
Realtime Programming & Processing
of Music Signals

by

ARSHIA CONT

Ircam-CNRS-UPMC Mixed Research Unit
MuTant Team-Project (INRIA)

Musical Representations Team,
Ircam-Centre Pompidou

1 Place Igor Stravinsky, 75004 Paris, France.

Habilitation à diriger la recherche

Defended on May 30th in front of the jury composed of:

Gérard Berry Collège de France Professor
Roger Dannanberg Carnegie Mellon University Professor
Carlos Agon UPMC - Ircam Professor
François Pachet Sony CSL Senior Researcher
Miller Puckette UCSD Professor
Marco Stroppa Composer

ii

à Marie

le sel de ma vie

iv

CONTENTS

1. Introduction 1
1.1. Synthetic Summary 1
1.2. Publication List 2007-2012 3
1.3. Research Advising Summary 5

2. Realtime Machine Listening 7
2.1. Automatic Transcription 7
2.2. Automatic Alignment 10

2.2.1. Discrete State-space Models of Time 11
2.2.2. Continuous State-space Models of Time 12

2.3. Music Information Geometry 14
2.3.1. Motivations and Approach 14
2.3.2. Automatic Change Detection 16
2.3.3. Automatic Structure Discovery 18

3. Reactive Synchronous Programming 21
3.1. Computing and Programming of Mixed Music 21

3.1.1. Authoring . 22
3.1.2. Software Architecture . 25
3.1.3. Performance . 28

3.2. Antescofo . 29
3.2.1. Informal Description of the Language 30
3.2.2. Runtime Semantics . 33

3.3. Future Perspectives 37
4. Towards Cyber-Physical Music Systems 39

4.1. Motivations and Context 40
4.2. Practical Challenges 41

4.2.1. Domain-Specific Softwares 41
4.2.2. Realtime Computing . 42
4.2.3. Distributed Deployment 43

4.3. Scientific Challenges 44
4.3.1. Heterogeneous Models of Time & Computation 44
4.3.2. Temporal Semantics . 45
4.3.3. Preservation & Predictablity 47
4.3.4. Architectures for Embedded Computer Audition 49

Bibliography 51

v

vi CONTENTS

I
INTRODUCTION

This document is a synthetic summary of my research activity at the inter-
section of machine learning, signal processing and computer science applied to
music. The ultimate goal of this research is to empower computers with mu-
sical intelligence capable of interactions with live (human) musicians on stage.
This goal is inline with current practices of mixed music which is defined as the
association of human musicians with computers, both at the time of authoring
(music composition) and realtime execution (music performance). To reach this
goal, computers must be capable of undertaking machine listening in realtime
and use this artificial perception to coordinate temporal activities in reaction
to the environment. To this end, this manuscript summarizes research in this
domain within two main themes of Machine Listening and Reactive Program-
ming, and studies the coupling and necessary interaction between the two, with
the aim of leveraging Interactive Music Systems towards Cyber-Physical Music
Systems for digital art.

1.1 Synthetic Summary

Computer Music as a research discipline deals with many facets of computer
science related to audio: signal processing, object recognition, machine learn-
ing, computer languages, physical modeling, and perception and cognition, just
to name a few. In its practice, it brings in various disciplines with the aim of
making music with the aid of (or for) computers. Among long practical tradi-
tions in computer music, Interactive music systems (Rowe 1992) have gained
tremendous attention in both research and artistic communities within the past
15 years. Within this paradigm, the computer is brought into the cycle of mu-
sical creation as an intelligent performer (Vercoe 1984) and equipped with a
listening machine (Scheirer 2000) capable of analyzing, coordinating and antic-
ipating its own and other musicians’ actions within a musically coherent and
synchronous context. Interactive music systems for computer music composi-
tion and performance were introduced in mid-1980s at Ircam. Their use have
become universal ever since and their practice has not ceased to nourish multi-

1

2 CHAPTER 1. INTRODUCTION

disciplinary research. From a research perspective, an interactive music system
deals with two problems: realtime machine listening (Rowe 1992; Scheirer 2000)
or music information retrieval from musicians on stage, and music programming
paradigms (Loy et al. 1985; Assayag and Gerzso 2009) reactive to the artificial
listening. Whereas each field has generated subsequent literature, few attempts
have been made to address the global problem by putting the two domains in
direct interaction. This research directly aims at modeling of such interactions
between the two domains by attempting to foster research in each respective
field and bringing humans in the loop of sound and music computing.

The first aspect of interactive music systems is the act of machine listen-
ing or formally speaking online music information retrieval. The goal of such
systems is to extract low-level information (such as polyphonic pitches, audio
descriptors) along with high-level musical information (such as tempo or musical
pace, position in a score, formal structures) in realtime. Existing approaches
make large use of machine learning and signal processing and proposed models
are highly application-dependent and most often off-line (meaning the system
has access to future data). Realtime machine listening is still a major challenge
for artificial sciences that should be addressed both on application and theoret-
ical fronts. We present our efforts on this topic in Chapter 2. In Sections 2.1
and 2.2 we present two state-of-the-art methods in terms of modeling and per-
formance for two complex tasks of realtime transcription and alignment of poly-
phonic audio signals. In Section 2.3, we present our work in formulating a novel
mathematical framework for statistical representation of audio streams called
Music Information Geometry, that attempts to address fundamental problems
in high-level Music Information Retrieval (MIR) tasks for quantification and
qualification of information content. This work leverages traditional signal rep-
resentations with tools from information theory and differential geometry, to
provide mathematical concepts that in return will simplify (often complex) prob-
lem formulations in MIR tasks such as automatic segmentation (Section 2.3.2)
and automatic structure discovery (Section 2.3.3).

Chapter 3 presents our efforts on reactive synchronous programming in com-
puter music, or simply the formalization of reactions in interactive systems to
artificial perceptions discussed previously. Our approach is motivated by cur-
rent practices in digital arts for Authoring or programming of pieces, and their
realtime performances deterministic with regards to authored patterns and non-
deterministic with regards to interpretation parameters. Section 3.1 reviews
such practices and studies common software architecture to this end. To address
several scientific and practical issues brought by this study, we present Antescofo
in section 3.2, a performance-synchronous language for computer music. The
system and its language, running publicly since 2009, has now established itself
worldwide for mixed music repertoire. Highly inspired by synchronous-reactive
languages (Halbwachs 1993), we informally describe the language in section 3.2.1
and study its runtime semantics in section 3.2.2.

Chapter 4 presents our recent and future efforts in bringing the two topics
discussed within a unique theoretical and practical framework. We aim to lever-
age the traditional notion of Interactive Music Systems to Cyber-Physical Music
Systems (CPS), by showing the differences in their design process and possible

1.2. PUBLICATION LIST 2007-2012 3

gains when considering the latter both in theory and practice. Specifically, we
revisit common practical problems in computer music such as the community
divisions as a result of domain-specific software and languages, important issues
in realtime computing and nomadic and distributed deployment in Section 4.2.
The scientific context of this prospective research is presented in Section 4.3,
drawn from CPS literature (Kim et al. 2012; E. A. Lee and Seshia 2011), expos-
ing our plans for establishing a literature on Models of Computations, strong
temporal semantics, and architectures for embedded computer auditions with
important impact on digital art practices and issues such as preservation of
digital art programs.

1.2 Publication List 2007-2012

Journals

[1] Cont, Arshia (May 2010). “A coupled duration-focused architecture for
realtime music to score alignment.” In: 32.6, pp. 974–987. url: http:
//articles.ircam.fr/textes/Cont09a/.

[2] — (May 2012b). “Modélisation anticipative des systèmes musicaux. Re-
connaissance, génération, synchronisation et programmation synchrone
temps réel en informatique musicale.” French. In: 31.3, pp. 311–335. doi:
10.3166/tsi.31.311-335. url: http://hal.inria.fr/hal-00699290.

[3] — (May 2012c). “Synchronisme musicale et musiques mixtes: Du temps
écrit au temps produit.” French. In: 22.1, pp. 9–24. url: http://hal.
inria.fr/hal-00698922/PDF/Cont_eI_preuves2_22-1.pdf.

[4] Cont, Arshia, Shlomo Dubnov, and Gerard Assayag (May 2011). “On the
Information Geometry of Audio Streams with Applications to Similar-
ity Computing.” In: 19.4. url: http://articles.ircam.fr/textes/
Cont10b/index.pdf.

[5] Dessein, Arnaud and Arshia Cont (April 2013). “An information-geometric
approach to real-time audio segmentation.” In: 20.4, pp. 331–334. doi: 10.
1109/LSP.2013.2247039. url: http://hal.inria.fr/hal-00793999.

Popular Science Articles

[6] Cont, Arshia (July 2011a). “Interaction musicale en temps réel entre mu-
siciens et ordinateur : L’informatique musicale, de l’accompagnement mu-
sical automatique vers la programmation synchrone en temps réel.” In:
url: http://interstices.info/interaction- musicale (visited on
08/11/2012).

[7] — (June 2012a). “L’ordinateur qui joue comme un musicien.” In: 465,
pp. 68–72.

[8] Cont, Arshia, Florent Jacquemard, and Pierre-Olivier Gaumin (November
2012). “Antescofo à l’avant-garde de l’informatique musicale.” In: url:
http://interstices.info/antescofo (visited on 02/01/2013).

http://articles.ircam.fr/textes/Cont09a/
http://articles.ircam.fr/textes/Cont09a/
http://dx.doi.org/10.3166/tsi.31.311-335
http://hal.inria.fr/hal-00699290
http://hal.inria.fr/hal-00698922/PDF/Cont_eI_preuves2_22-1.pdf
http://hal.inria.fr/hal-00698922/PDF/Cont_eI_preuves2_22-1.pdf
http://articles.ircam.fr/textes/Cont10b/index.pdf
http://articles.ircam.fr/textes/Cont10b/index.pdf
http://dx.doi.org/10.1109/LSP.2013.2247039
http://dx.doi.org/10.1109/LSP.2013.2247039
http://hal.inria.fr/hal-00793999
http://interstices.info/interaction-musicale
http://interstices.info/antescofo

4 CHAPTER 1. INTRODUCTION

Book Chapters

[9] Cont, Arshia, Gerard Assayag, et al. (August 2010). “Interaction with
Machine Improvisation.” In: The Structure of Style. Ed. by Shlomo Dubnov
Kevin Burns Shlomo Argamon. Springer Berlin Heidelberg, pp. 219–246.
isbn: 978-3-642-12337-5. url: http://dx.doi.org/10.1007/978-3-
642-12337-5_10.

[10] Cont, Arshia, Shlomo Dubnov, and Gerard Assayag (2007a). “Antici-
patory Model of Musical Style Imitation using Collaborative and Com-
petitive Reinforcement Learning.” In: Anticipatory Behavior in Adaptive
Learning Systems. Ed. by Butz M.V. et al. Vol. 4520. Lecture Notes
in Computer Science / Artificial Intelligence (LNAI). Springer Verlag,
pp. 285–306. isbn: 978-3-540-74261-6. url: http://www.springerlink.
com/content/978-3-540-74261-6/.

[11] Dessein, Arnaud, Arshia Cont, and Guillaume Lemaitre (2013). “Real-
Time Detection of Overlapping Sound Events with Non-Negative Matrix
Factorization.” In: Matrix Information Geometry. Ed. by Frank Nielsen
and Rajendra Bhatia. Springer Berlin Heidelberg, pp. 341–371. isbn: 978-
3-642-30232-9. url: http://dx.doi.org/10.1007/978-3-642-30232-
9_14.

International Conferences

[12] Cont, Arshia (August 2008a). “ANTESCOFO: Anticipatory Synchroniza-
tion and Control of Interactive Parameters in Computer Music.” In: Pro-
ceedings of International Computer Music Conference (ICMC). Belfast.
url: http://articles.ircam.fr/textes/Cont08a/.

[13] — (July 2011b). “On the creative use of score following and its impact
on research.” In: Sound and Music Computing. url: http://articles.
ircam.fr/textes/Cont11a/.

[14] Cont, Arshia, Shlomo Dubnov, and Gerard Assayag (September 2007b).
“GUIDAGE: A Fast Audio Query Guided Assemblage.” In: Proceedings of
International Computer Music Conference (ICMC). ICMC Best Presen-
tation Award. Copenhagen.

[15] Cont, Arshia, Shlomo Dubnov, and David Wessel (September 2007). “Re-
altime Multiple-pitch and Multiple-instrument Recognition For Music Sig-
nals using Sparse Non-negative Constraints.” In: Proceedings of Digital
Audio Effects Conference (DAFx). Bordeaux.

[16] Cont, Arshia, José Echeveste, et al. (September 2012). “Correct Auto-
matic Accompaniment Despite Machine Listening or Human Errors in
Antescofo.” In: International Computer Music Conference (ICMC). url:
http://hal.inria.fr/hal-00718854/PDF/Antescofo_ICMC2012_new.
pdf.

[17] Cont, Arshia, Jean-Louis Giavitto, and Florent Jacquemard (2013). “From
Authored to Produced Time in Computer-Musician Interactions.” In: CHI
2013 Workshop on Avec le Temps! Time, Tempo, and Turns in Human-

http://dx.doi.org/10.1007/978-3-642-12337-5_10
http://dx.doi.org/10.1007/978-3-642-12337-5_10
http://www.springerlink.com/content/978-3-540-74261-6/
http://www.springerlink.com/content/978-3-540-74261-6/
http://dx.doi.org/10.1007/978-3-642-30232-9_14
http://dx.doi.org/10.1007/978-3-642-30232-9_14
http://articles.ircam.fr/textes/Cont08a/
http://articles.ircam.fr/textes/Cont11a/
http://articles.ircam.fr/textes/Cont11a/
http://hal.inria.fr/hal-00718854/PDF/Antescofo_ICMC2012_new.pdf
http://hal.inria.fr/hal-00718854/PDF/Antescofo_ICMC2012_new.pdf

1.3. RESEARCH ADVISING SUMMARY 5

Computer Interaction. John Thomas, Yue Pan, Thomas Erickson, Eli Ble-
vis, Catherine Letondal, Aurélien Tabard. ACM. url: http : / / hal .
inria.fr/hal-00787033.

[18] Cont, Arshia, Diemo Schwarz, Norbert Schnell, and Christopher Raphael
(September 2007). “Evaluation of Real-Time Audio-to-Score Alignment.”
In: International Symposium on Music Information Retrieval (ISMIR).
Vienna, Austria.

[19] Dessein, Arnaud, Arshia Cont, and Guillaume Lemaitre (August 2010).
“Real-time polyphonic music transcription with non-negative matrix fac-
torization and beta-divergence.” In: Proceedings of the 11th International
Society for Music Information Retrieval Conference (ISMIR).

[20] Dubnov, Shlomo, Gerard Assayag, and Arshia Cont (September 2007).
“Audio Oracle: A New Algorithm for Fast Learning of Audio Structures.”
In: Proceedings of International Computer Music Conference (ICMC).
Copenhagen.

[21] Dubnov, Shlomo, Arshia Cont, and Gérard Assayag (September 2011).
“Audio Oracle Analysis of Musical Information Rate.” In: Proceedings of
IEEE Semantic Computing Conference (ICSC2011), pp. 567–571. url:
http://articles.ircam.fr/textes/Dubnov11a/.

[22] Montecchio, Nicola and Arshia Cont (May 2011a). “A Unified Approach to
Real Time Audio-to-Score and Audio-to-Audio Alignment Using Sequen-
tial Montecarlo Inference Techniques.” In: Proceedings of International
Conference on Acoustics, Speech and Signal Processing (ICASSP).

[23] — (September 2011b). “Accelerating the Mixing Phase in Studio Record-
ing Productions by Automatic Audio Alignemtn.” In: 12th International
Symposium on Music Information Retrieval (ISMIR). in press.

[24] Nouno, Gilbert et al. (July 2009). “Making an orchestra speak.” In: Sound
and Music Computing. SMC2009 Best Paper Award. url: http://articles.
ircam.fr/textes/Nouno09a/.

1.3 Research Advising Summary

PhD Thesis Advising

[1] Dessein, Arnaud (December 2012). Computational Methods of Information
Geometry with Real-Time Applications in Audio Signal Processing. url:
http://hal.inria.fr/tel-00768524/PDF/Dessein2012PhD.pdf.

[2] Echeveste, José (Travaux démarés en 2011). Real-time Synchronous lan-
guage for authoring of musical interaction.

[3] Montecchio, Nicola (April 2012). Alignment and Identification of Multi-
media Data: Application to Music and Gesture Processing. (Encadrement
à 25%). url: https://sites.google.com/site/nicolamontecchio/
montecchio%20-%20phd%20thesis.pdf?attredirects=0.

http://hal.inria.fr/hal-00787033
http://hal.inria.fr/hal-00787033
http://articles.ircam.fr/textes/Dubnov11a/
http://articles.ircam.fr/textes/Nouno09a/
http://articles.ircam.fr/textes/Nouno09a/
http://hal.inria.fr/tel-00768524/PDF/Dessein2012PhD.pdf
https://sites.google.com/site/nicolamontecchio/montecchio%20-%20phd%20thesis.pdf?attredirects=0
https://sites.google.com/site/nicolamontecchio/montecchio%20-%20phd%20thesis.pdf?attredirects=0

6 CHAPTER 1. INTRODUCTION

Master Thesis Advising

[4] Baudart, Guillaume (September 2012). Antescofo: Vers une programma-
tion synchrone.

