
Reactive Visual Programs for Computer-Aided
Music Composition

Jean Bresson
STMS Lab: IRCAM-CNRS-UPMC

1 place Igor Stravinsky, Paris, France
jean.bresson@ircam.fr

Abstract—We present a new framework for reactive program-
ming in OpenMusic, a visual programming language dedicated
to computer-aided music composition. We highlight some char-
acteristics of the programming and computation paradigms, and
describe the implementation of a hybrid system merging demand-
driven and event-driven evaluation models in this environment.

I. INTRODUCTION

Numerous computer systems for music composition have
been designed as end-user programming languages. Computer-
aided composition environments today integrate flexible tools
that allow composers to create music and to develop creative
processes embedding algorithmic approaches, musical nota-
tion, graphical representations, i/o devices and communication
in (visual) programs and programming languages [1].

In this paper we present a new framework for reactive
programming in the OpenMusic computer-aided composition
environment. After a brief presentation of OpenMusic (Sec-
tion II), we will single out some specific aspects of this envi-
ronment that bear important comparisons with other musical
systems (Section III). We describe the implementation of a
model merging demand-driven and event-driven evaluations in
OpenMusic (Section IV), and discuss a number of possible
applications (Section V).

II. OPENMUSIC

OpenMusic (OM) is a visual programming environment
dedicated to music composition. The visual language is based
on Lisp and extended with musical tools, data structures and
editors [2][3]. This environment is used by composers world-
wide and has contributed to numerous compositional projects
and pieces from the contemporary music repertoire [4].

Visual programs in OM are made of boxes and connec-
tions: the user/programmer incrementally builds and evaluates
directed acyclic graphs representing functional expressions.

Fig. 1 shows and example of an OM visual program. Each
box in this program represents a function,1 a value or an object
generator/container.2 Inlets, at the top of the boxes, represent
the inputs or arguments of the functions, and outlets, at the
bottom of the boxes, correspond to returned value(s).

OM implements a demand-driven evaluation model: the
nodes in the visual program graph are computed on user
request, depending on the values he/she wishes to calculate or
update (see Fig. 2a). Typically in Fig. 1, the user would eval-
uate the boxes RHYTHM, PITCHES SEQ or other downstream

1Functions can written in Lisp or graphically as internal visual programs.
2Object boxes are actually class constructors or factories, as usually found

in object-oriented systems.

Fig. 1: Example of an OpenMusic visual program.

musical structures (not visible in this figure). Such evaluation
produces a chain of function calls following the box input
connections. Upstream terminal box calls yield values that
are then processed downwards until the box from which the
request originated.

Evaluations, data input and rendering are generally in-
terleaved as part of the composers’ programming work-flow.
Intermediate values can be edited using graphical editors, and
locked in order to prevent reinitializations on future updates
(locked boxes behave as terminal nodes in the call graph).

III. COMPUTATION MODELS IN MUSIC PROGRAMMING
SYSTEMS

Among the different computer tools proposed to musicians
today, an important distinction exists between “deferred-time”
and “real-time” systems. These two approaches correspond to
different ways of using computer systems for music: on the one
hand, the symbolic manipulation of complex and structured
musical data involved in the composition of a piece of music
(scores, but also sounds or other types of data), and on the
other hand, real-time audio processing and live interaction in
concerts or performance contexts.

Executions in real-time musical systems are reactive pro-
cesses driven by internal clocks, external events, data streams
or signals that are processed through data-flow graphs.3 In
these systems music is produced “on the fly” by the program

3Max [5] is a popular visual language in this category. We will use it to
illustrate inter-application communication processes in Section V (Fig. 4).



(each step of the program run generates a bit of music:
an event, a sequence of audio samples, etc.). Therefore, the
temporal dimension in the musical structures is practically
merged with the “run-time” that flows during computation,
which limits the possibility to “compose” with musical time.4

In contrast, compositional systems like OpenMusic gener-
ate “off-line” musical data in a deferred time context. If these
systems are interactive (in the sense that they include user
interactions), the programs created by the user are transforma-
tional: they process inputs, produce an output and terminate.5
The output musical structures (scores, sounds, etc.) are played,
read or interpreted by a performer or sequenced/rendered at a
later stage. Such systems therefore make a distinction between
computation time and musical time: the musical result is
produced when the overall process is over, and its temporal
structure is independent from the “run time” of the program.
This paradigm allows for the formalization and generation
of more sophisticated musical structures, without time-related
restrictions or constraints (e.g. limitations of the accessible
time domain, or constraints on complexity when results are
required within strict time delays).

