (in relative time, the external
onsets get closer to one another). This new speed results in a much nicer
alignment between the live external playing of the musician and the musical
memory (see Fig. 16 bottom). Remember though that this alignment is the-
oretical, as it concerns the immediate past, but it is hoped that it will result
in a better rhythmic match in the near future.

3.4 More on modulations

We have seen in Section 3.3.1 that preference for specific beat position was
handled thanks to a (multiplicative) modulation of the total activity. This
made it possible to find a place that is both relevant for the musical situation
at hand and congruent with the beat phase under consideration. Similarly,
other type of modulations can be applied to the activity before the decision
is reached.

33

l Ll 1 l L1 absolute

NN

events

memory .

ey
©
>
o
-
C
o
€
c
o
©
0.9 1.0 1.1
stretch factor

gt \ \\\ AN 1
A
JU‘\ AA M AM }

memory

Figure 16: Synchronizing with an external stimuli. (A). Situation with current
speed. (B). Evaluation of the degree of alignment for different time stretch
values. (C). Situation with best speed change.

34

As a first example, consider the ‘taboo’ states mechanism, which was
used in previous versions of OMax and SOMax (see Assayag and Bloch,
2007; Bonnasse-Gahot, 2012), which consists in keeping track of the places
that were already visited so as to banish them or at least penalize them by
decreasing their probability of being selected in the future. This was originally
designed in order to prevent the machine from getting stuck in a loop. The
same thing is now present in the current version of SOMax, and is simply
implemented as a modulation of the states that are in the taboo list. When
the multiplicative factor is superior to 1, this consists in favoring those visited
places, whereas when it is inferior to 1, it amounts to penalizing these states.
Here, we have further experimented by using a time-based taboo, so that
events that within a certain time back in the past can be either favored
or penalized. This makes it possible to purposely create musical loops that
are not only coherent from a musical continuity point of view, but also can
rhythmically synchronized with an external groove.

An important modulation is the one that applies to current location
within musical memory. In the absence of such a modulation, after play-
ing just a few notes, current location can receive the same evaluation as
other positions, which might result in many undesired jumps. Conversely, af-
ter a while, current location might get an overwhelming evaluation, since by
construction it constitutes a perfect match with what has just been played
by the machine: this would result in a mere replay of the original sequence,
without any jumps. We thus need a mechanism that can both ensure that
the original sequence is read during a minimal amount of time, and that,
on the contrary, the improvisation can jump to different places on a regular
basis, so as to provide the diversity the system was built for. This was im-
plemented in two ways. In the first possibility, current location is normally
favored, thus ensuring a certain continuity, and an external command, which
is either automatically called or sent by the user, is used to ask the system to
‘jump’. In the second possibility, after a jump has been made, the modulation
starts by favoring current location, thereby guaranteeing continuity, and its
value decreases over time, so that at some point current location is actually
penalized compared to other location, which eventually leads to a jump. This
decrease is controlled by some time constant that can be modified so as to
adjust the frequency of the jumps, leading to more or less variability. The
interest here is that, after a certain minimal amount time, the jump will hap-
pen as soon as a ‘good’ candidate will be found, with a notion of goodness
that will decrease over time, so that it will jump eventually in any case. In
other words, the more it fails to find an interesting place, the more it lowers
its expectations.

35

Other type of modulations can be easily and readily implemented. For
example, a mechanism such as the one present in OMax, that allows the user
to control the improvisation by favoring or penalizing certain regions of the
musical memory, could be easily added to the current prototype.