[5] Cauchi, Benjamin (2011). Non-Negative Matrix Factorization Applied to
Auditory Scenes Classification. Master. url: http://articles.ircam.
fr/textes/Cauchi11a/index.pdf.

[6] Cuvillier, Philippe (September 2012). Suivi de partition: étude du cadre
multi-objets pour l’inférence de position.

[7] Dessein, Arnaud (2009). Incremental multi-source recognition with non-
negative matrix factorization. Master. url: http://articles.ircam.fr/
textes/Dessein09b/index.pdf.

[8] Echeveste, José (2011). Stratégies de synchronisation et gestion des vari-
ables pour l’accompagnement musical automatique. Master. url: http:
//articles.ircam.fr/textes/Echeveste11a/index.pdf.

[9] Franchon, Lea (2012). Temporal Analysis of Mixed Intrumental/Electronic
Music Scores.

[10] Ricordeau, Olivier (2006). Sélection de descripteurs pour modèles d’observation
audio temps-réel. Master.

PhD Defense Committees

[11] Hennequin, Romain (November 2011). Decomposition of musical spectro-
grams informed by spectral synthesis models. url: http://www.romain-
hennequin.fr/doc/these.pdf.

[12] Joder, Cyril (September 2011). Alignement temporel musique-sur-partition
par modèles graphiques discriminatifs. url: http://www.mmk.ei.tum.
de/~jod/publis/Joder_These.pdf.

[13] Lefèvre, Augustin (September 2012).Dictionary learning methods for single-
channel audio source separation.

[14] Toro, Mauricio (September 2012). Structured Interactive Scores.

http://articles.ircam.fr/textes/Cauchi11a/index.pdf
http://articles.ircam.fr/textes/Cauchi11a/index.pdf
http://articles.ircam.fr/textes/Dessein09b/index.pdf
http://articles.ircam.fr/textes/Dessein09b/index.pdf
http://articles.ircam.fr/textes/Echeveste11a/index.pdf
http://articles.ircam.fr/textes/Echeveste11a/index.pdf
http://www.romain-hennequin.fr/doc/these.pdf
http://www.romain-hennequin.fr/doc/these.pdf
http://www.mmk.ei.tum.de/~jod/publis/Joder_These.pdf
http://www.mmk.ei.tum.de/~jod/publis/Joder_These.pdf

II
REALTIME MACHINE LISTENING

In interactive music systems, Machine Listening defines the dynamics of the
physical environment and provides the necessary artificial perception to enable
(timely) reactions from computer components. Machine listening consists of
realtime extraction of low-level and high-level sound and music parameters from
audio streams.

The first thorough study of machine listening appeared in Eric Scheirer’s
PhD thesis at MIT Media Lab (Scheirer 2000) with a focus on low-level listening
such as pitch and musical tempo, paving the way for a decade of research. Since
the work of Scheirer, the literature has focused on task-dependent methods for
machine listening such as pitch estimation, beat detection, structure discovery
and more. Unfortunately, the majority of existing approaches are designed for
information retrieval on large databases or off-line methods. Whereas the very
act of listening is realtime, very little literature exists for supporting realtime
machine listening.

In this chapter we present research works on realtime machine listening. The
common factor of all presented applications and framework is their online and
realtime nature on incoming audio streams into a system.

2.1 Automatic Transcription

Automatic transcription refers to the mapping of audio signals to symbolic rep-
resentations of music such as notes (pitches), instrument types and rhythms in
western music. Among different variants of automatic transcription problems
that of multiple-pitch (or multiple-f0) estimation in the presence of multiple
sources of sounds is of particular difficulty and interest. This problem has been
widely studied in the literature employing various approaches in signal process-
ing and machine learning (D.-L. Wang et al. 2006). While most methods have
focused on off-line approaches with complex signal processing, since 2006 we
have focused on on-line and realtime approaches using relatively simple ma-
chine learning techniques that learn and adapt to the environment complexity.
This section is a summary of works in (Cont 2006b; Cont, Dubnov, and Wes-

7

8 CHAPTER 2. REALTIME MACHINE LISTENING

sel 2007; Dessein 2009; Dessein et al. 2010; Dessein et al. 2013) on automatic
transcription.

In 2006, we were among the first to show that the hard problem of multiple-
pitch detection can be solved in realtime and employing non-negative matrix
factorization (NMF) techniques. The original NMF framework as proposed in
(D. D. Lee et al. 2001) aims at factorizing an input n×m matrix V into an n×r
matrix W and an r×m matrix H such that V ≈WH and where all three ma-
trices are non-negative. In case of sound, non-negative multivariate short-term
representations of sound are stacked intoV where each column could then be ex-
pressed as vj ≈Whj =

∑
i hijwi. The columns of W thus form a basis whereas

the rows in H represent the evolution of each basis through columns of V (or
time in case of sound). The aim of the NMF algorithm is thus to improve the
approximate factorization by optimizing a given goodness-of-fit measure called
cost function C(V,WH) over both W and H. The standard formulation in
(D. D. Lee et al. 2001) employs a Frobenius norm for C through iterative mul-
tiplicative updates using a gradient descent scheme with proof of convergence.
A flourishing literature exists on variants and extensions of the standard NMF
in terms of modified models (e.g. using tensors), modified constraints (e.g. em-
ploying sparsity), and of modified cost functions and regulations (Cichocki et al.
2009).

Our proposed framework for realtime pitch detection using NMF debuted
in (Cont 2006b) by employing a short-time spectral amplitude representation
based on instantaneous fixed-point analysis of realtime audio streams (Kawa-
hara et al. 1999) for the frontend representation.The basis matrix W contains
previously learned templates of all available pitches (e.g. all 88 keys on a Pi-
ano) equipped with a noise template. V would represent the realtime vector
of incoming audio in the aforementioned representational scheme. Realtime
multiple-pitch detection then boils down to finding the optimal H or

argmin
H∈Rr×m

+

C(V,WH) (2.1)

where W is constant. In the absence of future information or complete matrix
representation in V the application of standard NMF would quickly become
limited (e.g. off-line transcriptions in (Abdallah et al. 2004; Smaragdis et al.
2003)). Additivity and non-negativity are no longer sufficient constraints to
obtain satisfactory results. One among many reasons for this is the correlation
and inter-relations between harmonic templates in W such as octave relations
that would lead to multiple local optimal results for a given v. To overcome this
issue, and following (Hoyer 2004) we proposed a gradient-descent upgrade for
eq. 2.1 with sparsity constraints on H as a combination of `ε and `2 norms (Cont
2006b). For each realtime audio input, the system would undertake an iterative
procedure by geometrically solving the intersections of `ε and `2 hyper-planes
on the gradient-descent steps and using a Kullback-Leibler divergence as cost
function. The proposed system was capable of decomposing realtime audio into
pre-learned pitch templates and a realtime implementation has been in use since
then by various artists and composers.

2.1. AUTOMATIC TRANSCRIPTION 9

Following the experiment and results obtained for multiple-pitch estima-
tion in (Cont 2006b), we attempted to extend the proposed techniques to more
complex situations such as realtime decoding of multiple-pitches and multiple-
instruments in one shot and at the same time. Our paper in (Cont, Dubnov, and
Wessel 2007) proposes this framework by adapting the representational frontend
in (Cont 2006b) to modulation spectrum (Sukittanon et al. 2004) which had pre-
viously shown evidence in disciminating both pitches and instrument types on
audio signals (Dubnov et al. 2003). Besides being the only realtime system ca-
pable of decoding both pitches and instruments, results in (Cont, Dubnov, and
Wessel 2007) can compete with state-of-the-art systems for instrument classifi-
cation.

Besides interesting performance, the experiments in (Cont, Dubnov, and
Wessel 2007) showed that the previous optimization process in (Cont 2006b) us-
ing linear gradient-descent and geometric sparsity controls were insufficient for
more complex geometric domain such as the one used for instrument classifica-
tion. More powerful optimization schemes had to be integrated to address such
problems leading to the Masters thesis of Arnaud Dessein with the proposition of
convex quadratic programming (CQP) and second-order cone programming in-
stead of mere gradient descent updates (Dessein 2009). Within this framework
sparsity controls are no longer parameters (as in (Cont 2006b)) but random
variables solved by the system itself. This led to the following optimization
scheme,

argmin
H∈R+

1

2
‖V −WH‖22 + λ1‖H‖1 +

λ2
2
‖H‖22 (2.2)

where the `1-norm penalizes less sparse vectors, and the `2-norm is a partic-
ular case of Tikhonov regularization that under certain conditions renders the
optimization problem strictly convex. The above equation lead to tractable
multiplicative updates (See Dessein 2009, Section 2.3.2).

Extensions from sparse NMF to CQP allowed better control over algorithm
parameters as well as considered more complex problems of event detection
beyond traditional multiple-pitch estimation. Noticeably, we were able to use
other types of templates as dictionary elements in W such as non-harmonic
drum and percussion sounds as well as quasi-stationary environmental sounds
with applications to complex computational auditory scene analysis as shown
in (Dessein et al. 2013).

Our realtime multiple-pitch detection algorithm using these methods was
ranked 2nd in the international Music Information Retrieval Evaluation Cam-
pagne (MIREX) being the only realtime system present (See MIREX 2010).
The proposed methods can be also used for realtime detection of events in com-
plex auditory scenes where a dictionary of expected events is available. We have
recently put our efforts together with the Perception and Sound Design Team
at Ircam on this subject to apply these methods to real auditory scene anal-
ysis such as train station soundscapes (Cauchi et al. 2012). We will continue
strengthening both the algorithmic and applicative aspects of this approach in
the four years to come.

10 CHAPTER 2. REALTIME MACHINE LISTENING

2.2 Automatic Alignment

Automatic alignment refers to automatic ordering of two or more signals repre-
senting the same approximate content but with different temporal structure and
most often with different nature so that there is a one-to-one correspondence be-
tween them. Alignment techniques are often used as frontends for many Music
Information Retrieval techniques and applications. For example, it is important
for many such applications to obtain a one-to-one correspondence between an
audio performance and its symbolic score, or two audio performances of the same
piece, or between control signals such as gestures. When the task of automatic
alignment is undertaken in realtime it is often referred to as Score Following.
Robust score following is a difficult task due to the variability of performance
parameters among human musicians, the difficulty of handling clutters and er-
rors in the environment and polyphonic and complex nature of audio scenes
in question. Moreover, score followers are first class citizens in interactive and
mixed music repertoire since their inception in the 1980s (Dannenberg 1984; Ver-
coe 1984) thanks to artists such as Pierre Boulez and Philippe Manoury with
their early adoption of this technology in their live electronic pieces (Manoury
1990; Manoury 2007; Szendy 1998). Alignment and score following techniques
developed by this author constitute the state-of-the-art in terms of modeling
and performance up to this date. This section summarizes current and future
research on this topic from (Cont 2006a; Cont, Schwarz, Schnell, and Raphael
2007; Cont 2010; Montecchio et al. 2011a; Cont 2011; Montecchio et al. 2011b).

An important turning point in realtime modeling for score follower are papers
(Cont 2010; Cont 2008a) which mark the beginning of the Antescofo system.
Before these works, state-of-the-art score following systems were dominated by
probabilistic graph networks and Hidden Markov Models (HMMs) (Raphael
1999; Raphael 2001; Orio et al. 2001) as adoptions of their equivalent models in
speech recognition. In these methods, target symbolic scores are employed to
produced Markovian structures that are inversely assumed to generate incoming
audio to obtain a generative probabilistic framework for decoding of hidden
states during a realtime performance. As an illustrative example, Figure 2.1
shows a typical Markov model used for a single music event (note, chords, etc.)
in such approaches. The inverse and generative assumptions of these models
represent the following major bottlenecks for modeling of audio streams and
music performances:

1. State occupancy or duration models are implicit (and a function of r, p
and q in Fig. 2.1);

2. State-space models representing scores remain static after construction
whereas a music performance unlike speech can be extremely dynamic
(structure and parameters in Fig. 2.1 remain static during decoding);

3. Observation likelihood models (or the probability of being in a given state
si given audio stream y, P (y|si)) represent a major aspect of modeling
despite extreme uncertainties within the acoustic environment especially
in polyphonic and noisy situations; and

2.2. AUTOMATIC ALIGNMENT 11

1 2 3 4 r

1-p-q 1-p-q 1-p-q 1-p-q 1-p-q

p+qq q q q

p

p
p

p
...

q

Figure 2.1: Typical Markovian structure of a music event (See Cont 2010, for
details).

4. The Markov assumption for state transitions does not seem to hold at
both macro and micro level of music information whereas in traditional
HMMs for sound and speech it is assumed allover.

Besides modeling and theoretical issues (with direct impact on performance),
such systems do not show the needed tolerance during realtime performance in
real musical situations and usually require offline training on performance data
(such as music rehearsals) (Cont, Schwarz, and Schnell 2004; Raphael 2001). Af-
ter several experiments with such systems in (Cont, Schwarz, and Schnell 2004;
Cont, Schwarz, and Schnell 2005; Cont 2004) it became apparent that funda-
mental reconsideration of the assumed models were necessary. Our first attempt
was the use of Hierarchical HMMs with Particle Filtering in (Cont 2006a) which
to some extents addressed items (3) and (4) especially for polyphonic signals
but still showed extreme complexity and non-intractability of model parame-
ters, particularly in circumstances of poor performance. It became clear that
new foundations for modeling of time in audio stream analysis was a necessity
which were brought into life within two fronts:

2.2.1 Discrete State-space Models of Time

In 2007 and in collaboration with composer Marco Stroppa, new foundations for
modeling of music events in view of realtime alignment were set. The proposed
model is based on a state-space generative model of audio with the following
premises:

1. Markovian assumption only holds in transition between macro events. The
structure once inside an event is not Markovian or at best is a dynamic
variable-order Markov structure.

2. Durations, sojourn and survival times for events are first-class citizens
of the model and not the result of decoding. This leads to explicit and
duration-focused models of events that are dynamic during performance.

3. Observation likelihood on a single source of information (such as spectral
pitch or structure) can be fallible even in best-cases of real acoustic sit-

12 CHAPTER 2. REALTIME MACHINE LISTENING

uations. Combinations of several sources of information, even fallible, is
stronger than one.

4. Model parameters are dynamic and adaptive. Parameter learning is active
and online and a function of environment behavior.

The above considerations led to the model presented in (Cont 2010) which con-
sists of hybrid states representing both Markov and Semi-Markov states within
a unified inference framework. Semi-Markov states have explicit sojourn and
duration probabilities modeled as a Poisson Process on a circular phase domain
where one cycle represents a musical beat. A macro-event (such as notes, chords,
trills etc.) that occupy both space and time are represented as a single semi-
markov state whereas atemporal events (such as grace notes or non-indicated
silences) are represented as Markov states (with implicit duration). Figure 2.2
shows a sample score using such modeling. Audio observation module is ex-

00 587hz
493hz659hz523hz587hz

Figure 2.2: A sample hybrid state-space structure using Semi-Markov (double
lined) and Markov (regular) states (See Cont 2010, for details).

tremely simple and computationally cheap and complemented by a time-agent
modeled as a linear Kalman-Filter in the circular domain following (Large et al.
1999). Model parameters are being updated in realtime upon each macro-event
detection and as a function of realtime performance thus evading the necessity
of offline learning. Despite cheap signal processing, the system is capable of
following and decoding of tempo and position on highly polyphonic and noisy
signals. The proposed method thus lies upon hybrid discrete state-spaces with
heterogeneous notions of time (discrete, continuous, relative, absolute).

This method is currently the model used for score following in Antescofo.

2.2.2 Continuous State-space Models of Time

Another idea in improving temporal modeling is to abandon discrete state-
space models and switch to the continuous world. Temporal continuity can be
achieved either in signal representation (difficult in the case of digital audio),
in the state-space modeling, or in the inference scheme. Continuous HMMs
are usually intractable in the inference phase leading to approximations. A
promising alternative is the use of sequential Montecarlo inference techniques
best known as Particle Filtering methods (Arulampalam et al. 2002). These
methods were previously explored by the author in (Cont 2006a) for hypoth-
esis testing in uncertain environments. The idea is to take advantage of their

2.2. AUTOMATIC ALIGNMENT 13

stochastic behavior to represent “time” as a continuous line instead of discrete
states. The proposed model in (Montecchio et al. 2011a) allowed not only a
continuous representation of time in decoding and inference, but also a unified
framework for both realtime audio-to-audio and audio-to-score alignment. Fig-
ure 2.3 shows the basic premise of this representation, leaving the details in
(Montecchio et al. 2011a).

discrete score

continuous score
t

Figure 2.3: Continuous state-space model of a sample score. (See Montecchio
et al. 2011a, for details).

The proposed framework in (Montecchio et al. 2011a), due to its strong
stochastic nature based on hypothesis testing instead of path optimization in
standard HMMs, allows novel applications of automatic alignment such with
uniform prior over a score and partial result handling. One such application is
proposed in (Montecchio et al. 2011b).

Despite the attractiveness of Particle Filtering methods demonstrated in
(Montecchio et al. 2011b; Montecchio et al. 2011a), their employment in real-
time systems is still immature and subject to studies by our team among others.
As uncertainty grows, the number of particles needed for decoding grows as well
leading to more and probably unnecessary computation. Moreover, most exist-
ing Particle Filtering approaches use the particles’ centroid for the final decod-
ing. This last-stage averaging can cause severe problems in realtime decoding
especially in highly uncertain situations. A more rigorous approach is to study
the inherent geometry of the stochastic models and undertake geometric walks
and manifold calculations on particles instead of mere averaging as proposed in
(Snoussi et al. 2009).