The deferred-time paradigm also have a number of draw-
backs. While advantageous in its full and precise control over
program execution, it can be impractical in that it forces
frequent explicit updates after modifications or data input.
The transformational paradigm of OM’s model also has the
disadvantage that it tends to isolate compositional processes
from interactions with the external environment.

IV. REACTIVE VISUAL PROGRAMS IN OM
In a recent paper [8], we have proposed an extended seman-

tics of OM merging off-line/demand-driven and reactive/event-
driven evaluation models (see Fig. 2). In this new situation,
events or changes that occur in specific boxes in the visual pro-
grams propagate and update downstream branches and boxes,
thus introducing more interactive aspects in compositional
processes.

A G

E F

B D

C

(a)

A G

E F

B D

C

(b)

Fig. 2: Control flow in demand-driven vs. data/event-driven
evaluation. (a) Demand-driven: the evaluation of C propagates
up in the graph to request input values. (b) Data-driven: G
activates an execution that propagates down to C.

At the moment, we consider the first-order functional graph
only, that is, the “top-level” graphical elements of the visual
programs. The implementation of this system can be relatively
straightforward but needs to respect a number of constraints.
Most importantly, we view reactivity as an optional and local

4Recent works in real-time musical environments such as bach [6] shall be
mentioned here, for they bring higher-level musical constructs and processes
in this constrained temporal paradigm. bach can be seen as a symmetrical
counterpart to the present work, for it aims at bridging computer-aided
composition and real-time/reactive visual programming frameworks, from the
real-time systems perspective.

5See [7] for a discussion about transformational vs. reactive systems.

feature and so this new functionality must not interfere with the
environment’s pre-existing semantics and behaviour. A number
of features and concepts are added to the visual language for
this purpose, that we list in this section.

1) Active Boxes: In order to define reactive chains in
the functional graphs, there is a new attribute of the OM
boxes that determines their reactive status. Reactivity can be
switched on and off by the user with a keyboard short-cut
(the frame of the box is highlighted so that reactive objects
are easily distinguishable from non-reactive ones). A reactive
box systematically registers boxes downstream from it, i.e.
following boxes that would use its value as an argument, and
eventually propagate updates.

2) Events: Events are actions or changes on a box that are
likely to require an update of other boxes in order to restore the
consistency of functional relations in the program. Events can
occur for instance with user actions such as the re-evaluation
of a box yielding a new value (as in the standard evaluation
model), the modification of a “value” box or of a box input,
or specific editing actions in object editors that are validated
and applied to the associated box. Events can also come from
external processes or interruptions caught by the system.

3) Updates: Events are propagated and update the box
descendants through a notification mechanism. A notification
starts at an event (that is, a modification of a reactive box
value), and is propagated to its descendants by a depth-first
traversal of the visual program graph following the output
connections. Every reactive descendant in turn propagates the
notification. When a terminal box is reached (a box with no
direct reactive descendent), this box is evaluated following the
standard OM demand-driven model, hence respecting the exist-
ing scheduling strategy and semantics for program executions.

The box at the origin of the event is temporarily “locked”
during the process, so that it is not re-evaluated as part of the
update. Notified boxes in this process are also marked during
the propagation, in order to avoid multiple visits to the same
sections of the graph.

In this system, events are ordered upon occurrence and are
handled asynchronously in a single thread. Every incoming
event triggers an update and the next one is processed when
the previous update terminates. This choice in event-handling
simplifies the update process and is acceptable in both com-
positional contexts and applications.

This process successfully implements first-order reactive
visual programs in OM. It has the advantages that it does not
overload programming tasks and is completely transparent and
conservative with respect to the initial language design.

V. EXTENSIONS AND APPLICATIONS

The reactive mechanism implemented in OM performs
automatic computations and provides direct feedback for the
different user/programmer actions. In so doing, it alters pro-
gramming practices and needs in the environment and enables
a variety of new applications. We provide a number of exam-
ples below.

A. Interactive Widgets and Components
The reactive mechanism facilitates experimentation with

input values and, in certain situations, can be useful when
combined with OM programs’ special interface components
such as buttons, list/menu selectors, sliders, etc. The insertion



of an event after the standard activation procedure of an
interactive component makes it handy to use at setting the
values for the inputs of a visual program. Fig. 3 shows an
example of a melody calculated from a curve, whose values are
scaled in a pitch range determined by two sliders. The reactive
chain between the sliders and the score box makes this value
range controllable interactively with immediate feedback.