3.5 A note on the different representations that were
explored so far

Beyond the obvious use of pitch to describe the musical data, (or virtual pitch
in a polyphonic case), we have consider different other cases, such as the use
of chromagrams (following the technique described in Section 2.2.3), mel fre-
quency cepstral coefficients (MFCCs), or event short melodic contours. Here,
given such a descriptor, we furthermore make use of the self-organizing map
technique to analyze the musical data. Self-organizing map is well-known
neural-network approach (Kohonen, 1995) that precisely aims at making a
cartography of the space of the training data, capturing the essential aspects
of it in an unsupervised fashion. It has proven to be useful in many do-
mains, especially in music cognition, notably to model harmonic perception
(Tillmann et al., 2000; Janata et al., 2002; Toiviainen and Krumhansl, 2003;
Janata, 2007), as well as other musical aspects (see e.g. Toiviainen et al.,
1998). Its agnostic property fits well with the characteristics of the present
project. The algorithm builds a map, ie a low-dimensional discretized repre-
sentation, of the data under consideration. Following the training phase, the
structure and topology of the resulting map reflect the statistics of the data.
This makes it possible to extract a relevant codebook that provides some sort
of an elementary dictionary of the most representative elements within the
data (see Fig. 17 for an illustrative example). This ‘lexicon’ is then used to
map the musical memory and directly access any element that is similar to
the query. Although it could be used directly to map the musical memory,
the SOM is actually clustered into a predetermined number of classes (us-
ing standard k-means algorithm) that not only reduces the amount of basic
shapes to consider, but also allows for the n-gram indexing approach we de-
scribed before (see Section 3.1.2).

In practice, the mapping of the musical memory can either use a map that is
directly built from the musical content under consideration (either MIDI or
audio), or use a preexisting map. Here, cases involving self-listening follow the
former approach while harmonic listening involves some existing knowledge,
using a map previously trained on a large corpus of western music.

36

NSy
Ry o R I R A Ny Ay =S L e L E S R NN Sy Ea X

ﬂ
s S L SN
S Ny g g M B S

et M Bl i R A SN
wwuvﬂﬁqj jfjfjm%ﬁ

7
S PSP T I TR PTG

Figure 17: Self-organizing map trained on short melodies extracted from the
37

violin part of Beethoven’s late string quartets.

3.6 A few demos
Journées portes ouvertes de I'Ircam, 2014.

This public demo was held on June 6th, 2014, with saxophone player Remi
Fox.

The corresponding code is provided in the main soma folder. It exempli-
fies possible uses of the somax object for specific musical situations. Four
situations were considered:

e demo__1_ hiphop involves one audio virtual agent, trained on a hip-
hop piece called ‘The thief’s theme’ The analysis extracts and anno-
tates beats, use beat-wise frames and mfcc analysis. During the im-
provisation, the machine first freely recombines this material using the
phase preservation mechanism, so that the pulse feeling is maintained
and kept steady, even when a jump occurs (every two beats on average).
It is subsequently more and more influenced by the harmonic context
computed real-time from the live sax solo. In the end, the auto_bpm
feature is finally turned on, which the musician uses to slow down the
improvisation.

e demo_ 2 evans exemplifies the now classic situations of improvised
harmonization of a melodic solo (see previous SOMax demos available).
The corpus is built from a MIDI file of the piece Time Remembered,
composed by Bill Evans, and performed in the style of the famous pi-
ano player. The improvisation alternates between the note against note
mode and a play mode that features auto-adjustment to the external
rhythmic situation. In both cases, melodic listening (mod 12) is used
to influence the musical improvisation of the machine. This melodic lis-
tening is based on a monophonic line extracted from the original MIDI
file and defined as being the highest notes of the polyphonic content.

e demo__3_remi_ clone features for the first time live recording and
on the fly analysis of audio content, a la OMazx, coupled the multi-agent
and listening abilities of the current SOMax environment. The musician
first starts alone, and this musical material is recorded and analyzed
online. Two virtual clones of the live musician then enter the stage, one
after the other, using slightly different parameters to generate different
improvisations. They employ both melodic and harmonic listening. The
live musician is able to control his virtual doubles by recalling some
parts of the previously recorded material played earlier in the same
performance. Depending on the parameters, the machine is more or less
prone to follow the influence of the live musician. All in all, the global

38

performance alternates between phases of total convergences, where
the three agents (Remi and the two virtual players) play in unison, and
phases of heterophony, where each musician get away from each other.