In 2006, the author gathered major researchers in the field of automatic
alignment and initiated an international campaign for evaluation of such ap-
plications. This led to a proposal for “Score Following Evaluation” in MIREX
(MIREX 2006) that continues to this date and used worldwide (Cont, Schwarz,
Schnell, and Raphael 2007). This international campaign has been running up
to this year and will hopefully continue to do so. None of the new participants
has yet been able to surpass our results obtained in 2006.

Extensive use of the algorithms in (Cont 2010) implemented in Antescofo
not only increased the robustness of the algorithms and shed light on new im-
provements and additions such as echo cancelations and more, but also brought

14 CHAPTER 2. REALTIME MACHINE LISTENING

interesting challenges and horizons requiring new models and literatures to cre-
ate and explore. One such problems that will occupy us in the following years
is the problem of asynchrony and ensemble following (Grubb et al. 1994). In
most music ensembles, despite the synchrony of different sound sources (instru-
ments or voices) in the reference, they arrive asynchronously in realtime. Such
asynchronies are not only mere artifacts but also a great source of musical in-
terpretation. An idea in decoding such asynchronies is to track several voices
within a single (audio) observation. Similar paradigms have been studies over
the years in the missile-tracking literature (Mahler 2007). More interestingly
these approaches propose explicit models for clutters (or false observations) that
are difficult to model in generative approaches. Another anticipated advantage
of these models is their ability to focus on interest regions in the observation
instead of considering the entire observation as generated by the model. These
models are currently under study by the author and one of his Masters students
(See Cuvillier 2012) and will hopefully continue as a PhD project in 2013. Fol-
lowing this research, we hope to be the first to uncover the difficult problem
of tracking multiple sources in realtime from a single observation such as music
ensemble with various applications to other fields.

2.3 Music Information Geometry

The literature on Information Geometry (Amari et al. 2000) is an emerging
field of applied mathematics that aims at studying the notions of statistical
inference by using concepts from differential geometry. The main idea is that
most parametric families of probability distributions in wide use in engineering
applications, can be equipped with an intrinsic geometrical structure of differ-
ential manifold. Studying statistical inference in such structures ensures that
the results of inference are invariant under arbitrary choice of a parametriza-
tion, which is major goal in modeling. Moreover, it creates natural analogies
between statistical notions and geometrical interpretations related to notions
of differential geometry. Methods of information geometry have been success-
fully applied to image analysis (Nielsen 2009), Computational Anatomy (Pennec
2009), Radar Processing (Barbaresco 2009), and tracking (Snoussi et al. 2009).
Since 2009, we aimed at leading this research in the field of realtime audio pro-
cessing and by playing a major role in the general theoretical literature. Early
results are reported in (Cont, Dubnov, and Assayag 2011; Cont 2008b) following
Arnaud Dessein’s PhD on this topic is covering this topics for Audio Streams
(Dessein 2012).

2.3.1 Motivations and Approach

Music Information Retrieval (MIR) systems deal one way or another with the
information content of music signals, their transformations, or extraction of
models or parameters from this information. A common question that many
such systems ask at their frontend is what information is presented in the signal
and to what relevancy? This question is central in almost all music information
retrieval systems dealing either with temporal structures of audio data streams

2.3. MUSIC INFORMATION GEOMETRY 15

for search applications (query-by-humming, audio matching, music summariza-
tion etc.), or with temporal decomposition of audio (source separation, multiple-
source identification, etc.).

The main motivation in studying audio streams using information geometry
comes from the fact that most current MIR systems are theoretically dominated
by statistical models of audio and music and employing statistical inference to
infer low-level or high-level symbolic information out of audio streams. Inherent
in almost all MIR systems is the notion of self-similarity measures between
audio entities as a basis to compare and deduce music structures (Foote 1997);
enhanced with geometric concepts in machine learning for building classifiers in
supervised problems (genre classification, artist identification, query by example
etc.) or clustering data in unsupervised settings (audio search engines, structure
discovery etc.). Implicit in these considerations is the construction of a metric
space employing such similarity measures to deduce equivalence classes. Despite
the importance of this consideration, almost no MIR system is based on well-
defined metric structure. This drawback is tackled with the mere fact that most
widely used pattern matching systems employ bag of features models, where
audio data is represented to the system with no temporal order or with crude
approximations on the temporal morphology of audio streams. The temporal
order and morphology of music signals is probably one of the most precious
sources of information that is unfortunately underestimated in most existing
approaches and applications.

We believe that the correct answer to this confusing situation is to tackle the
very fundamental aspect of information retrieval which is its correct represen-
tation with well-behaved geometric properties. If the very goal of such systems
is to compare and deduce similar structures with inherent metric spaces and by
preserving the temporal morphologies, then the issue must be addressed at the
utmost formalization and frontend of any algorithmic approach.

Most practical uses of Information Manifolds take a bottom-up design ap-
proach by first defining the inner product over the statistical structures, and
a canonical affine connection to constitute an information geometry; and its
leading geometrical constructs such as geodesics, volumes, divergences etc. (e.g.
(Pennec 2009)). Our approach is rather a top-down design process where the
geometry is automatically induced by a Divergence, which by itself is bijected by
an engineering choice of statistical structures over data points (audio analysis
frames for example). Recent works by Zhang shows that such top-down ap-
proach is possible for many types of divergence functions which are in common
use in engineering applications (Zhang 2004). Furthermore, Banerjee et al. have
proven the bijection between the canonical family of exponential families and
that of Bregman divergences (Banerjee et al. 2005). In our work, we translate
this design process onto the daily process of MIR system design, and provide
sufficient conditions and definitions within which such divergences can provide
metric spaces (Cont, Dubnov, and Assayag 2011). This work, for now, focuses
on parametric models employing the general family of exponential distributions
and their inherent geometries that are widely used in engineering applications.

The proposed top-down approach is consistent for adoption and adaptation
of most engineering approaches to pattern recognition: Many engineering solu-

16 CHAPTER 2. REALTIME MACHINE LISTENING

tions start by assuming a generative model on the data (often belonging to the
generic family of exponential distributions). Our current approach paves the
way for adoption and eventually better addressing of many existing problems
and their solutions. In the following sections we present several results and
applications of this framework from (Cont, Dubnov, and Assayag 2011; Des-
sein 2012; Dessein and Cont 2011), emphasizing that this section constitute an
ongoing work:

2.3.2 Automatic Change Detection

The first step in our modeling of audio streams on information manifolds consists
of segmenting an audio stream into continuous quasi-stationary chunks that will
then be represented as statistical models representing a geometrical object on
a Riemannian manifold equipped with the Fisher Information distance. To this
end, each incoming audio frame into our system is treated as a statistical point,
and the problem of segmentation is considered as detecting change points over
models that represent a set of points. Within this approach we consider audio
information quantity as a cadlàg (right continuous with left limits) time-series.
Each model is thus a parametric statistical distribution formed around a certain
parameter vector of that family. We show in (Cont, Dubnov, and Assayag
2011) that this is analogous to choosing a minimum enclosing information ball
on statistical points representing the statistical family.

The problem of change detection has been widely studied in the literature
within various application contexts (Basseville et al. 1993). The drawback of
most approaches is that (1) they are non-causal and off-line; and (2) are based
on statistical hypothesis tests where parameters before and after change-point
are known (which is not the case in real-life). The most known approach is the
CuSUM algorithm using Likelihood-Ratio tests on two hypothesis on change and
no-change on a signal frame (See original proposal by Page 1954; and further
variants by Basseville et al. 1993). Our initial experiments in (Cont, Dubnov,
and Assayag 2011) with classical CuSUM algorithm in the context of realtime
change detection on audio signals further revealed its limitations in practice and
a handicap for further progress in our proposal.

Following this we developed online and incremental methods for detecting
changes on exponential distribution manifolds by considering model parame-
ters before and after hypothetic change as random variables in the model and
integrated within the same Likelihood-Ratio test. Methods of information ge-
ometry simply tie maximum likelihood estimation of unknown parameters with
their generalized likelihood ratio tests within one single framework and thanks
to the inherent geometric duality of expectation and natural parameters (See
Dessein 2012).

Figure 2.4 shows change detection results on two datasets commonly used in
the literature from financial data (fig. 2.4a) and geological information (fig. 2.4b).
Change detection here is obtained by assuming univariate normal distributions
over the data allowing changes both in mean and variance (as random variables
in the system). Our obtained results conform to the literature (see Dessein 2012,
for analysis) and furthermore the system is capable of reporting estimated model

2.3. MUSIC INFORMATION GEOMETRY 17

parameters for each segment in the data.

1930 1940 1950 1960 1970 1980 1990 2000
−20
−10

0
10

Time series

Year

(a) Daily log-return from Dow Jones

500 1000 1500 2000 2500 3000 3500 4000
−4
−2
0
2

Time series

Measurement sample

(b) Well-log data

Figure 2.4: Change detection on real-world datasets

The univariate data in figure 2.4 is univariate but dynamic. The proposed
method can also be employed using more complex data as long as the repre-
sentational frontend for statistical modeling is from the generic family of ex-
ponential distributions. Figure 2.5 shows results obtained for online change
detection on speech (fig. 2.5a) and polyphonic music (fig. 2.5b). For speech
speaker segmentation 12 Mel-frequency cepstral coefficients are used through
spherical normal distributions with fixed variance. The top plot in figure 2.5a
shows the computed segmentation on the audio waveform, while the bottom
plot shows the ground-truth segmentation with the estimated model coefficients
(useful for further processing) in the middle. In Figure 2.5b, the goal is to
segment the music stream into quasi-stationary chunks which correspond here
to music note/chord/event inter-onsets due to the frontend representation em-
ployed. For this example the magnitude spectra of audio frames were used to
represent frequency histograms naturally modeled as multinomial distributions.
The top figure shows the segmentation results on the waveform whereas the
lower figure overlaps the segmentation on top of a symbolic transcription of the
same audio for comparison.

−1
0
1

Original audio

−10
0

10
Estimated Mel−frequency cepstral coefficients

2 4 6 8 10 12 14 16

Reference annotation

Time in seconds

Speaker 1 Speaker 2 Speaker 3 Speaker 4 Speaker 5

(a) Speaker segmentation on speech data

−1
0
1

Original audio

0 5 10 15 20 25 30 35
F2

A2#
D3#
G3#
C4#
F4#
B4
E5
A5

Time in seconds

Pi
tc

h

Reference piano roll

(b) Note/chord segmentation on polyphonic
music data

Figure 2.5: Change detection results on audio and speech

These results demonstrate the capability of this change detection algorithm
to approach real-world data with expected results. It should be noted how-
ever that the data presented here are of heterogeneous nature, segmentation
is done online and the system is blind to the nature of the signal in question.
The segmented time-series as well as their segment coordinates on the inherent
geometry can then be used for further processing.

18 CHAPTER 2. REALTIME MACHINE LISTENING

2.3.3 Automatic Structure Discovery

Automatic structure discovery is the problem of automatically detecting recur-
ring structures in an audio stream revealing formal structures in music and is
useful for many applications such as audio thumb nailing, fingerprinting and
compression. For music structures, whereas the problem is trivial to an un-
trained human listener, despite all sorts of possible variations between repeti-
tions in an audio stream, it poses a great challenge to information retrieval.
The classical approach consists of computing the self-similarity distance based
on (Foote 1997) between all existing audio analysis frames of a stream, and
undertaking machine learning methods most often governed by musicological
heuristics to obtain such structures. Figure 2.6b shows such a self-similarity
matrix over a performance of Beethoven’s Piano Sonata N.1 by the renowned
Pianist Friedrich Gulda in 19581. The intensity of each value on the image
matrix shows the degree of similarity between the two audio instants on the
two axis (which are the same). Besides the main diagonal which reveals the
self-similarity, parallel darker lines illustrate repeating structures over the audio
stream. Having this representation, much further processing is needed to deduce
structures and recurrences and existing approaches differ at this stage: dynamic
programming and pattern matching (Chai 2005), multiple-pass Hidden Markov
Models with musicological priors (Peeters 2004), K-means clustering (Logan
et al. 2000), or direct image analysis of this data (Foote and Cooper 2003) to
cite a few. Note that besides cascaded methods, these approaches are triv-
ially non-realtime and non-causal, often quite costly and prone to errors due to
hand-engineered priors.

By modeling audio streams as quasi-stationary chunks where each segment
is a model over a flat Riemannian manifold as shown in the previous section, one
can imagine employing the sequence of models as a time-series for representing
the audio stream instead of samples. Using this representation makes data and
its processing sparser and brings in the idea of profiting from the geometrical
entities to define equivalence between classes and in return be able to deduce
recurrences online.

Following this scheme, we have shown in (Cont, Dubnov, and Assayag 2011)
that high-level extraction of symbolic data and their representation within in-
cremental signal, can become trivial in realtime if the audio stream is directly
represented on information manifolds constructing a similarity metric space.
The idea is to do proper mathematical manipulations to construct a metric
space that exploits an information theoretic definition of similarity on a sta-
tistical representation of audio streams. Moreover, the temporal order of these
statistical points on the information manifold is taken into account to construct
sparse state-space structures where each state corresponds to metric balls on a
Riemannian manifold that correspond to quasi-stationary and continuous au-
dio chunks. Once this similarity metric space is given with their geometrical
constructs (such as the notion of equivalence classes in analogy to the symbolic
domain), the hard task of detecting repeating structures is a simple adaptation

1This excerpt is chosen on purpose because of its low quality recording and extreme tem-
poral variations between repetitions by the performer.

2.3. MUSIC INFORMATION GEOMETRY 19

of any text/symbolic algorithm to this new metric space. Figure 2.6a shows the
result obtained incrementally on the same audio as in figure 2.6b. Intensities
on this image matrix correspond to arrows of the learned state-space structure.
Therefore, we can address this rather non-trivial problem in one shot and by
issuing the fundamental question of information representation. Note also that
figure 2.6b corresponds to a 9600× 9600 matrix computed offline, whereas that
of figure 2.6a is a 440 × 440 sparse representation computed incrementally as
data arrives to the system, for the specific chosen piece of music.

−1 0 1
0

20

40

60

80

100

120

140

T
im

e
(s

)

Audio Oracle Similarity Matrix

0 20 40 60 80 100 120 140
−1

0

1

Time (s)

(a) Information Geometric Similarity Matrix
based on (Cont, Dubnov, and Assayag 2011)

(b) Traditional Similarity Matrix based on
(Foote 1997)

Figure 2.6: Information Geometric Similarity Matrix on Beethoven’s first Pi-
ano sonata (Recording by Friedrich Gulda 1958) using methods of information
geometry (left and incremental) and traditional self-similarity computing (right
and non-causal)

The elegance of information geometric approaches is not limited to simpli-
fying complex problems such as the example above. Information geometry is at
the intersection of several scientific disciplines: information theory, statistical
learning, and differential geometry. The beauty of information geometry also
lies in the fact that many commonly used but disjoint approaches to pattern
recognition and optimization problems converge towards one single and intuitive
concept on information manifolds. For example, computing the centroid of enti-
ties on such manifolds might coincide with the definition of maximum likelihood
and maximum entropy estimations over the dataset. More interesting, convex
optimization problems on the natural parameter spaces will become linear for
expectation parameters on the dual space of such structures based on Legendre
transformations. In certain conditions, mixture densities would become also a
dual representation of their parent distribution manifold (Amari et al. 2000).
Note that these are all engineering tools presented in various engineering appli-
cations and united within one single and elegant theoretical framework.

Despite these encouraging results, much fundamental work remains to be
done for further formalization and construction of information manifolds over
temporal streams. For example, the information geometric construction for fig-

20 CHAPTER 2. REALTIME MACHINE LISTENING

ure 2.6a leads to metric balls with different radii and represent the entire audio
stream. Are these metric spaces compact? Could these metric balls be con-
sidered as ε-nets covering the entire compact stream? Can we achieve in the
same manner length spaces between information entities (Burago et al. 2001)?
Once audio entities are represented on these manifolds, how would smooth Rie-
mannian length structures and their corresponding geometrical transformations
actually affect the sound once synthesized? What is the effect of parallel trans-
port on an audio entity once resynthesized? Could this be a new paradigm
for temporal audio analysis and resynthesis? Can these models extend to non-
parametric distributions? The answer to such question lies within coarse and
long-term research where, as is the case up to now, focus is on adopting new
representations of incremental audio for complex engineering problems with in-
tuitive and simple solutions.

This aspect of machine listening research is the most theoretical and will
occupy our research efforts in the years to come. We collaborate with colleagues
working in other application domains and employing similar techniques. The au-
thor acted as Founder for the Brillouin Seminar Series at Ircam with THALES
and LIX as partners and bringing together more than 60 researchers and orga-
nizing seminars2. In 2011, we organized three scientific events for dissemination
of the group’s synergy: TheMatrix Information Geometry Workshop3 sponsored
by CEFIPRA, a special session during the SMAI 2011 symposium4 addressing
issues in the field of Applied Mathematics, and a special session on signal pro-
cessing and information geometry during the GRETSI 2011 5 conference. It has
come to our attention, within our Brillouin seminars at Ircam, that similar ap-
proaches can lead to interesting applications in audio. Among them are the use
of Wasserstein spaces as proposed by Xia et al. for dynamic image texture anal-
ysis (Xia et al. 2012), and group invariant scattering representations in (Mallat
2011). These approaches, along with information geometry, will be studied and
situated for time-series analysis of incremental audio.

2See http://repmus.ircam.fr/brillouin/ for upcoming seminars and videos of past sem-
inars.