Fig. 3: Interactive control of input values in a reactive visual
program using slider boxes. The two sliders (MIN, MAX), om-
scale and SEQUENCE are reactive boxes.

It is important to note that immediate reactivity is not
always desirable, hence the importance of local and optional
control of the reactive mechanism. OM fosters an experimental
approach, allowing for visual programs to be constructed incre-
mentally through a process of trial and error. Sometimes boxes
can be temporarily connected in a certain way by mistake, or
for different purposes than immediate evaluation. Additionally,
evaluations can sometimes take a long time to complete (e.g.
in complex optimization problems, or in programs involving
large data structures or high precision signal processing). In
these cases of computationally-intensive processes, the visual
program is usually run only once at the end of its construction,
and the use of reactive sliders such as shown in the previous
example is not an adequate means for triggering executions.

B. Communication with External Systems
The reactive framework creates new possibilities for com-

munication between the computer-aided composition environ-
ment and other applications, and more generally with its
external context. Networked inter-application communication
is supported via MIDI or UDP/OSC6 and available in the
visual programs respectively through the MIDI-in/out and
OSC-receive/send boxes.

When activated, MIDI or OSC “receive boxes” run a
server thread receiving incoming messages on a specified
port. A reactive behaviour (event) is added to these boxes,
which updates their value and triggers a notification when a
message is received. Visual programs containing active receive
boxes hence become reactive to such events or messages sent
by external applications, input devices or instruments that
communicate with these protocols.

6OSC is a format for UDP packets created for musical applications [9].

Fig. 4: Reception, collection and processing of incoming data.
The Max program (window on the left) sends a “note” message
via UDP every time the user clicks on the piano keyboard
widget. The OM program (at the right) collects information
from the messages into the coll box. At every received data
the push (second input of coll) also receives a notification and
triggers an update of the downstream part of the program.

C. Data Collection
Reactive boxes and notifications handle “instantaneous”

data and events. In order to integrate compositional processes,
these data generally need to be gathered in more complex data
sets and mapped to time structures. A specific box (coll) has
been created for this purpose, which instantiates a local storage
for dynamic data collection in OM visual programs.

The coll box constitutes a special case in the update mech-
anism. It behaves as an intermediate step where notification
temporarily stops and inputs are evaluated. The box has three
inputs: when the first one (labelled data-in) collects some
data, this data is added into a list that constitutes the coll
“memory”. The second input (push), makes coll behaving as a
standard reactive box, propagating the notification through its
descendants. The third input (init) reinitializes the memory.
When it is evaluated (typically, after the propagation has
triggered an evaluation), coll returns the current contents of
its memory as a list of all previous collected data.

Coll can be associated to OSC or MIDI receive boxes to
create reactive programs in OM that structure and process live
inputs from real-time systems, players or instruments. Fig. 4
shows an OM program collecting and processing data from the
Max software using OSC-receive and coll. In contrast to Fig. 1,
evaluations here are driven by incoming messages in OSC-
receive. The growing contents of the coll memory is converted
into a data structure (a score) that can be further processed in
the visual programming environment.



D. Handling Groups and Time in Data Collection
It is frequent in communication frameworks that several

messages need to be considered as being simultaneous or
otherwise “grouped” together. (If the messages are musical
notes then this idea would correspond to the concept of a
chord.) However, it is very unlikely that two events belonging
to the same group would be sent and received at exactly the
same time (and even so, they would not be handled simultane-
ously by the system). Time-tagging and/or structuring events
provides a solution for sender applications to deal with this
situation [10], but all events are not necessarily formatted so.

When no bundle or time-tagging is present in the com-
munication protocol (e.g at receiving simple UDP or MIDI
messages), internal timing can be used to gather the collected
data according to specified time intervals. The group-in box
implements this behaviour: it has one input collecting data
(similar to the coll input) and a second input setting a time
frame during which events are gathered and considered as part
of the same data set. This box generates a slight delay and
propagates collected data at once after this delay is over.

Fig. 5: Grouping incoming data. A delay of 100ms is set to
gather and transmit or collect notes as chords.