e demo_4_schoenberg is the most complex situation of these four de-
mos. It involves two virtual agents, one built from a corpus of Schoen-
berg’s Drei Klavierstiicke, Op. 11 (actually using different transposed
versions of these pieces), and one that captures and learns audio mate-
rial on the fly. During the first part of this demo, the Schoenberg virtual
player plays while listening melodically (mod 12) to the live musician
(again, the melodic line used for listening is built from the highest
notes of the MIDI content). Meanwhile, the second agents captures
and analyzes the live solo of the player (using two microphones: one for
recording the audio improvisation in a good quality, which will then be
reinjected, and one, a piezo attached to mouthpiece of the instrument,
for the pitch and onset analysis), while annotating this stream with the
harmonic content provided by the first virtual agent. In a second part
of the performance, the two virtual agents play together, listening to
one another. Virtual saxophonist is influenced by harmonic context and
virtual Schoenberg is influenced by melodic patterns (mod 12). Finally,
the live saxophonist, as well as another musician, percussionist Laurent
Mariusse, finally join the stage.

A few small illustrative examples

Three basic examples are provided in the demos/small_examples as simple
illustrations of the new explorations, and it notably shows an answer the
issues raised in Section 2.3:

e sowhat_loops illustrates the use of phase influence and adjustments
in a pulsed context, as well as the use of the beat-wise taboo with
positive modulations that can be used to automatically create coherent
synchronized loops.

e sacre_hctxt illustrates how the external influence on the musical ma-
terial can directly be applied at the same surface level than what is
heard (harmonic listening here). It addresses the cartographical blind-
nesss explained Section 2.3.3.

e bach_inventio illustrates how the external input can exert influence
on a hidden track, which is melodic here. The right hand is played by
an external midi player, while the left hand is played by the somax

39

player. The corpus is built from all the Bach two-part inventions —
the left hand is used as the main view, while the right hand is used
as the melodic view, used for melodic listening. The result exemplifies
the answer provided to both the cartographical blindness and the evi-
dence accumulation issues. It also shows how the rhythmic adaptation
mechanism presented in Section 3.3.2 can be used, even within pulsed
context, to follow speed variations. Note that the goal here is not to
do some score following, though this is the behavior one might expect

from such a setting, and it was not possible with previous versions of
SOMax

Previous SOMax performances.

Some videos are available at http://www.dailymotion.com/RepMus. Four
main past SOMax performances can also be found in the demos folder:

e Nuit de I'lmpro, CNSMDP, Oct 12th, 2012, broadcasted live on France
Musique, with Vincent Lé Quang (saxophone)

e Les Rencontres du Numérique de ’ANR, Cité des sciences et de I'industrie,
April 18th, 2014, with Carine Bonnefoy (piano) and Remi Fox (saxo-
phone)

e Journées Nationales du Développement Logiciel JDEV, Ecole polytech-
nique with Carine Bonnefoy (piano) and Remi Fox (saxophone)

e Concert création pour dix-huit musiciens, Carine Bonnefoy, 18 au max,
CNSMDP, Oct 23th, 2013

3.7 A note on the delivered code

The different pieces of code can be found in the accompanying folders. This
experimental code was developed with the primary goal of testing the few
exploratory ideas that have been described in this Section 3. Although it
has been used in a real public setting, it is far from being finished, not to
say polished. Moreover, despite the fact that the project retained its orig-
inal name, and that bits of code were recycled, the core of the project is
entirely new. Some features that were present in previous versions of SOMax
are no longer available here, not because of their lack of interest, but as a
result of the lack of time available for the present implementation. Thus,
for instance, the interval-based representation, that allowed for transposition
and thereby considerably increased the capabilities of the machine to cope

40

with various situations, is not implemented in the current version. Likewise,
the phrase and section segmentation is not exploited at this point, although
it provided interesting points where to start, and where to stop (see Sec-
tion 2.2.1). Nonetheless, the code was developed to a sufficient state where
the benefits of the current approach over previous versions are quite clear,
notably in the way it has answered the issues raised in Section 2.3. It should
be seen as complementing previous efforts, rather than totally replacing them.