3http://www.informationgeometry.org/MIG/
4http://smai.emath.fr/smai2011/
5http://www.gretsi2011.org/

http://repmus.ircam.fr/brillouin/
http://www.informationgeometry.org/MIG/
http://smai.emath.fr/smai2011/
http://www.gretsi2011.org/

III
REACTIVE SYNCHRONOUS

PROGRAMMING FOR COMPUTER MUSIC

This chapter summarizes our efforts since 2008 in formalizing and developing
a Reactive Synchronous Language (Halbwachs 1993) for Realtime Interactive
Music repertoire of mixed electronic music. The developed language in its cur-
rent form is integrated in Antescofo, in charge of executing computer actions
as a reaction to the realtime machine listening described in section 2.2. The
listening module in Antescofo is restrained today to a score following module
(or live automatic alignment) of live musicians with a score, but the language
described here has its merit in wider application contexts. In this chapter we
discuss motivations for the development of the Antescofo reactive synchronous
language, its current form and usage in the mixed electronic music repertoire
along some prospective research. The extension of the language to the wider
context of Cyber-Physical Systems is postponed to chapter 4.

The application context of this chapter thus targets the existing repertoire
and new pieces created for Mixed Electronic Music, defined as the live associ-
ation of human musicians with computers. We first review existing practices
for authoring, implementation, software architectures and performances of this
repertoire. The following review is far from being exhaustive but is representa-
tive of common world-wide practices since the 1990s.

3.1 Computing and Programming of Mixed Music

Mixed Electronic Music refers to the live association of human musicians with
computers (and possibly other external mediums). The difficulties and chal-
lenges posed by this mixture are on two fronts: (1) the confrontation of the two
heterogeneous (human and artificial) mediums during authorship, and (2) tem-
poral juxtaposition of processes during realtime evaluation or performance. The
absence or difficulties in explicitly exploiting interactions between the two medi-
ums have challenged composers, musicians, as well as computer scientists for
decades. To this end, various musical practices and solutions have evolved since
the 1950s (See Cont 2012, for a review) and various computational paradigms

21

22 CHAPTER 3. REACTIVE SYNCHRONOUS PROGRAMMING

and software solutions (Assayag and Gerzso 2009).
Among common musical practices in the domain, the dominating practice

today belongs to the so called school of realtime music initiated at Ircam origi-
nally by composers such as Philippe Manoury, Pierre Boulez and Brice Pauset
(Szendy 1998) along with attempts to theorize the advent of realtime processing
in this new practice of music composition and performance notably by composer
Philippe Manoury in (Manoury 1990). This formalization, in collaboration with
Miller S. Puckette, led to new software and programming paradigms for such
practices (Miller Puckette 1988; Miller Puckette 1991), paving the way for two
dominating programing environments Max (Cycling74 2012) and its open-source
counterpart PureData (Miller Puckette 1997). We will discuss technical insights
on this in section 3.1.2 and refer the curious reader for details to (Miller Puckette
2002).

On a less technical basis, responses to the challenges posed by Mixed Elec-
tronic Music has led to a divide in general practices of computer music between
Performative and Compositional aspects of computer music (Miller Puckette
2004). This situation has led to specialized softwares in respective domains
whereas the very practice of computer music demands for both. We will come
back to this crucial question in section 4.2.1.

In order to better understand and analyze the challenges of mixed elec-
tronic music, it is important to study the workflow of the creation of such
pieces. In light of the introduction above, we look at this workflow in three
stages: Authoring consisting of the authorship for all mediums required by the
composer to create such pieces involving language formalization and computer
implementations, Software Architecture in common use within the repertoire,
and Performance phase or the actual practice of a mixed piece.

3.1.1 Authoring

Authoring of mixed electronic pieces, loosely speaking, consists of the compo-
sitional phase where both mediums of computer and instrumental actions are
put together in some forms of writing to prepare performances, implementations,
and transmission of the piece. For the sake of this study, the process of author-
ship begins when the creator is in the possession of the necessary vocabularies
constituted by the materials in hand and consist of assembling and choreograph-
ing them altogether to create the global work. The process of authorship is a
reflective process (Donin 2012) but this fact does not alter our study. This vo-
cabulary might vary from composer to composer and from piece to piece and
consists of instrumental techniques as well as special computer programs and
combinations thereof for a specific piece. Despite this variety of basic vocabu-
lary, we argue that the language structure that brings these elements together
have much in common across personalities and pieces.

More specifically, a mixed electronic music piece consists of computer pro-
grams that are put next to and parallel to instrumental events. The computer
programs implement various modules with possibly different models of computa-
tion that handle a variety of possibilities in computer music (see section 4.3.1)
such as: sound spatialization, live audio transformations from the musician,

3.1. COMPUTING AND PROGRAMMING OF MIXED MUSIC 23

sound synthesis, sound analysis, and gesture processing just to name a few.
Some of these programs employ realtime computing in interaction with the live
musician (e.g. audio transformations), whereas others are essentially offline
oriented algorithms (e.g. sound synthesis) but must be triggered online in a
live performance situation. Besides computer programs and modules that ma-
terialize electronic actions, a mixed piece is often equipped with a score as a
guideline for the temporal realization and juxtaposition of different parts. Such
scores are in direct analogies to classical music scores but can take various forms
and directions depending on the style of the composition.

Figure 3.1 shows a hand-written score manuscript of Tensio for string quar-
tet and live electronics by Philippe Manoury (2010) as a result of authorship.
Similar to a classical music score, each staff (or line) represent different voices
and the horizontal line represent (musical) time. The score for (human) instru-
ments (lower four staves) is written synchronous to that of computer actions
(top staves) despite their different nature. Each computer staff is labeled with
its appropriate program module specifying the nature and destination of the
task in the computer program, as well as the temporal progression of their
parameters along instrumental events. Note here that the temporal nature of
computer actions are heterogeneous, employing continuous lines and discrete
events. Obviously, the score of figure 3.1 implies synchrony between all actions
and despite the variability of the interpretation.

Figure 3.1: First page of Tensio for string quartet and live electronics by
Philippe Manoury (2010). Lower group of staves are intended for a string quar-
tet whereas the top staves indicate live electronic actions.

24 CHAPTER 3. REACTIVE SYNCHRONOUS PROGRAMMING

Figure 3.2 shows another example from the published score of Anthèmes II
composed by Pierre Boulez for violin and live electronics (1997). This music
score shows the instrumental (violin) section in parallel to an approximative
notation for the realtime electronics accompanying the system. Each system
corresponds to a specific electronic process, whether realtime or samplers, by
themselves accompanied by spatialization parameters. The sequencing of elec-
tronics in this score are either notated as relative to the performance tempo or
fixed absolute values if necessary. The circled numbers in the score correspond
to synchronization points between the instrumental and the electronics scores.

Figure 3.2: First page of Anthèmes II for violin and live electronics by P. Boulez
(1997). Top staff shows the violin score, lower staves are electronic actions.

To a typical music reader, the scores of figure 3.1 and 3.2 imply the general
organization of the piece (similar to an orchestral score) as well as expected
actions from the musical instruments. However, the amount of information
exposed for computer actions might still need clarification. Despite the apparent
superior amount of information in the instrumental part, it is important to note
that much valuable information responsible for final evaluation, is still missing
in the instrumental part such as event articulations, specific nuance progressions
and tempo variations. Some of these parameters are described relatively (such
as violin nuances in figure 3.2) or left to the human interpreter. In other words,
much of the final outcome parameters are either hidden or loosely represented
by they are all virtually present. This virtuality in music authorship is present
in almost all styles of written music. It is precisely this virtuality that can tie
the two worlds of human performers and computer actions together as proposed

3.1. COMPUTING AND PROGRAMMING OF MIXED MUSIC 25

by Manoury and his notion of Virtual Scores (Manoury 1990)1.
A virtual score is a musical organization in which we know the nature of the

parameters that will be processed but not their exact outcome at runtime since
they’re expressed as a function of the live performance. A virtual score hence
consists of electronic programs with fixed or relative values/outcomes to an
outside environment. A realtime electronic process is therefore one that exists
in a music score, next to the instrumental transcription, and whose outcome is
evaluated during live performance and as a function of the instrumental part’s
interpretation with all its diversity and richness.

The idea of virtual score is thus to bring in both the performative and
compositional aspects of computer music within one compositional framework.
In the case of scores in figure 3.1 and 3.2, the electronic actions are thus virtual
since their final outcome depends entirely on the realtime context despite bring
entirely authored; analogous to instrumental authorship. Some parameters are
fixed (e.g. sampler pitches in fig. 3.2 and synthesizer ranges in fig 3.1) whereas
others will be a function of runtime evaluation (e.g. final spatialization outcome
and final evaluation of synchronous rhythms).

The framework of virtual scores is at the core of most interactive program-
ming environments in computer music today. Despite its similarity to a tra-
ditional framework of composition, it does not limit its practice to traditional
norms of music composition and on the contrary it has integrated non-traditional
practices of computer music such as interactive composition (Chadabe 1984),
hyperinstrument composition (Machover et al. 1989), composed improvisations
(Chabot et al. 1986) and more, as employed in Manoury’s and Boulez’ early
realtime pieces among others (Miller Puckette and Lippe 1992; Boulez et al.
1988).

The final outcome of scores in figure 3.1 and 3.2 depend on the instrumental
interpretation for one end, and the realtime evaluation of computer programs
in reaction and interaction to the musical environment on the other end. We
now attempt to study the architecture of such programs.

3.1.2 Software Architecture

The authorship of a mixed electronic piece is closely tied to its programming.
The score, as seen previously, calls for synchronous calls to specific modules at
each instant associated to events coming from the environment (human per-
formers). Each module takes the form of a program (or a set of inter-connected
programs), and the main program is a collection of these modules tied together
using a representation of this score and in interaction with the environment.

1Curiously, the electronic musician Brian Eno refers to the same process expressed in an
interview in WIRED : “I realized that “interactive” anything is the wrong word. Interactive
makes you imagine people sitting with their hands on controls, some kind of gamelike thing.
The right word is “unfinished.” Think of cultural products, or art works, or the people who
use them even, as being unfinished. Permanently unfinished. [...] the “nature” of something is
not by any means singular, and depends on where and when you find it, and what you want
it for. The functional identity of things is a product of our interaction with them. And our
own identities are products of our interaction with everything else.” (Kelly et al. 1995)

26 CHAPTER 3. REACTIVE SYNCHRONOUS PROGRAMMING

Among different platforms for this kind of programming, Max and Pure-
Data are the most commonly used. They are both realtime graphical program-
ming languages based on a combination of hybrid event and signal processing
scheduling (Miller Puckette 1991). Programing in Max and PureData amounts
to connecting boxes together in a top-down manner. Each box can be another
program (or patch) with proper communication, or a C/C++ object compiled
using the proper API.

Figure 3.3 shows the main patcher for Manoury’s Pluton for Piano and live
electronics (1988) in PureData2. This main window is basically a collection of all
DSP, Control and interaction modules required for the piece to run. Modules
communicate together by the means of send and receive signals that can be
signal or control.

Figure 3.3: Main patch of Pluton by Ph. Manoury for Piano and Live Elec-
tronics (1988), in PureData.

Figure 3.4 shows the DSP patcher of the main patch in figure 3.3. This
patcher contains all the DSP modules for transforming, treating, analyzing and
producing sounds in realtime. The bottom-right window in figure 3.4 shows the
implementation of the [pd freq-shift] box in the DSP patcher which consist
of a classical frequency shifting of the realtime audio using Hilbert Transform
and some receiving parameter. Note that the main DSP patcher allows passing
and chaining results altogether if asked by the score.

What ties the DSP and commands altogether during performance (or time)
is a formal representation of the scores similar to those shown previously. In this

2This piece is supposedly the first Max program!

3.1. COMPUTING AND PROGRAMMING OF MIXED MUSIC 27

Figure 3.4: Portion of DSP patch in Pluton by Philippe Manoury for Piano and
Live Electronics (1988), in PureData.

(historical) piece, the evolution of control parameters are represented as simple
message-passing hooked to pre-defined synchronization points in a score (e.g.
circled numbers in figures 3.1 and 3.2) through a dynamic select mechanism.
This is illustrated in figure 3.5 for events ¬ and of section 2.

The sequence representation using messages and absolute delays as in fig-
ure 3.5 are aimed at representing or approximating a score such as ones in
figures 3.1 and 3.2. An important downfall of this representation is a severe
semantic decline of the rich representations in the general score with regards
to synchronization and timing. In the above example a delay object (accepting
time in milliseconds) is employed for implementing sequencing inside an event
where as most timings in such pieces are relative to the pace (or tempo) of the
musician. Synchronization between the two mediums will also be degraded to
the indicated synchronization points whereas most scores are composed having
a continuity in mind (best seen in the score of fig 3.1).

The patches in figure 3.3 to 3.5 show the general architecture used for the
implementation of the performance program of Pluton (1988) according to its
score and along with a human Pianist.

Surprisingly, modern patches or programs for recent pieces in the reper-
toire follow the same architectural principles despite enjoying better GUIs, more
high-level objects (e.g. for signal dispatch instead of the “spaghetti patch” of
fig. 3.4) and possibly more advanced signal processing and control objects. To
make things simple, while computer music research has greatly contributed to
the enhancement of new vocabularies and their integration in digital art envi-
ronments, little progress has been made addressing more comprehensive ways
for programing and executing programs such as the one showcased above and
despite significant advances in the general literature of realtime systems.

28 CHAPTER 3. REACTIVE SYNCHRONOUS PROGRAMMING

Figure 3.5: A control patch of Pluton by Philippe Manoury for Piano and Live
Electronics (1988), in PureData.

3.1.3 Performance

The programs of mixed electronic music pieces shown above are also in charge
of realtime performance and interaction with musicians during concerts and
rehearsals. On the computational level, a system of this kind requires timely
triggering of actions and events synchronous to live musicians and following a
score, and timely delivery of their inputs/output according to the nature of
the computational model for each action. While interacting with the outside
environment, the behavior of the system is expected to be deterministic based on
the specifications, ordering and synchronicity provided in the score. Moreover,
it is expected that the performance system be fault-tolerant with regards to
noisy and faulty environment during live performances. Such a system can thus
be considered critical similar to critical realtime systems in avionics, despite
the fact that system crash down in a concert usually does not imply human
casualties.

Performance of pieces such as the ones presented above can be either auto-
matic through dynamic machine listening or interactive analysis of the environ-
ment (such as in score or gesture following), controlled by a human operator,
or semi-automatic using a combination of both. In all combinations, expected
temporal behavior of a mixed score remains the same.

Despite their common use, Max and PureData can become non-deterministic
on the computational level. The scheduling mechanism in both is similar to
periodic Round Robin mechanism for time-sharing between DSP and control
computation where signal processing is preemptive with regards to control (for
on-time delivery of audio buffers). Despite apparent concurrency in a Max pro-
gram, the engine does not support concurrency. All patchers lead to a chain of

3.2. ANTESCOFO 29

calls (either DSP or Control) where ordering is top-down and right-left3, these
queues are flattened for the time-shared scheduler. DSP computation cycle is
based on fixed buffers of minimal 64 samples. The scheduler is not aware of
any explicit notion of duration for processes nor timing requirement. The main
ambition is to get DSP buffer outputs delivered on-time. It is therefore not sur-
prising to expect jitter at instances of high-computation and non-deterministic
delays at points due to DSP preemption of control since the scheduler is not
dynamic.

Max and PureData provide neither features for critical safetiness nor fault
tolerance. This is mostly due to the lack of explicit models of time both seman-
tically and syntactically in both environments. To demonstrate this consider
again the score in figure 3.2 as an example: The first issue is clear by differ-
entiating electronic events tagged by ¬ and ®. Event ¬ does not necessarily
depend on the recognition of the first note in bar 1 (an F) while event ® can
be considered as having a local scope. If the musician or the recognition system
misses the first high F in the violin part, it is evident that ¬ should not be
dismissed. This is however not true for ®. If the chord corresponding to ® is
missed, that event can be consequently dismissed in order to maintain a musical
coherence in the output. On the other hand, if some consequent action in ® is a
prior to (for example) ¯, that portion of the program cannot be missed whereas
local music events can.

3.2 Antescofo: Performance-Synchronous Language
for Computer Music

Antescofo is a software and a dedicated programming language developed ini-
tially by this author for synchronization and control of interactive parameters in
computer music (Cont 2008a). Antescofo is currently developed as an external
object for graphical realtime programming environments Max and PureData for
best integration in existing workflows. It aims at making the practices of au-
thoring, programing and performance as smooth and logical as possible within
the workflow presented in the previous section. The language interpreter is cou-
pled to an artificial listening machine, capable of realtime decoding of musicians’
position and musical interpretation parameters (such as speed and dynamics).
Antescofo is thus a coupling of both a realtime score-following system (described
in Section 2.2) and a synchronous programming language for computer music
presented here.

The philosophy behind the development and coupling of Antescofo since its
inception consists of:

• Bridging the gap between performative and compositional aspects of com-
puter music, by integrating the dynamics of the environment (musicians
on stage) into the core design of the system and bypass the existing sep-
aration in modeling.

3The horizontal order of evaluation in Max and PureData are subtly different; we leave that
out for simplicity here.

30 CHAPTER 3. REACTIVE SYNCHRONOUS PROGRAMMING

• Authoring of Time and Interaction for Computer Music, by providing
explicit languages for expressing complex temporal and vertical structures
as seen in section 3.1.1.