The timed-coll object also extends coll with the group-
in behaviour and gathers the items collected during a time
frame into separate data chunks. Depending on the timing of
incoming events, the result in Fig. 4 using timed-coll would
be a list of pitch lists, corresponding to a sequence of chords
in the score (see Fig. 5).

E. Event-Driven Conception of the Visual Programs
Reactive applications such as the one in Fig. 4 tend to em-

ulate and orient the conception of the visual programs towards
the data-driven paradigm (Fig. 2b), where the propagation
of notifications needs to be controlled in the same way as
evaluation. (The coll mechanism, for instance, can be seen as
the data-driven counterpart to the collect primitive in standard
Lisp or OM loops).

Several tools inspired by reactive systems like Max are
being added to the OM reactive framework to help it expand
beyond its original paradigm. One such tool is route, a utility
that filters notifications using on a set of tests performed on its
input. Route is also a particular case in the update mechanism
as it requires stopping the notification and evaluating inputs
before selecting where to propagate an update.

Other “data-driven” utilities include for instance an internal
send/receive mechanism, also inspired from the Max send and
receive tools, allowing to propagate notifications and updates
in the visual programs without passing through the whole path
of intermediate connections.

VI. CONCLUSION

In this paper we have summarized the significance of
deferred-time computation in computer-aided composition sys-
tems and outlined a reactive framework in OM where this
characteristic is combined with interactive processes. The
reactive extension of OM introduces a new conception of the
computer-aided composition framework and of its connection
to the external context. Visual programs and compositional
processes are built and run interactively, but also “live” on their
own and can be driven by external processes and interactions.
The generated musical structures can in turn be re-injected into
a “real” time flow, either via networking or direct rendering,
as a response to an event in the reactive system. This kind of
reactive loop, in which real-time processing leaves space for
advanced formal/compositional computation, opens interesting
perspectives for enhanced musical expressiveness in interactive
situations.

Our first experiments with the system show that OM users
can easily shift to the reactive paradigm and reuse their tools
and libraries in this new computational framework.

The main questions raised by this project are now related
to the notions of time involved in reactive musical systems:
how to deal with the asynchronous occurrence of events; with
the relations between the duration of computations, the real
time of interactions, and the duration of the computed time
structures. We have only briefly touched on these questions in
this paper, and plan to address them in more detail in future
works.

OpenMusic is a free and open-source software.7 The reac-
tive extension can be loaded dynamically as an external library,
and shall be included as a native feature in future versions.

ACKNOWLEDGEMENTS

This work is done with the support of the French National
Research Agency projects with reference ANR-13-JS02-0004-
01 and ANR-12-CORD-0009.

REFERENCES
[1] G. Assayag, “Computer Assisted Composition today,” in 1st symposium

on music and computers, Corfu, 1998.
[2] J. Bresson, C. Agon, and G. Assayag, “Visual Lisp/CLOS Programming

in OpenMusic,” Higher-Order Symb. Comput., vol. 22, no. 1, 2009.
[3] G. Assayag, C. Rueda, M. Laurson, C. Agon, and O. Delerue, “Com-

puter Assisted Composition at IRCAM: From PatchWork to OpenMu-
sic,” Comput. Music J., vol. 23, no. 3, 1999.

[4] C. Agon, G. Assayag, and J. Bresson, Eds., The OM Composer’s Book
(2 volumes). Editions Delatour / IRCAM, 2006-2008.

[5] M. Puckette, “Combining Event and Signal Processing in the Max
Graphical Programming Environment,” Comput. Music J., vol. 15, no. 3,
1991.

[6] A. Agostini and D. Ghisi, “Bach: An Environment for Computer-Aided
Composition in Max.” in Proc. Int. Comp. Music Conf., Ljubljana, 2012.

[7] D. Harel and A. Pnueli, “On the Development of Reactive Systems,”
in Logics and Models of Concurrent Systems. Springer Verlag, 1985.

[8] J. Bresson and J.-L. Giavitto, “A Reactive Extension of the OpenMusic
Visual Programming Language,” J. Visual Lang. Comput., 2014.

[9] M. Wright, “Open Sound Control: an enabling technology for musical
networking,” Organised Sound, vol. 10, no. 3, 2005.

[10] A. Schmeder and A. Freed, “Implementation and Applications of Open
Sound Control Timestamps,” in Proc. Int. Computer Music Conf.,
Belfast, 1998.

7http://repmus.ircam.fr/openmusic/