Somehow renewing with the organization of the initial OMax prototypes,
built around Lisp and Max in order to take advantage of the best of the two
programming worlds, the present prototype involves both the Python lan-
guage as the core for the representations and analyses and Max/Msp as the
reactive real-time interface. The binding between the two is achieved thanks
to the pyext object, developed and freely distributed by Thomas Grill (see
below for more technical details). The code is organized as follows. The core
of the project is written in Python, and is present in the file soma.py. All
the fundamental functionalities, such as the mapping of the memory and the
handling of the activities, can be found in this file. The audio and midi in-
teractions are handled in Max/Msp. The file soma_rt.py makes the bridge
between the two. This yields the somax object, which corresponds to a sin-
gle virtual agent. Following what was done in previous versions of SOMax,
this object is not meant to be used on its own, but is to be used within an-
other patch, called conductors here, which will define the way it is specifically
used. As before, the behavior of the agents can be fully scripted. Each agent
can receive a certain number inputs, corresponding to commands that allows
to change the different parameters, to start and stop the improvisations, to
change the corpus, to specify the different listening constraints (melodic, har-
monic, rhythmic), etc; it outputs both musical content (MIDI or audio) and
extra information, such the current internal pulse of the agent, in the form of
a bang message. Not much documentation is provided here, but the reader
is referred to previous documentations as well as the code itself, that should
speak by itself for certain specific need, such as the list of available external
commands.

No single patch can match all the possible musical situations one might
think of. Should such a patch exist, it would be a Rube Goldberg machine
that would do way too much than needed for the current purpose, hence
obscuring the use of the environment. Two conductor patches are provided,
one to basically deal with a MIDI input, one for audio input (see Fig. 18).
Both involves two virtual agents. The patches clearly define both the agents
involved and the possible interactions between them. The code used for the
Journées portes ouvertes is also included, and provides further examples of

41

the possible uses of the present system. It should be easy to cope with new
situations by simply adapting the conductors that are provided.

These conductors should be seen as pedagogical examples of the possibilities
offered by the current system. Similarly, the agent itself should also be seen
as one particular illustrative instance that belongs to much larger variety of
situations. While the code for the handling of the views is quite generic, each
player is hard coded as possessing three ‘stream views’: one for self-listening,
one for harmonic listening, and one for melodic listening. Many other situ-
ations could be quite readily adapted from this current case. For instance,
self-listening might employ more than just one view, as is the case for now.
Likewise, new types of view, such as one that consider rhythmic patterns,
might reveal useful.

Finally, the Matlab code for creating the databases, both from MIDI and
audio files, is also provided.

On a technical side, current version of the prototype has been developed
and tested on Mac OS X 10.7.5. It is known to work on Max/Msp 5.1.9, and
uses the py/pyext object, v0.2.2°. The tools to build the corpora were devel-
oped on Matlab 7.11 (R2010b), and require both the MIRtoolbox (version
1.4.1 here)® (Lartillot et al., 2008) for the audio analysis and the SOM Tool-
box (version 2.0)" (Vesanto, 1999) for the use of the Self-Organized Maps.
The MIRtoolbox can be found in the accompanying external libraries
folder, and it actually includes the SOM Toolbox. Finally, the beatroot java
object®, developed by Dixon (2007), is also used for the offline audio beat
analysis.

Shttp://grrrr.org/ext

Shttps://www.jyu.fi/hum/laitokset/musiikki/en/research/coe/materials/
mirtoolbox

"http://www.cis.hut.fi/projects/somtoolbox/

8https://code.soundsoftware.ac.uk/projects/beatroot

42

5) -

— dlick 10 load a corpus —

musical agents

audio input

Figure 18:
ductor.

43

S e — (3] vanssotionfactor
soma player_2 master bpm: (180}
Do st
[phase infivence modiation D
D eustphase 1015 102 min duration of a rest (ms] + 10000
o it om
net state mog taop 4
midiovpul () refresh midioutput () refrash e 0 s m
utp L utpl 1 beat tracker D Adaptation aigorithm - [Large 0 it oMt 15 T D@ 8boo
[from MaxtvsP 1 [5] [from MaxmsP 1 [3] onloff a1
- ' &\m
jump
— — . < pasi
— —H a1
- C_1J () ona -
wis @ 5
bpm. reset to defaull s - tate # ;
" click to load a corpus — B st
interactions
melodic influence (] mad 12 hamonic influance | reset puise bang
o o0 o -~ AlNates Off [‘hakd notes’ mode [F2) transposition factor
2 2 2 2 master bpm: |+ 80.
1 sp2 input @1 502 input sal sp2 input 01 2 input e originel bom
phase influenca modulaion ()
rrin duration of & rest (ms) - 10000
a few presets audio on/off adustphsse 1015 103
(0] ato s enselocs 53]
note against nota mode beatmode o o
LA P2 Pt op2

next state mod
m h

'f laop 4
5
next state auto mod (5 :) tabos
Nat

jump !