• Bringing the richness of time models in music to programming, where tem-
poral relationships and inter-relationships are many whereas their transi-
tions to computer programs as seen in section 3.1.2 have been severely
underestimated.

• Creating a dedicated literature for Realtime Computing in the Arts, fol-
lowing the long tradition of realtime embedded systems (E. A. Lee and
Seshia 2011) and their long studied design consequences such as critical
safety (Gérard Berry 2003) and fault-tolerance (Kopetz and Bauer 2003)
by adapting them to needs and formalizations of current and future com-
puter art practices.

Since its inception in 2008, Antescofo has enjoyed numerous collaborations
with various artists and has led to the creation of more than 40 original mixed
electronic pieces at Ircam alone, with performances with world-renown artists
and ensembles such as New York Philharmonic, Berlin Philharmonic, Los Ange-
les Philharmonic, Radio France Orchestra and more. Antescofo was the laureate
of the “La Recherche” Jury prize in 2011. Its development is incremental and
adapted to challenges posed by each project, where the artistic imagination
meets scientific creativity. This process is the main drive in the development of
this project, creating new horizons for art/science research.

In the following sections, we attempt to explain various aspects of the system
and the language borrowed from (Cont 2008a; Cont 2011; Echeveste et al. 2011;
Cont 2012; Cont, Echeveste, et al. 2012; Echeveste et al. 2012).

3.2.1 Informal Description of the Language

In Antescofo a program is text describing the dynamics of both the environment
(acoustic environment outside the system) and computer actions. The idea is to
represent a mixed score as discussed in section 3.1.1 in its entirety. These pro-
grams are thus synchronous reactive with respect to both represented dynamics
and the goal of the system is to respect specifications during realtime perfor-
mance with the ultimate goal of determinacy (in the computer science sense),
correct ordering at runtime, and (musical) critical safetiness. Such paradigms
have been widely studied in the computer science literature for realtime syn-
chronous languages (Halbwachs 1993) and widely applied in the industry for
realtime critical systems. We informally describe both aspects of the Antescofo
language. For a formal definition refer to (Echeveste et al. 2012).

Environmental Dynamics

In a mixed music setup, the dynamics of the environment can be described by
the expected musical elements that will be fired by the acoustic environment
into the system. This includes musical events described in the instrumental

3.2. ANTESCOFO 31

section of a score. In the current version of Antescofo, the system accepts
western musical notation and its variants and extensions . For the environmental
dynamics, current Antescofo syntax represent the content (usually pitches) as
well as durations. This will lead to the construction of an automata as described
in section 2.2. For example, the program corresponding to the state-space of
figure 2.2 is represented here in figure 3.6. Other supported event types include

; This is a comment
BPM 60
NOTE D5 0.0 ; grace note
NOTE C5 1.0 note1 ; regular note
NOTE D5 0.0
NOTE E5 1.0 note2
NOTE 0 0.5 ; silence

Figure 3.6: Example of environmental dynamics automata in Antescofo.

TRILLs, CHORDs, and continuous events notated as MULTI, plus tempo changes
with or without modulations (See Cont 2008a, for details).

Action Dynamics

In addition to the environmental dynamics, an Antescofo program specifies
the computer actions at each instant and associated to (known) environmen-
tal events. Actions in Antescofo are simple messages sent to defined destina-
tions and at the right time in realtime. With this respect, Antescofo acts as
a message-passing coordination language. An action is a line anywhere in the
program with the following syntax:

<delay> <receive-symbol> +<message> !<attribute> !<name>

where <delay> is optional and can be either a float relative to running tempo,
a rational number (relative to tempo, or absolute time (float followed by ‘ms’ or
‘s’), or a an expression over a variable for runtime evaluation; <receive-symbol>
is the symbol indicating the destination receive in Max or PureData; +<message>
is a list of values accepted in Max or PureData4 plus calls to functions that are
evaluated at runtime; <attribute> for now indicates whether the action is local
or global (specification for fault-tolerance); and finally an optional <name> for
the action useful for controlling periodic or looped content.

An action as described above is the primary element of the language. Con-
sequent lines of actions can thus describe a simple sequence whose timings can
be relative to a tempo, in absolute time or a mixture of both.

On top of primitive actions, the Antescofo language compositionally provides
the following constructions using primitive actions:

Parallel Group (GFWD) Actions can be grouped to constructively represent a
single grouped action in a sequence. This semantic provides polyphony
and parallel actions during authorship as well as independent but relative
timing between groups of electronic phrases. A group can be given a name.

4Int, Float, Symbol and List. PureData represents Int and Float as Float.

32 CHAPTER 3. REACTIVE SYNCHRONOUS PROGRAMMING

Periodic Group (LFWD) A group equipped with a global (absolute or relative)
period, useful for constructing loops, that run forever after instantiation
unless KILLed by its name.

Continuous Group (CFWD) A group equipped with a global (absolute or rela-
tive) step-time, that considers its internal atomic actions as break-points
and fires actions using interpolation and continuously inside the process
using the given time-step. This construction is useful for representing
continuous voices.

All constructions can be nested hierarchically indicating timing paths. Macros
are available and expanded at score load and useful for programming motivic
patterns.

Composed groups above can optionally accept attributes for synchronization
strategies and error handling. These attributes indicate whether long phrases
are tightly or loosely synchronous to environmental events once launched, and
are critical for understanding the behavior of actions or groups in case of an error
(from the environment or system). Additionally composed groups can accept
their own tempo (clock) as expressions bound to the environment or variables
(See Echeveste 2011, for details).

Example

BPM$ 72
TRILL $$(8500)$$0.5 $ $IA...EVT41$
GFWD $ $arco$$
{$$

syn_voices1 pgm40$ bnk7 vol122 $$
syn_voices1 $56 $$120$ $@b(2)$
syn_voices1 $50 $$120$ $@b(2)$
syn_voices1 46 $120 $@b(2)$

2.0 $$syn_voices$1 53 $$120$ $@b(0.36)$$
syn_voices1 $52 $$120$ $@b(0.36)$
syn_voices1 $58 $$120$ $@b(0.36)$

0.36 syn_voices1 $69 $$120$ $@b(1.5)$
syn_voices1 $63 $$120$ $@b(1.5)$
syn_voices1 $59 $$120$ $@b(1.5)$

1.5$ syn_voices1 $66 $$120$ $@b(0.8)$
syn_voices1 $65 $$120$ $@b(0.8)$
syn_voices1 $62$$$$$$$$$$$$$120$$$$$$$$@b(0.8)$$

}$
CFWD$$$$$$$$$$$$$$h1_trans $@grain$30ms$
{$
$ $0$$$$$$$$$$$$$$0$$$$$$$$$$$$$$$

$2.0$$$$$$$$$$$300$
$0 0
$0.46 800
$0 0
$1.5 4500

}$
GFWD $0.5 $PizzicaV$
{$

$Bsyn_voices$ 4 vol127 $$
1/5.5 $Bsyn_voices$4 $85 127 $100 $$
1/5.5 $Bsyn_voices$4 85 $127 100
1/5.5 $Bsyn_voices$4 85 127 100
1/5.5 $Bsyn_voices$4 $85 127 100
1/5.5 $Bsyn_voices$4 $85 127 100
1/5.5 $Bsyn_voices$4 $85 127 100
1/5.5 $Bsyn_voices$4 85 127 100
}$
NOTE$ 0 0.5
TRILL$ (8100) 0.5
NOTE$ 0 0.5
TRILL$ $($7500)$ $0.5 $ $ $IA...EVT42$

Figure 3.7: Antescofo score example from Tensio for string quartet and live
electronics by Philippe Manoury (2010).

3.2. ANTESCOFO 33

Figure 3.7 shows an Antescofo program of an excerpt ofTensio in figure 3.1.
The left column shows the original manuscript as composed by the artist and
the right column the Antescofo counterpart. In this example, the lower graphical
staff corresponds to the first Violin events and the higher staffs to the descrip-
tion of electronic actions. The violin events are notated as TRILL events (for
violin tremolos) and silences (NOTE 0) with duration relative to an initial tempo
of 72 beats-per-minute. Electronic actions in this example are hooked to the
first instrumental event and described in three parallel groups entitled arco,
h1-trans and Pizzicati in analogy to the polyphonic authorship in the left
column. Each line in a group describes a single action as simple message-passing
to a receive signal in the general environment with optional delays. In this ex-
ample, each group describes a sequence of ordered actions relative to the live
tempo of musicians. The two groups arco and Pizzicati contain discrete and
atomic sequences (defined as GFWD) whereas the h1-trans (defined as CFWD)
contains a continuous sequence. This continuous process interpolates between
break-points (first element being time and followed by values) using a time-grain
of 30 milliseconds. The continuous process h1-trans correspond to the top staff
in the left column. The time nature of each sequence (discrete, continuous, rel-
ative or absolute) is left to the programmer/composer discretion and depends
on the nature of the processing at the receiving end.

3.2.2 Runtime Semantics

Antescofo provides an abstract programmer’s model for an artificial musician in
an ensemble with musical realtime constraints. Its runtime system is composed
of two virtual machines. The first one is the listening machine, the score follower
of section 2.2, that handles the interaction with the environment (reactive). It
interprets the environmental dynamics written in the program and supervises
the execution of action tasks in response to the physical events and passes
on necessary parameters such as the environment’s tempi. The second one is
the Scheduling Machine and handles the interaction with the running platform
(Max and PureData). The Scheduling Machine is anticipatory and proactive and
interprets the action dynamics in the program which specifies the temporal order
of actions. Figure 3.8 shows how the Listening Machine and Scheduling Machine
interact with the physical environment, software task and hosting platforms.
Hollow arrows indicate offline whereas filled arrows indicate runtime processing.

Antescofo programs are not compiled but interpreted at runtime. The se-
mantics of the system thus can only be studied as a dynamic system. An An-
tescofo program automatically creates two dynamic automates required for the
two virtual machines. The listening machine is based on the system described
in Section 2.2 and communicates the detected events e(t) and their tempo or
pace of arrival ė(t) to the scheduling machine. The detected tempo ė(t) can
be considered as the inferred clock of the environment which is used by default
as the clock for all underlying processes unless stated in the program. Actions
in Antescofo are hierarchically parsed into entities called Trigger Timers (TT)
for each level and group type as FIFO stacks of actions. An action can be
an elementary action or refer to another Trigger Timer. As an example, fig-

34 CHAPTER 3. REACTIVE SYNCHRONOUS PROGRAMMING

Antescofo Program

Environment
Dynamics Automata

Action Dynamics
Automata

Listening
Machine

Scheduling
Machine

Max / Pd / Others

e(t), ė(t)

Triggered Actions

Figure 3.8: Components of Antescofo runtime.

ure 3.9 shows a simple Antescofo program and its equivalent TT s. For the sake
of simplicity, actions are shown as pairs of delays dik and abstract actions aik.
High-level Trigger Timers such as TTi0 are hooked initially to an associated
event (ei here) whereas low-level TTs such as TTi1 here are relative to their
high-level Timers. Nested TTs indicate that at a deterministic moment in time,
a (low-level) TT will be launched in parallel to existing ones. Group attributes
(local, global, tight, loose) for lower-level TTs are inherited from their parents
unless stated.

Each Trigger Timer type has its own associated runtime semantics in the
scheduling machine. We showcase the operational semantics of two major types
using Timed Automata (Alur et al. 1994) and following notations in (E. A. Lee
and Seshia 2011).

Figure 3.10 shows the operational semantics of High-Level Timer-Triggers
in the scheduling machine (for example TTi0 in figure 3.9). The initial condition
for entering this automata is either at the detection of its corresponding event
ei or if the pointer to this event has passed (missed event, detection error).
The automata is equipped with a clock ṡ(t) which for high-level TTs is always
equal to ė(t). The operator Pop simply pops out the last element in the TT
FIFO. Obviously this process will eventually empty-out the FIFO. An action
aik is launched if its corresponding delay dik has been reached within the scope
of ei (the top self loop). Since the scope of high-level TTs are bound to ei,
in case of its absence, they pass to the Critical Mode where global actions are
undertaken immediately, in order, and before any consequence TT(j>i)0 actions.

3.2. ANTESCOFO 35

NOTE C4 1.0
 a11

 0.25 a12
 GFWD 0.25 G1
 {
 a21

 0.25 a22
 }
 0.5 a13

NOTE C5 1.0

TTi0

d13 = 0.5, a13

d13 = 0.25, TTi1

d11 = 0.0, a11

d12 = 0.25, a12

ei

ei+1

TTi1 (global, loose)
d21 = 0.0, a21

d22 = 0.25, a22

Figure 3.9: Example of Trigger Timer (TT) construction in Antescofo.

The Terminal State is reached when the running FIFO is emptied or a KILL is
requested (either directly or from a parent).

ṡ(t) = ė(t)

ei ^ s(t)=dik / aik

s(t):=0; Pop dik and aik;

e(t)=ei _ (e(t)=ej>i ^ ¬ei)
s(t):=0; Pop dik and aik;

Critical

¬ei ^ e(t)=ej>i /

aik is global / aik

Pop aik

aik is local /
Pop aik

Terminal

TTi=; _ KILL /

Figure 3.10: The high-level Timer-Trigger runtime semantics.

Note here that the passage of time indicated by ṡ(t) = ė(t) is not that
obvious since ė(t) changes neither synchronously to actions, nor to event steps
from the environment. This implies the implementation of an interrupt resched-
uler on top of these models that at each change of dynamics reevaluates active
parameters. To this fact we should also add the fact that delays can become
runtime expressions following similar mechanism during scheduling.

Figure 3.11 shows the operational semantics for a tight GFWD TT. A loose
GFWD has a runtime semantics similar to figure 3.10 since it only synchronizes
with tempo once launched, which we skip. A tight group has the specificity
that on top of a dynamic clock, it also synchronizes to positions (or dates) of
events during performance. Scheduling is similar to figure 3.10 if the action scope

36 CHAPTER 3. REACTIVE SYNCHRONOUS PROGRAMMING

does not go beyond the future e(t). Therefore, an auxiliary variable U traces
the instantaneous event index and the behavior of this automata is proactive.
If the date of the current action, according to the score, is superior or equal
to its future event, the scheduling machine neglects the clock and waits until
it becomes useful (after eU+1) by changing the consequent delay. The Critical
Mode here is similar to fig 3.10 except that it only handles actions up to the
next future event. In other words, the critical mode for tight attempts to catch
up with the environment following requested strategies. It should be noted here
that low-level groups can have their own definition of clock ṡ(t) as expressions,
or in its absence the environment clock ė(t) is used by default.

ṡ(t)

eU ^ (Date(aik)<Date(eU+1)) ^ s(t)=dik / aik

s(t):=0; Pop dik and aik;

Critical

¬eU ^ e(t)=ej>U /

(Date(aik)<Date(ej)) ^ aik is global / aik

Pop aik

(Date(aik)<Date(ej)) ^ aik is local /
Pop aik

Terminal

Initialization: s(t) := 0;

Pop dik and aik;

U := instant index of e(t)

Date(aik) � Date(ej) /
s(t):=0; U :=j;

dik:=Date(aik)�Date(eU);

eU ^ (Date(aik) � Date(eU+1)) /

TTi=; _ KILL /

Figure 3.11: Low-level Timer-Trigger runtime semantics for Tight GFWD.

Runtime semantics for others types of TTs follow the same guidelines as
above and the rest (loop and continuous groups) are in fact derivation of the
two classes shown in figures 3.10 and 3.11. Currently, each TT is equipped
with its own scheduling mechanism controlled where synchrony is assured by
the global clock ė(t).

During live performance, the scheduling machine assures that event se-
quences are triggered synchronous to each other and also to the environment,
despite sudden changes in environmental dynamics. The Critical Modes more-
over make the result deterministic in the case of inconsistencies either from the
environment or the listening machine. Ordering is preserved, and Antescofo
aims to fill in the gap between the authoring and performative aspects of music
making for mixed electronic music. Moreover the semantics provided by the
language (derived directly from common practices) brings determinacy, fault-
tolerance (to certain degree) and more importantly the ability to write things
once and as imagined and expect them to happen at runtime without much

3.3. FUTURE PERSPECTIVES 37

compromise.

3.3 Future Perspectives

Antescofo as language and realtime system is relatively young, and its entrance
to the field of realtime modeling and computing still younger. The synergy in its
use and for its expansion is demanding to explicitly address several issues and
creating new research perspectives. Here we briefly introduce several directions
already in place or for the few years to come:

Language Developments. The core language of Antescofo is always under
development thanks to continuous feedback from composers at Ircam and
outside. Recently, variables along runtime expressions have been added
to the language (Echeveste 2011), making timing variables even more dy-
namic. Some users have already started making patterns using macros
and asking for possibilities of programming dynamic and complex pat-
terns. Whereas synchronous languages are mostly static, recent attempts
have shown their power in interactive programming for reactive systems
(Mandel et al. 2008). A recent Masters thesis explores such possibilities
for Antescofo (Baudart 2012). A natural continuity on this line would then
be to define and use dynamic processes in the language.

Robustness and Fault-Tolerance. The Critical Mode of the scheduling ma-
chine described above resembles a Best Effort Strategy for fault-tolerance.
User level constructs to this end are still minimal and providing common
constructs in similar languages such as Giotto (Henzinger, Horowitz, et al.
2003) would not be immediately intuitive for artists. We plan to study
various models developed in the literature to this end, test and analyze
their performance in known musical situations in order to propose more
robust runtime features for fault-tolerance.

Runtime Optimization and Hybrid Scheduling. The hierarchical and tree
structures of the score in Antescofo provide a unique and highly structured
view of mixed scores. However the fact that each TT has its own scheduler
consumes resources that might not be necessary and at times downgrades
performance. This issue is even more important given the linear, static
and non-concurrent scheduling in Max and PureData. We hope to study
more modern scheduling techniques, especially for Globally-asynchronous
Locally-Synchronous (GALS) systems (Muttersbach et al. 2000; Krstic et
al. 2007) and bring their benefits to online music computing and program-
ing.

Model Checking and Verification. Antescofo can be qualified as a critical
system. A failure during a musical performance can lead to artistic dis-
asters. Our aim is to be able to ensure formally that the execution of a
program will satisfy expected properties, and on the other hand to provide
assistance to composers during authorship. A recent Masters in our team

38 CHAPTER 3. REACTIVE SYNCHRONOUS PROGRAMMING

is studying these procedures (Franchon 2012) following the semantics dis-
cussed above and employing linear constraint solvers on timed automata
(André et al. 2009).

Probably the most ambitious research horizon that has been opened up by
Antescofo is related to the possibilities offered by coupling listening machines
to realtime programing environments. To this end, Antescofo is just the very
beginning of a new project that aims at more rigorously studying such couplings
and their outcome in artistic programing, engineering and production. This is
the topic of the next chapter.

IV
TOWARDS CYBER-PHYSICAL MUSIC

SYSTEMS

The relative success of Antescofo, both with regards to excellence in research
and its wide employment by the community, to the eyes of its author is due
to the following factors which we believe should be further enhanced in future
research:

Human centered computing: Through strong coupling of a machine listen-
ing module (chapter 2) and synchronous language (chapter 3) Antescofo
brings humans in the loop of computing. Continuous two-way interactions
between computers and human musicians is probably the most important
reason in rapid adoption of the system, which has thrusted Antescofo from
its known scientific goals to expected musical behavior. Further stud-
ies should foster this strong and dynamic coupling and beyond existing
paradigms exposed in chapter 2.

Coupling of Actions and Perceptions: The joint dynamics of Antescofo’s
listening machine with its synchronous language has enabled authors to
couple actions and perceptions in their programming, whereas previously
the two components have been considered disjoint. This coupling has fur-
ther (and by coincidence) pushed the coordination language of Antescofo
to be deployed for authoring of time and interaction in real-time applica-
tions. The language components of Antescofo with regards to construction
of time and interaction are only at its beginning.

Reliability despite fallible components: Individual components of the ma-
chine listening in Antescofo are too fallible by themselves, and the reactive
language alone is just an intelligent sequencer. However, the joint venture
taken by the combination of all components provide reliable results despite
many variations and errors during real-time performance. Antescofo’s be-
havior is predictable and deterministic despite non-deterministic nature of
the outside sonic environment. A great challenge would be to extend this
reliability beyond the current “control” context of the Antescofo engine
and to the realm of general and heterogeneous computing.

39

40 CHAPTER 4. TOWARDS CYBER-PHYSICAL MUSIC SYSTEMS

This chapter is dedicated to our current and prospective research, aiming
to extent the pros of Antescofo beyond its currently limited use. To this end,
Antescofo is no longer a mere interactive music system but a system at the inter-
section and union of cyber world (computing) and the physical world (humans).
Such study requires revisiting low-level concepts in computer music and interac-
tive arts such as audio engines, distributed computing, scheduling, with regards
to continuous interactions with the physical world; and a thorough study of sys-
tem behavior in order to render complex and heterogeneous architectures such
as those seen in interactive arts predictable. Bridging the mismatch in seman-
tics between physical and software worlds is the goal of the emerging theories
in Cyber-Physical Systems. In this chapter, we study scientific challenges for
extending Antescofo to a Cyber-Physical Music System that brings in physical
and cyber worlds, bridges the gap between different practices in digital art, and
providing insightful views in designing novel systems in computer music.

4.1 Motivations and Context

A Cyber-Physical System (CPS) is a system featuring a tight integration of,
and coordination between heterogeneous devices including physical elements
through networks. In contrast to embedded systems with emphasis on compu-
tational elements, CPS design is intensely focused on the explicit link between
computational and physical elements usually with feedback loops where the envi-
ronmental processes affect computation and vice versa (E. A. Lee 2010). In this
sense, CPS is about intersection, not the union, of cyber and physical worlds.
Time is central in design of CPS and is considered not as an issue of perfor-
mance but correctness. Thus, the passage of time becomes a central feature of
system behavior (Eidson et al. 2012). Physical processes in a system’s environ-
ment are compositions of many parallel processes and the physical world is not
entirely predictable (E. A. Lee 2008). This is in contrast to traditional software
processes deeply rooted in sequential steps with few explicit considerations for
subsystem failures due to unexpected conditions in the environment.

In this context, a Cyber-Physical Music System is considered as an inte-
gration of heterogeneous computational elements (software processes, hardware
processors, networks, data acquisition and measurement devices) with that of
physical elements. The physical world in this context is comprised of human
musicians whose dynamics are provided by machine listening systems acting on
(heterogeneous) real- time inputs from the physical environment. The compu-
tational elements are comprised of (heterogeneous) models of sound and music
computing, off-the-shelf operating systems for real-time audio, as well as hard-
ware and drivers for audio/data delivery and acquisition to and from the physical
world. The design of Cyber-Physical Music Systems requires understanding of
the joint dynamics of all components. The revival of mentioned literature from a
CPS perspective requires revisiting fundamental concepts in each domain to be
able to compose concurrent systems that deal with dynamically controlling the
physical environment by orchestrating actions that influence the process. De-
sign and composition of such heterogeneous systems should lead to predictable

4.2. PRACTICAL CHALLENGES 41

and reliable system behavior, despite non-deterministic components and unpre-
dictability of the physical environment. It is this joint study of dynamics of the
Cyber and Physical worlds that sets this approach apart from interactive music
systems, by bringing humans in the computation loop via machine listening,
and by providing integrated system-level solutions, while contributing to each
respective field.

Proposing Cyber-Physical Music Systems requires thorough review of fun-
damentals in both machine listening and real-time sound and music computing,
and adapting them to the more realistic views set forth by CPS design. To
this respect, the Antescofo system, can be considered a preliminary and limited
Cyber-Physical Music System through joint modeling of machine listening and
synchronous-reactive orchestration of actions. We submit that its expansion to
the wider domain of sound and music computing requires an ambitious research
program whose objectives are far from being reached.

4.2 Practical Challenges

4.2.1 Domain-Specific Software and Functional Interoperability

Computer music literature in its practice and research has given birth to var-
ious paradigms connecting the physical world of sounds to that of computers.
Each approach and paradigm employs specific literature and commonly has led
to domain-specific software for each practice. Some of the commonly used soft-
wares include OpenMusic (Assayag, Rueda, et al. 1999) or PWGL (Laurson et al.
2009) for CAO; digital waveguides (Smith 1992) or Modalys (Eckel et al. 1995)
for physical modeling of sound synthesis; PureData (Miller Puckette 1997) or
Max (Cycling74 2012) for realtime event and signal processing; SuperCollider
(McCartney 1996) or CSound (Vercoe 1993) for sound synthesis; Faust (Orlarey
et al. 2009) for DSP programming; ChucK (G. Wang 2009), SuperCollider, or
Impromptu (A. Sorensen 2005) for live coding; just to name a few.

A piece of interactive computer music neither represents a certain model
or technique, nor a workflow specific to a single software. A typical and even
simple piece of computer music calls for various computational paradigms from
DSP programing mixed with event processing to sound and gesture processing,
physical modeling and algorithmic composition.

The practice of authoring and performing computer music is thus at the
intersection, and not union, of different paradigms and approaches. Practic-
ing computer music calls more and more for functional interoperability between
paradigms and softwares. Some softwares such as PureData and Max have been
more or less successful in integrating different approaches and creating such
unions. For example, physical modeling of sound using Modalys (solving differ-
ential equations) is now an object inside Max despite the fact that the models of
computations in the two domains are strictly different. This union causes timing
and control problems for the user, not to mention computational inefficiency of
this approach. A more efficient approach would be to address this union using
Hybrid Models (E. A. Lee and Seshia 2011, Chapter 4) but this is practically
impossible in Max.

42 CHAPTER 4. TOWARDS CYBER-PHYSICAL MUSIC SYSTEMS

With constant evolution of hardware and software architectures, we also
need to consider and add the problem of preservation of computer music pieces
to our stack. Piece preservation in this context is different from object preser-
vation especially considering realtime contexts. Preservation is different from
performance and requires abstraction of processes to study their reliability and
predictability. Unfortunately, there is no literature for considering systems with
physical processes integrated for preservation. This topic requires formal studies
and is discussed in section 4.3.3.

Our main argument for future research is that this highly needed interoper-
ability should not be addressed on the functional level, but on the semantic level
of paradigms and their computational models. Such an approach would bring in
a CPS design process and make the workflow more explicit for designers, with
the drawback of having to redefine formally existing models.

4.2.2 Realtime Computing

Music performance is inherently realtime. Whether an author employs offline
processing or realtime algorithms in a piece, the final result is delivered in re-
altime and possibly interacting with an environment. Existing realtime en-
vironments such as PureData and Max focus on performance with weak data
structures provided in the language, whereas environments such as OpenMusic
focus on rich data structures with no considerations on incremental delivery and
performance. This inconsistency has led to a divide in the community for prac-
ticing realtime computation (Miller Puckette 2004) with historical criticisms of
the practice of realtime from well known composers (Risset 1999; Stroppa 1999)
and researchers (Desain et al. 1993) on the paradigm. In the recent years sci-
entists and musicians have attempted to enrich the data structures in Max for
realtime computing such as in (Schnell et al. 2005), the Bach Project (Agostini
et al. 2012) and the new data structures in PureData (M. Puckette 2002). These
additions consist of appending new structures on top of the existing realtime
engines of Max and PureData.

However, in realtime systems the correctness of a system depends not only
on the logical results of the computation but also on the time at which the
results are produced. One of the primary design objectives of these systems
is to support temporally predictable execution of computing tasks so that it is
guaranteed that there will be timely interactions between tasks and the physical
environment, and optimizing performance.

Work on a more rigorous approach to this aspect of realtime systems has
followed two largely distinct paths (Burns et al. 2009, Ch. 9): One direction of
development has concerned the use of formally defined language semantics and
timing requirements, together with notations and logic that enable temporal
properties to be represented and analyzed (e.g. Kopetz 2011). The other direc-
tion has focused on performance of realtime systems in terms of feasibility of
scheduling the required workload on the available resources (Buttazzo 2005).

Current computer music realtime systems such as Max, PureData and Su-
perCollider belong to the second category with focus on performance and feasi-
bility. However, even within this domain, employed scheduling algorithms are

4.2. PRACTICAL CHALLENGES 43

based on non-concurrent preemptive scheduling of mixed control and signal pro-
cessing whereas physical processes (with which they tempt to interact) are all
concurrent. Moreover, in all three systems initial scheduling hypotheses lead
to arbitrary delays (for Max and PureData) (Miller Puckette 1991) and arbi-
trary missing cycles for SuperCollider and Impromptu (Andrew Sorensen et al.
2010), therefore destroying the dream for temporal predictability. Such accepted
system behavior is simply unacceptable today: It evades scaling program behav-
ior to the system level, and elude any attempts for behavior predictability and
system preservation.

Our argument is that time is a semantic property and not an accident of im-
plementation. Thorough study of joint dynamics between heterogeneous compu-
tational models and their temporal semantics is necessary to adopt best strate-
gies. This necessitates constructing a literature on realtime multimedia schedul-
ing which is currently sparse. It is worthy to mention that classical Multimedia
Systems (Steinmetz et al. 2004) (the root of most realtime systems mentioned
above) focus more on timely delivery than timely computation. We believe that
a thorough review of realtime computing for continuous multimedia signals is
more than necessary. On the other hand, formal approaches help predictability
and correctness of realtime programs useful not only for performance but also in
the preservation of pieces. Finally, the CPS approach attempts to take benefits
of both ends where schedulers are back-ends of formal model abstractions whose
timing constraints are non-deterministic (E. A. Lee and Seshia 2011).

4.2.3 Distributed Deployment

Most mixed music programs are deployed over a personal computer that takes
numerous inputs (microphone inputs from an orchestra, gesture acquisition in-
puts, etc) and realtime outputs (e.g. to numerous loudspeakers). Whereas the
techniques and models of computations employed in these programs have signif-
icantly evolved in the past 10 years, the software architectures handling these
transactions have been stagnating as shown in section 3.1. To this one must
add the general tendency in computing within recent years to distributed archi-
tectures (multi-core PCs) and nomad distribution of computing (tablet devices,
embedded and domain-specific computing devices, etc.).

Common architectures shown in section 3.1 have already started exposing
their limits even for centralized computing pieces. This was particularly the case
of Tensio for string quartet and live electronics composed in 2010 by Philippe
Manoury with Gilbert Nouno as computer designer. Tensio demanded much
more concurrent computing than could be handled by the Max scheduler. Be-
fore Tensio, most composers and computer designers were constrained by CPU
power. Ironically this was not the case for Tensio. Concurrent modules were
designed to occupy multiple non-communicating threads (using Poly˜ objects in
Max), but the overall program (following similar architectures as in section 3.1.2)
would lead to extreme timing inconsistencies in Max. The developers were fi-
nally forced to chop the program to several on the same machine, communi-
cating through Input/Outputs instead of sharing mid-level computations. This
leads to considerable design and development efforts forced on the designers.

44 CHAPTER 4. TOWARDS CYBER-PHYSICAL MUSIC SYSTEMS

Unfortunately, the case of Tensio is not isolated and many pieces since have
encountered the same issue.

The Tensio dilemma can be resolved if we take into account correctness
on top of performance in scheduling. Technically speaking, in this case the
Utilization of CPU is low because of poor scheduling strategies, meaning that
the scheduler despite having many tasks, is left with many empty spaces with
task explosions from time to time leading to temporal inconsistencies. A smarter
and adaptive scheduling strategy could have solved the issue. Unfortunately
within existing practices no such semantics or syntax is provided to designers.

The Tensio dilemma is also present in other forms and practices of digi-
tal art, namely for embedded digital art systems such as instrument design or
collaborative ensembles. Such practices, despite being rather new, have gained
tremendous attention among the digital art communities and beyond, largely
thanks to the open-source electronics prototyping platform Arduino (Banzi 2011).
Arduino is based on discrete control signals but despite this limitation it has
gained attention among gadget and bot makers (Karvinen et al. 2011) and for
controlling audio and video software (Noble 2009). Open hardware architec-
tures such as Arduino have opened new possibilities for nomad computing. To
this one must add the flow of tablet devices with much more computing power
than initially expected. Such practices will bring new possibilities and also more
frustration for coordinating distributed computing and their timing constraints.

Foundations of realtime computing in CPS aim to address difficulties dis-
cussed above. Our research program aims at providing solutions to these prob-
lems by proposing semantics of communication in concurrent (and possibly dis-
tributed) systems employing adapted scheduling strategies.

4.3 Scientific Challenges

4.3.1 Heterogeneous Models of Time & Computation

When programing mixed music or interactive art pieces, the overall program
is typically made up of distinct and heterogeneous technologies, with their re-
spective literatures and computing paradigms, put together to provide desired
internal interactions or with the physical world. Figure 4.1 shows a diagram of
some of the most used technologies along their computational paradigms. The
software architecture is typically a concurrent integration of several paradigms
and the program (or score) should have semantic capabilities for controlling such
technologies.

The heterogeneity of models of computations and their temporal natures in
computer music make them difficult to study in concurrent architectures and
make their integration difficult for designers. A thorough study of computational
models in figure 4.1 is outside the scope of any integrated research. However,
the semantics of concurrency with regards to their computing structure can
be studied, and paves the way for further analysis and deployment in CPSs.
Following E. A. Lee and Seshia 2011, we aim at establishing the semantics of
concurrent compositions of computer music systems, governed by three sets of
rules that we collectively call Models of Computation (MoC). A MoC aims at:

4.3. SCIENTIFIC CHALLENGES 45

Sound synthesis
(Calc,CC)

Sound Processing
(CC, Calc, Signal)

Space
(Calc, CC, Symbolic)

Physical Models
(CC, PDEs)

Gesture Processing
(CC)

Concatenative Synthesis
(Transactional Proc.)

Automata Learning
(FSM)

Automatic Improvisation
(FSM)

Figure 4.1: Heterogeneous Models of Computations (MoC) in Computer Music.

• Defining what constitute a component;

• Gives semantic to concurrency in the model;

• Defines communication semantics.

For example, Physical Modeling of sound synthesis using modal techniques as in
(Eckel et al. 1995) are typically continuous systems solving partial differential
equations. This is a typical continuous system that can be modeled with discrete
abstractions such as timed automata (Alur et al. 1994), synchronous-reactive
model, continuous-time model (E. A. Lee and Zheng 2007) or Discrete-Event
models (Zeigler et al. 2000). Each approach provides strong semantics with
important consequences when embedding the technology in a physical process
or next to other models. Among existing views on heterogeneous design of CPS,
Ptolemy software stands out with many advantages for computer music mostly
due to its Actor Design approach (Eker et al. 2003).

Independent study of Models of Computation for computer music paradigm
is of little interest in practice since each MoC should in term be combined with
other models or delivery services such as audio engines. For example, physical
models of sound synthesis should deliver audio to an audio engine where the
former can be Continuous Time Model and the latter a Synchronous Dataflow.
This approach is in-line with CPS design procedure, where explicit communi-
cation semantics are established between models with the aim of predictability
and reliability of results.