< past in beats

Example of the use of the SOMax player object: the audio con-

References

Allauzen, C., Crochemore, M., and Raffinot, M. (1999). Factor oracle: a new
structure for pattern matching. In Pavelka, J., Tel, G., and Bartosek, M.,
editors, Proceedings of SOFSEM’99, Theory and Practice of Informatics,
Lecture Notes in Computer Science 1725, pages 291-306, Milovy, Czech
Republic. Springer-Verlag, Berlin.

Assayag, G. and Bloch, G. (2007). Navigating the oracle: a heuristic ap-
proach. International Computer Music Conference '07 (Copenhagen, Den-
mark), pages 405-412.

Assayag, G., Bloch, G., and Chemillier, M. (2006). Omax-ofon. Sound and
Music Computing (SMC).

Assayag, G. and Dubnov, S. (2004). Using factor oracles for machine impro-
visation. Soft Comput., 8(9):604-10.

Bonnasse-Gahot, L. (2012). Prototype de logiciel
d’harmonisation/arrangement a la volée: Somax v0.1. Technical re-
port, IRCAM.

Dixon, S. (2007). Evaluation of the audio beat tracking system beatroot.
Journal of New Music Research, 36(1):39-51.

Fetsch, C., Pouget, A., DeAngelis, G., and Angelaki, D. (2012). Neural cor-
relates of reliability-based cue weighting during multisensory integration.
Nature Neuroscience, 15:146—154.

Janata, P. (2007). Tonal theory for the digital age., chapter Navigating tonal
space, pages 39-50. Stanford (CA): Center for Computer Assisted Research
in the Humanities.

Janata, P., Birk, J., Horn, J. V., Leman, M., Tillmann, B., and Bharucha,
J. (2002). The cortical topography of tonal structures underlying western
music. Science, 298:2167-2170.

Kohonen, T. (1995). Self-organizing maps. In Series in Information Sciences.
Springer, Heidelberg.

Landy, M. S., Banks, M. S., and Knill, D. C. (2011). Ideal-observer models
of cue integration. Sensory cue integration, pages 5—29.

44

Lartillot, O., Toiviainen, P., and Eerola, T. (2008). A matlab toolbox for
music information retrieval. In Data analysis, machine learning and appli-
cations, pages 261-268. Springer.

Lefebvre, A., Lecroq, T., and Alexandre, J. (2002). Drastic improvements
over repeats found with a factor oracle. In Billington, E., Donovan, D.,
and Khodkar, A., editors, Proceedings of the 13th Australasian Workshop
on Combinatorial Algorithms, pages 253-265.

Lévy, B., Bloch, G., and Assayag, G. (2012). Omaxist dialectics: Capturing,
vizualizing and expanding improvisations. In Proceedings of NIME 2012,
Ann Arbor.

Parncutt, R. (1994). A perceptual model of pulse salience and metrical accent
in musical rhythms. Music Perception, 11(4):409-464.

Tillmann, B., Bigand, E., and Bharucha, J. (2000). Implicit learning of
tonality: A self-organizing approach. Psychological Review, 107:885-913.

Toiviainen, P. and Krumhansl, C. (2003). Measuring and modeling real-
time responses to music: The dynamics of tonality induction. Perception,
32:741-766.

Toiviainen, P., Tervaniemi, M., Louhivuori, J., Saher, M., Huotilainen, M.,
and Néatédnen, R. (1998). Timbre similarity: Convergence of neural, be-
havioral, and computational approaches. Music Perception: And Interdis-
ciplinary Journal, 16(2):223-241.

Vesanto, J. (1999). Self-organizing map in matlab: the som toolbox. In Pro-
ceedings of the Matlab DSP Conference 1999, pages 35—40, Espoo, Finland.

45