In this work, we aim to study, formalize and introduce common computer
music MoCs. The challenges we are faced with include: (1) Defining expressive
MoCs with strong formal properties, and (2) Define which MoCs is needed for
specific application and educate the community of designers to use them.

4.3.2 Temporal Semantics

In Cyber-Physical systems, the passage of time becomes a central feature of sys-
tem behavior. In fact, it is one of the important constraints distinguishing these

46 CHAPTER 4. TOWARDS CYBER-PHYSICAL MUSIC SYSTEMS

systems from distributed computing in general. Time is central to predicting,
measuring and controlling properties of the physical world. In today’s program-
ming world, given the source code, the program’s initial state, and the amount
of time elapsed, we can not reliably predict future program states. When such
programs are integrated into a system with environmental dynamics, this makes
principle design of the system difficult and the disparity between dynamics of
the environment and the program potentially leads to errors which can be po-
tentially catastrophic.

Our goal here is to extend the temporal semantics of Antescofo for the inte-
gration of MoCs and their deployment within CPS and embedded architectures.
As discussed in section 3.2 the current language and system have their roots in
Reactive Synchronous systems (Halbwachs 1993) where the duration of com-
putational processes is assumed zero or within a clock tick. In the current
message-passing system of Antescofo this is a feasible hypothesis. However,
if the action semantics are to be augmented by processes representing MoCs,
further considerations should be made.

Existing approaches, drawn from control theory, assume an oracle clock
available simultaneously in all parts of the system. Below, we summarize several
important candidates for our studies.

Synchronous-Reactive Approach. The synchronous-reactive (SR) framework
is based on a hypothetical zero-time computation assumption of actions
(G. Berry et al. 1985) which provide powerful semantics for predictable
and critical systems. SR framework can be extended to communication
semantics as opposed to language semantics for coordinating MoCs with
heterogeneous natures. This is for example the approach taken in (E. A.
Lee and Zheng 2007) for Ptolemy where synchronous-reactive coordination
frameworks are used within continuous-time models and discrete-event
systems altogether. The notion of time in SR is rather implicit and can
be extended to any data-flow sequence. Recent works have added poly-
morphic clock calculus to SR frameworks (Caspi et al. 1996). SR systems
have been successfully applied to critical realtime systems with strict safety
constraints (Gérard Berry 2003). A relaxed version of the clock calculus
has been applied to embedded media devices such as HDTVs (Cohen et al.
2005).

Time-Triggered Architectures. Another approach consists of leveraging the
zero-time computation of synchronous-reactive framework by explicitly
considering computation times for action nodes as proposed in Time-
Triggered Architectures (TTA) (Kopetz and Bauer 2003). TTA provides
a computing infrastructure for the design and implementation of depend-
able distributed embedded systems. TTA requires a sparse global time
of known precision present in every component and explicitly considers
communication nodes to guarantee fault-tolerance. This global clock has
to be uniform and the analysis of the dynamics has to include the imper-
fections (which is not always known). TTA can be clearly distinguished
from event-triggered systems in both theory and practice. For example

4.3. SCIENTIFIC CHALLENGES 47

TTA systems usually require a single interrupt timer for the global pro-
cess. TTA has been successfully applied to industrial applications mostly
in the automotive industry. It has also incarnated as a dedicated language
for embedded realtime programming (Henzinger, Horowitz, et al. 2003).

Discrete-Event Systems. Discrete-event systems (DE) have been used for
decades as a way to build simulations for variety of applications due to
pioneering formalisms in (Zeigler et al. 2000). The framework endows
state-machines (more explicitly Moore machines) with a non-zero life-span
for each state (as opposed to simple reactions). The key idea is to asso-
ciate to each event a time stamp within a model of time that ought to
be comparable. A DE actor reacts to time-stamped events in order and
employs event queues. Operational semantics of DE systems have given
birth to many variants such as combining them with an SR model of com-
putation. A recently proposed strategy called PTIDES for programming
temporally integrated distributed embedded systems, leverages this ap-
proach for CPS by considering model time versus physical time in runtime
and schedulability analysis. Another interesting design factor in PTIDES
is its independence from platform-specific system timers (Eidson et al.
2012).

4.3.3 Preservation & Predictablity

A computer music program can be considered as a collection of programs and
technologies embedded into an integral system as shown in section 3.1.2. These
programs are characterized by their interactions with the physical world and
themselves in realtime. Similar to embedded system design, non-functional
requirements of computer music systems can be classified as follows (Henzinger
and Sifakis 2007):

Reaction requirements, which concern the interaction of the system with
the environment, and

Execution requirements, which concerns the interaction of the system with
the platform (software and hardware components).

In computer music, one important source of reaction requirement is user
expectation from music scores or musical specifications shown in section 3.1.1.
These authored specification typically give rise to other reaction requirements
such as response time, which bounds the worst or average-case delay between
an external stimulus of the system and its response.

An important source of execution requirement is resource constraints which
may be imposed by hardware or software, audio service constraints, controller
hardware delays, use of specific scheduling algorithms or communication proto-
cols that are all typical in any computer music performance.

By contrast, a system that is not embedded has only functional requirements.
Digital Audio Effects, when considered alone, can be viewed as functional pro-
grams where there is neither a reaction requirement (it is not specified when
the effect output must be provided), nor an execution requirement (it is not

48 CHAPTER 4. TOWARDS CYBER-PHYSICAL MUSIC SYSTEMS

specified how much memory or resources the effect may consume). Reaction
and execution requirements are absent not because there no corresponding user
expectations or resource constraints (in practice a realtime audio effect has time-
sensitive delivery constraints), but these constraints are neglected because they
are secondary to functional requirements.

It is not prudent at all to abstract response time and resource utilization
for computer music systems whereas locally such abstractions are less harmful.
A computer music piece undergoes time requirements inferring resource, com-
putational and variants of time constraints among modules and upon stimuli
arrivals. Moreover, a computer music program should inherently be an abstrac-
tion refinement of its score; permitting the realization of the same piece on
other platforms and with the (constraint) evolution of computing platforms.
This last issue, of utmost importance in numerical art, is strongly related to
preservation. This domain of study is relatively new. To our knowledge, the
only systematic view on preservation is the work in (Barkati et al. 2012) using
functional formalisms whose limitations we brought up previously.

For this project, we argue that the grand challenge in computer music sys-
tems and design is to identify high-level programming models that expose the
reaction and execution properties of a system in a way that,

1. permits the programmer to express desired reaction and execution require-
ments, and

2. permits the compiler and/or run-time system to ensure that these require-
ments are satisfied.

While there have been many proposals and languages for realtime program-
ming in computer music with formal models (such as those discussed in sec-
tion 4.2.1), we believe that none has attained both objectives. For example, the
implicit specification of timing properties in Max and PureData address objec-
tive (2) (at least for small programs), but have failed with respect to (1). As
a result, computer action specifications are either trivial or programmed as a
result of many tests and trial-and-errors.

We submit that a successful solution to these challenges has to exhibit two
key characteristics: First, the programming models must have the property that
all software written in the model be predictable, not only on the functional level
but also in its reaction and execution properties; and second, the programming
model must have the property that all software written in the model be robust,
in the sense that its reaction properties change only slightly if the environment
changes slightly. This last property is crucial for art-code preservation.

Predictability can be achieved through determinism. One approach to achieve
predictable systems is to build them entirely from deterministic parts. There are
two problems with this approach: First, they are not realistic as many basic in-
teractive components can be non-deterministic; and second, they usually do not
provide generally acceptable solutions. The key question is not how we can build
complex programs out of deterministic parts, but how we can build determin-
istic abstraction layers from non-deterministic components. To approach this
question, one needs to study various sources of non-determinism in computer

4.3. SCIENTIFIC CHALLENGES 49

music systems such as input non-determinism, unobservable and observation im-
plementation non-determinism, and don’t care situations (Henzinger 2008). To
this, one must add time-determinism required by computer music CPS. Sched-
uled systems (dominant in computer music today) are often unpredictable. A
particularly successful attempt for this kind of observable non-determinism is
the synchronous programming languages (Gérard Berry 2003; Halbwachs 1993).
Another alternative approach for time-determinism is the Giotto language ap-
proach (Henzinger, Horowitz, et al. 2003).

The second challenge deals with constructing systems whose behavior is ro-
bust in the presence of perturbation. The difficulty here is due to the fact that in
computer science, unlike other engineering disciplines, we often lose sight of the
fact that a mathematical representation of a software system is just a model, and
that the actual system is physical, executing on a physical imperfect platform
and interacting with a physical unknowable environment. This issue deals with
heterogenous natures of computation and time in model abstractions and the
challenge of building, on top of non-continuous system implementations, system
abstractions that are continuous with regards to physical quantities (E. A. Lee
2009). This can be achieved, in terms, by a careful study of computer music
MoCs and their formal operational and communication semantics as proposed
in section 4.3.1.

Our goal in this project is thus to link system behavior to implementation, by
leveraging computer music practices that explicitly inform the determinism of
system abstractions, and through such formalisms provide Semantic-Preserving
Translations and Implementations, paving the way for preservation of computer
music programs and systems.

4.3.4 Architectures for Embedded Computer Audition

An important challenge in our definition of Cyber-Physical Music Systems is
to leverage interactions with the environment and bring such considerations
into the design process. Antescofo, seen as a preliminary CPS, provides such
interactions through machine listening limited to realtime alignment of audio to
scores and enabling formal descriptions of actions and reactions.

One of the main goals of this project is to bring machine listening capabil-
ities to the next step, by augmenting it with state-of-the-art machine listening
methods and other forms of listening than those currently available. This part
of our project is concerned as much with machine learning and signal process-
ing (Chapter 2) as software architectures, the idea being the capability of rapid
and easy deployment of machine listening techniques to integrated CPS and
embedded systems.

A similar ongoing attempt in the field of computer vision is the OpenCV
Project1 for Open Source Computer Vision Library (Bradski 2002). OpenCV
is a library of programming functions aimed at realtime computer vision, free
under the open source BSD license and cross-platform. Today, OpenCV gath-
ers millions of users from artists to robotic industries together and has drawn

1http://www.opencv.org/

http://www.opencv.org/

50 CHAPTER 4. TOWARDS CYBER-PHYSICAL MUSIC SYSTEMS

standards for such techniques especially for embedded vision protocols (Bradski
and Kaehler 2008).

Our goal is to collect computer audition methods within an open archi-
tecture framework similar to OpenCV. This project requires support from the
community and will nurture both aspects of our project. Its outcome will lead to
further extensions of the Antescofo coordination language and interactions. To
our knowledge and to this date, no similar ambitions exist in realtime computer
audition.

BIBLIOGRAPHY

Abdallah, Samer M. and Mark D. Plumbley (2004). “Polyphonic transcription
by non-negative sparse coding of power spectra.” In: ISMIR. url: http:
//ismir2004.ismir.net/proceedings/p058-page-318-paper216.pdf.

Agostini, Andrea and Daniele Ghisi (May 2012). “GESTURES, EVENTS AND
SYMBOLS IN THE BACH ENVIRONMENT.” In: Journées d’Informatique
Musicale.

Alur, Rajeev and David L. Dill (April 1994). “A theory of timed automata.” In:
126 (2), pp. 183–235. issn: 0304-3975. doi: 10.1016/0304-3975(94)90010-
8. url: http://portal.acm.org/citation.cfm?id=180782.180519.

Amari, S. and H. Nagaoka (2000). Methods of information geometry. Vol. 191.
Translations of mathematical monographs. Oxford University Press.

André, Étienne et al. (October 2009). “An Inverse Method for Parametric Timed
Automata.” In: 20.5, pp. 819–836. doi: 10.1142/S0129054109006905. url:
http://www.lsv.ens-cachan.fr/Publis/PAPERS/PDF/ACEF-ijfcs09.
pdf.

Arulampalam, S. et al. (February 2002). “A Tutorial on Particle Filters for On-
line Non-linear/Non-Gaussian Bayesian Tracking.” In: 50.2, pp. 174–188.
url: http://citeseer.ist.psu.edu/article/arulampalam01tutorial.
html.

Assayag, Gerard and Andrew Gerzso, eds. (June 2009). New Computational
Paradigms for Computer Music. Sciences de la musique. Editions Delatour.

Assayag, Gerard, Camilo Rueda, et al. (1999). “Computer Assisted Composition
at Ircam: From PatchWork to OpenMusic.” In: 23.3. url: http://www.
ircam.fr/equipes/repmus/RMPapers/CMJ98/index.html.

Banerjee, Arindam et al. (2005). “Clustering with Bregman Divergences.” In: 6,
pp. 1705–1749. issn: 1533-7928.

Banzi, Massimo (September 2011).Getting Started with arduino. 2nd ed. O’Reilly
Media / Make.

Barbaresco, Frederic (2009). “Applications of Information Geometry to Radar
Signal Processing.” In: Emerging Trends in Visual Computing, LIX Fall Col-
loquium. Ed. by Frank Nielsen. Vol. 5416. Lecture Notes in Computer Sci-
ence. Springer. isbn: 978-3-642-00825-2.

Barkati, K., Y. Orlarey, and J. Barthélemy (2012). “Abstraction du processus
temps réel: une stratégie pour la préservation à long terme.” In:

51

http://ismir2004.ismir.net/proceedings/p058-page-318-paper216.pdf
http://ismir2004.ismir.net/proceedings/p058-page-318-paper216.pdf
http://dx.doi.org/10.1016/0304-3975(94)90010-8
http://dx.doi.org/10.1016/0304-3975(94)90010-8
http://portal.acm.org/citation.cfm?id=180782.180519
http://dx.doi.org/10.1142/S0129054109006905
http://www.lsv.ens-cachan.fr/Publis/PAPERS/PDF/ACEF-ijfcs09.pdf
http://www.lsv.ens-cachan.fr/Publis/PAPERS/PDF/ACEF-ijfcs09.pdf
http://citeseer.ist.psu.edu/article/arulampalam01tutorial.html
http://citeseer.ist.psu.edu/article/arulampalam01tutorial.html
http://www.ircam.fr/equipes/repmus/RMPapers/CMJ98/index.html
http://www.ircam.fr/equipes/repmus/RMPapers/CMJ98/index.html

52 BIBLIOGRAPHY

Basseville, Michèle and Igor V. Nikiforov (1993). Detection of abrupt changes:
theory and application. Prentice-Hall, Inc. isbn: 0-13-126780-9.

Baudart, Guillaume (September 2012). Antescofo: Vers une programmation syn-
chrone.

Berry, G. and L. Cosserat (1985). “The ESTEREL synchronous programming
language and its mathematical semantics.” In: Seminar on Concurrency.
Springer, pp. 389–448.

Berry, Gérard (2003). The Effectiveness of Synchronous Languages for the Devel-
opment of Safety-Critical Systems. url: http://www.esterel-technologies.
com/DO-178B/files/The-Effectiveness-of-Synchronous-Languages-
for-the-Development-of-Safety-Critical-Systems.pdf.

Boulez, Pierre and Andrew Gerzso (1988). “Computers in Music.” In: 258.4,
pp. 44–50. url: http://articles.ircam.fr/textes/Boulez88c/.

Bradski, G. (2002). “OpenCV: Examples of use and new applications in stereo,
recognition and tracking.” In: Proc. Intern. Conf. on Vision Interface (VI’2002),
p. 347.

Bradski, G. and A. Kaehler (2008). Learning OpenCV: Computer vision with
the OpenCV library. O’Reilly Media.

Burago, D., Y. Burago, and S. Ivanov (2001). A course in metric geometry.
Vol. 33. Graduate Studies in Mathematics. American Mathematical Society.

Burns, Alan and Andy Wellings (2009). Real-time systems and programming
languages: Ada 95, real-time Java, and real-time POSIX. 4th ed. Addison
Wesley.

Buttazzo, Giorgio C. (2005). Hard Real-time Computing Systems: Predictable
Scheduling Algorithms And Applications (Real-Time Systems Series). Springer-
Verlag. isbn: 0387231374.

Caspi, Paul and Marc Pouzet (June 1996). “Synchronous Kahn networks.” In:
31.6, pp. 226–238. issn: 0362-1340. doi: 10.1145/232629.232651. url:
http://doi.acm.org/10.1145/232629.232651.

Cauchi, Benjamin et al. (April 2012). “Sparse representations for modeling en-
vironmental acoustic scenes, application to train stations soundscapes.” In:
CFA - Congres Français d’Acoustique. url: http://articles.ircam.fr/
textes/Cauchi12a/.

Chabot, Xavier, Roger Dannenberg, and George Bloch (October 1986). “A
workstation in live performance: Composed improvisation.” In: International
Computer Music Conference (ICMC), pp. 537–540.

Chadabe, Joel (1984). “Interactive Composing: An Overview.” In: 8.1, pp. 22–
27. issn: 01489267. url: http://www.jstor.org/stable/3679894.

Chai, Wei (September 2005). Automated Analysis of Musical Structure. url:
http://alumni.media.mit.edu/~chaiwei/papers/whole0622.pdf.

Cichocki, A. et al. (2009). Nonnegative matrix and tensor factorizations: appli-
cations to exploratory multi-way data analysis and blind source separation.
Wiley.

Cohen, Albert et al. (September 2005). “Synchroning Periodic Clocks.” In: ACM
International Conference on Embedded Software (EMSOFT’05).

Cont, Arshia (2004). Improvement of Observation Modeling for Score Following.

http://www.esterel-technologies.com/DO-178B/files/The-Effectiveness-of-Synchronous-Languages-for-the-Development-of-Safety-Critical-Systems.pdf
http://www.esterel-technologies.com/DO-178B/files/The-Effectiveness-of-Synchronous-Languages-for-the-Development-of-Safety-Critical-Systems.pdf
http://www.esterel-technologies.com/DO-178B/files/The-Effectiveness-of-Synchronous-Languages-for-the-Development-of-Safety-Critical-Systems.pdf
http://articles.ircam.fr/textes/Boulez88c/
http://dx.doi.org/10.1145/232629.232651
http://doi.acm.org/10.1145/232629.232651
http://articles.ircam.fr/textes/Cauchi12a/
http://articles.ircam.fr/textes/Cauchi12a/
http://www.jstor.org/stable/3679894
http://alumni.media.mit.edu/~chaiwei/papers/whole0622.pdf

BIBLIOGRAPHY 53

— (May 2006a). “Realtime Audio to Score Alignment for Polyphonic Music In-
struments Using Sparse Non-negative constraints and Hierarchical HMMs.”
In: IEEE International Conference in Acoustics and Speech Signal Processing
(ICASSP). Toulouse.

— (September 2006b). “Realtime Multiple Pitch Observation using Sparse Non-
negative Constraints.” In: International Symposium on Music Information
Retrieval (ISMIR). Victoria, CA., pp. 206–2011. url: http :/ / cosmal.
ucsd.edu/arshia/papers/ArshiaCont_ismir2006.pdf.

— (August 2008a). “ANTESCOFO: Anticipatory Synchronization and Con-
trol of Interactive Parameters in Computer Music.” In: Proceedings of In-
ternational Computer Music Conference (ICMC). Belfast. url: http://
articles.ircam.fr/textes/Cont08a/.

— (September 2008b). Modeling Musical Anticipation: From the time of music
to the music of time.

— (May 2010). “A coupled duration-focused architecture for realtime music to
score alignment.” In: 32.6, pp. 974–987. url: http://articles.ircam.fr/
textes/Cont09a/.

— (July 2011). “On the creative use of score following and its impact on re-
search.” In: Sound and Music Computing. url: http://articles.ircam.
fr/textes/Cont11a/.

— (June 2012). “L’ordinateur qui joue comme un musicien.” In: 465, pp. 68–72.
Cont, Arshia, Shlomo Dubnov, and Gerard Assayag (May 2011). “On the Infor-

mation Geometry of Audio Streams with Applications to Similarity Com-
puting.” In: 19.4. url: http://articles.ircam.fr/textes/Cont10b/
index.pdf.

Cont, Arshia, Shlomo Dubnov, and David Wessel (September 2007). “Realtime
Multiple-pitch and Multiple-instrument Recognition For Music Signals using
Sparse Non-negative Constraints.” In: Proceedings of Digital Audio Effects
Conference (DAFx). Bordeaux.

Cont, Arshia, José Echeveste, et al. (September 2012). “Correct Automatic Ac-
companiment Despite Machine Listening or Human Errors in Antescofo.”
In: International Computer Music Conference (ICMC). url: http://hal.
inria.fr/hal-00718854/PDF/Antescofo_ICMC2012_new.pdf.

Cont, Arshia, Diemo Schwarz, and Norbert Schnell (2004). “Training Ircam’s
Score Follower.” In: AAAI Fall Symposium on Style and Meaning in Lan-
guage, Art and Music. url: http://cosmal.ucsd.edu/arshia/papers/
AAAI04/.

— (March 2005). “Training Ircam’s Score Follower.” In: IEEE International
Conference on Acoustics and Speech Signal Processing (ICASSP). Philadel-
phia. url: http://cosmal.ucsd.edu/arshia/papers/ICASSP05/.

Cont, Arshia, Diemo Schwarz, Norbert Schnell, and Christopher Raphael (Septem-
ber 2007). “Evaluation of Real-Time Audio-to-Score Alignment.” In: Inter-
national Symposium on Music Information Retrieval (ISMIR). Vienna, Aus-
tria.

Cuvillier, Philippe (September 2012). Suivi de partition: étude du cadre multi-
objets pour l’inférence de position.

http://cosmal.ucsd.edu/arshia/papers/ArshiaCont_ismir2006.pdf
http://cosmal.ucsd.edu/arshia/papers/ArshiaCont_ismir2006.pdf
http://articles.ircam.fr/textes/Cont08a/
http://articles.ircam.fr/textes/Cont08a/
http://articles.ircam.fr/textes/Cont09a/
http://articles.ircam.fr/textes/Cont09a/
http://articles.ircam.fr/textes/Cont11a/
http://articles.ircam.fr/textes/Cont11a/
http://articles.ircam.fr/textes/Cont10b/index.pdf
http://articles.ircam.fr/textes/Cont10b/index.pdf
http://hal.inria.fr/hal-00718854/PDF/Antescofo_ICMC2012_new.pdf
http://hal.inria.fr/hal-00718854/PDF/Antescofo_ICMC2012_new.pdf
http://cosmal.ucsd.edu/arshia/papers/AAAI04/
http://cosmal.ucsd.edu/arshia/papers/AAAI04/
http://cosmal.ucsd.edu/arshia/papers/ICASSP05/

54 BIBLIOGRAPHY

Cycling74 (2012). Max/MSP realtime graphical programming environment. url:
http://www.cycling74.com/.

Dannenberg, Roger B. (1984). “An On-Line Algorithm for Real-Time Accom-
paniment.” In: Proceedings of the International Computer Music Conference
(ICMC), pp. 193–198.

Desain, P. and H. Honing (1993). “The Mins of max.” In: 17.2, pp. 3–11.
Dessein, Arnaud (2009). Incremental multi-source recognition with non-negative

matrix factorization. Master. url: http://articles.ircam.fr/textes/
Dessein09b/index.pdf.

— (December 2012). Computational Methods of Information Geometry with
Real-Time Applications in Audio Signal Processing. url: http : / / hal .
inria.fr/tel-00768524/PDF/Dessein2012PhD.pdf.

Dessein, Arnaud and Arshia Cont (September 2011). “Segmentation statistique
de flux audio en temps-réel dans le cadre de la géométrie de l’information.”
In: GRETSI Special Session on Information Geometry.

Dessein, Arnaud, Arshia Cont, and Guillaume Lemaitre (August 2010). “Real-
time polyphonic music transcription with non-negative matrix factorization
and beta-divergence.” In: Proceedings of the 11th International Society for
Music Information Retrieval Conference (ISMIR).

— (2013). “Real-Time Detection of Overlapping Sound Events with Non-Negative
Matrix Factorization.” In:Matrix Information Geometry. Ed. by Frank Nielsen
and Rajendra Bhatia. Springer Berlin Heidelberg, pp. 341–371. isbn: 978-3-
642-30232-9. url: http://dx.doi.org/10.1007/978-3-642-30232-9_14.

Donin, Nicolas (2012). “The Act of Musical Composition – Studies in the Cre-
ative Process,” in: ed. by Dave Collins. Ashgate. Chap. Empirical and Histor-
ical Musicologies of Compositional Processes: Towards a Cross-fertilization.

Dubnov, Shlomo and Xavier Rodet (January 2003). “Investigation of phase cou-
pling phenomena in sustained portion of musical instruments sound.” In: 113,
pp. 348–359.

Echeveste, José (2011). Stratégies de synchronisation et gestion des variables
pour l’accompagnement musical automatique. Master. url: http://articles.
ircam.fr/textes/Echeveste11a/index.pdf.

Echeveste, José et al. (November 2011). “Formalisation des relations temporelles
entre une partition et une performance musicale dans un contexte d’accompagnement
automatique.” In: Colloque Modélisation des Systèmes Réactifs (MSR).

— (2012). “Antescofo: A Domain Specific Language for Realtime Musician-
Computer Interaction.” In: (Submitted).

Eckel, G., F. Iovino, and R. Caussé (1995). “Sound synthesis by physical mod-
elling with Modalys.” In: Proceedings of the International Symposium of Mu-
sic Acoustics.

Eidson, J.C. et al. (January 2012). “Distributed Real-Time Software for Cyber-
Physical Systems.” In: 100.1, pp. 45–59. issn: 0018-9219. doi: 10.1109/
JPROC.2011.2161237.

Eker, J. et al. (January 2003). “Taming heterogeneity - the Ptolemy approach.”
In: 91.1, pp. 127–144. issn: 0018-9219. doi: 10.1109/JPROC.2002.805829.

Foote, Jonathan (March 1997). “A Similarity Measure for Automatic Audio
Classification.” In: Proceedings AAAI 1997 Spring Symposium on Intelligent

http://www.cycling74.com/
http://articles.ircam.fr/textes/Dessein09b/index.pdf
http://articles.ircam.fr/textes/Dessein09b/index.pdf
http://hal.inria.fr/tel-00768524/PDF/Dessein2012PhD.pdf
http://hal.inria.fr/tel-00768524/PDF/Dessein2012PhD.pdf
http://dx.doi.org/10.1007/978-3-642-30232-9_14
http://articles.ircam.fr/textes/Echeveste11a/index.pdf
http://articles.ircam.fr/textes/Echeveste11a/index.pdf
http://dx.doi.org/10.1109/JPROC.2011.2161237
http://dx.doi.org/10.1109/JPROC.2011.2161237
http://dx.doi.org/10.1109/JPROC.2002.805829

BIBLIOGRAPHY 55

Integration and Use of Text, Image, Video and Audio Corpora. American
Association for Artificial Intelligence.

Foote, Jonathan and M. Cooper (2003). “Media Segmentation using SelfSim-
ilarity Decomposition.” In: Proceedings of SPIE Storage and Retrieval for
Multimedia Databases. Vol. 5021, pp. 167–175.

Franchon, Lea (2012). Temporal Analysis of Mixed Intrumental/Electronic Mu-
sic Scores.

Grubb, Lorin and Roger B. Dannenberg (1994). “Automating Ensemble Perfor-
mance.” In: Proceedings of the ICMC, pp. 63–69.

Halbwachs, Nicolas (1993). Synchronous Programming of Reactive Systems.Kluwer
Academics.

Henzinger, T.A. (2008). “Two challenges in embedded systems design: pre-
dictability and robustness.” In: 366.1881, pp. 3727–3736.

Henzinger, T.A., B. Horowitz, and C.M. Kirsch (January 2003). “Giotto: a time-
triggered language for embedded programming.” In: 91.1, pp. 84–99. issn:
0018-9219. doi: 10.1109/JPROC.2002.805825.

Henzinger, T.A. and J. Sifakis (October 2007). “The Discipline of Embedded
Systems Design.” In: 40.10, pp. 32–40. issn: 0018-9162. doi: 10.1109/MC.
2007.364.

Hoyer, Patrik O. (2004). “Non-negative Matrix Factorization with Sparseness
Constraints.” In: 5, pp. 1457–1469.

Karvinen, Tero and Kimmo Karvinen (March 2011). Make: Arduino Bots and
Gadgets: Six Embedded Projects with Open Source Hardware and Software.
2nd ed. O’Reilly Media / Make.

Kawahara, H. et al. (1999). “Fixed point analysis of frequency to instantaneous
frequency mapping for accurate estimation of F0 and periodicity.” In: Eu-
rospeech. Vol. 6, pp. 2781–2784.

Gossip is Philosophy (1995) 3.05. url: http : / / www . wired . com / wired /
archive/3.05/eno.html.

Kim, Kyoung-Dae and P.R. Kumar (13 2012). “Cyber-Physical Systems: A Per-
spective at the Centennial.” In: 100.13, pp. 1287–1308. issn: 0018-9219. doi:
10.1109/JPROC.2012.2189792.

Kopetz, H. (2011). Real-time systems: design principles for distributed embedded
applications. Vol. 25. Springer-Verlag New York Inc.

Kopetz, H. and G. Bauer (January 2003). “The time-triggered architecture.” In:
91.1, pp. 112–126. issn: 0018-9219. doi: 10.1109/JPROC.2002.805821.

Krstic, M. et al. (2007). “Globally asynchronous, locally synchronous circuits:
Overview and outlook.” In: 24.5, pp. 430–441.

Large, Edward W. and Marie Riess Jones (1999). “Dynamics of Attending: How
People Track Time-Varying Events.” In: 106.1, pp. 119–159.

Laurson, M., M. Kuuskankare, and V. Norilo (2009). “An overview of pwgl, a
visual programming environment for music.” In: 33.1, pp. 19–31.

Lee, Daniel D. and H. Sebastian Seung (2001). “Algorithms for Non-negative
Matrix Factorization.” In: Advances in Neural Information Processing Sys-
tems 13. Ed. by Todd K. Leen, Thomas G. Dietterich, and Volker Tresp.
MIT Press, pp. 556–562.

http://dx.doi.org/10.1109/JPROC.2002.805825
http://dx.doi.org/10.1109/MC.2007.364
http://dx.doi.org/10.1109/MC.2007.364
http://www.wired.com/wired/archive/3.05/eno.html
http://www.wired.com/wired/archive/3.05/eno.html
http://dx.doi.org/10.1109/JPROC.2012.2189792
http://dx.doi.org/10.1109/JPROC.2002.805821

56 BIBLIOGRAPHY

Lee, Edward A. (May 2008). “Cyber Physical Systems: Design Challenges.”
In: International Symposium on Object/Component/Service-Oriented Real-
Time Distributed Computing (ISORC). Invited Paper. url: http://chess.
eecs.berkeley.edu/pubs/427.html.

— (May 2009). “Computing Needs Time.” In: 52.5, pp. 70–79. url: http :
//chess.eecs.berkeley.edu/pubs/615.html.

— (June 2010). “CPS Foundations.” In: Proc. of the 47th Design Automa-
tion Conference (DAC). ACM, pp. 737–742. url: http://chess.eecs.
berkeley.edu/pubs/804.html.

Lee, Edward A. and Sanjit A. Seshia (2011). Introduction to Embedded Systems,
A Cyber-Physical Systems Approach. Lee & Seshia. isbn: 978-0-557-70857-4.
url: http://leeseshia.org/.

Lee, Edward A. and Haiyang Zheng (2007). “Leveraging synchronous language
principles for heterogeneous modeling and design of embedded systems.” In:
EMSOFT ’07: Proceedings of the 7th ACM & IEEE international conference
on Embedded software. Salzburg, Austria: ACM, pp. 114–123. isbn: 978-1-
59593-825-1. doi: http://doi.acm.org/10.1145/1289927.1289949.

Logan, B. and S. Chu (2000). “Music summarization using key phrases.” In: 2,
pp. II749–II752.

Loy, G. and C. Abbott (1985). “Programming languages for computer music
synthesis, performance, and composition.” In: 17.2, pp. 235–265.

Machover, Tod and J. Chung (1989). “Hyperinstruments: Musically intelligent
and interactive performance and creativity systems.” In: International Com-
puter Music Conference (ICMC), pp. 186–190.

Mahler, Ronald P. S. (2007). Statistical multisource-multitarget information fu-
sion. Artech House. isbn: 978-1-59693-092-6.

Mallat, Stéphane (November 27, 2011). “Group Invariant Scattering.” In: eprint:
1101.2286. url: http://arxiv.org/abs/1101.2286.

Mandel, Louis and Florence Plateau (April 2008). “Interactive Programming of
Reactive Systems.” In: Proceedings of Model-driven High-level Programming
of Embedded Systems (SLA++P’08). Electronic Notes in Computer Science.
Elsevier Science Publishers, pp. 44–59. url: MandelPlateau-SLAP-2008.
pdf.

Manoury, Philippe (1990). La note et le son. L’Hamartan.
— (November 2007). “Considérations (toujours actuelles) sur l’état de la musique

en temps réel.” In: url: http://etincelle.ircam.fr/prospectives.html.
McCartney, James (1996). “SuperCollider: a new real time synthesis language.”

In: Proceedings of the International Computer Music Conference. url: http:
//www.audiosynth.com/icmc96paper.html.

MIREX (August 2006). Score Following Evaluation Proposal. url: http://www.
music-ir.org/mirex/wiki/2006:Score_Following_Proposal (visited on
08/2012).

— (August 2010). Multiple Fundamental Frequency Estimation & Tracking Re-
sults. url: http://www.music- ir.org/mirex/wiki/2010:Multiple_
Fundamental_Frequency_Estimation_%26_Tracking_Results (visited on
08/2012).

http://chess.eecs.berkeley.edu/pubs/427.html
http://chess.eecs.berkeley.edu/pubs/427.html
http://chess.eecs.berkeley.edu/pubs/615.html
http://chess.eecs.berkeley.edu/pubs/615.html
http://chess.eecs.berkeley.edu/pubs/804.html
http://chess.eecs.berkeley.edu/pubs/804.html
http://leeseshia.org/
http://dx.doi.org/http://doi.acm.org/10.1145/1289927.1289949
1101.2286
http://arxiv.org/abs/1101.2286
MandelPlateau-SLAP-2008.pdf
MandelPlateau-SLAP-2008.pdf
http://etincelle.ircam.fr/prospectives.html
http://www.audiosynth.com/icmc96paper.html
http://www.audiosynth.com/icmc96paper.html
http://www.music-ir.org/mirex/wiki/2006:Score_Following_Proposal
http://www.music-ir.org/mirex/wiki/2006:Score_Following_Proposal
http://www.music-ir.org/mirex/wiki/2010:Multiple_Fundamental_Frequency_Estimation_%26_Tracking_Results
http://www.music-ir.org/mirex/wiki/2010:Multiple_Fundamental_Frequency_Estimation_%26_Tracking_Results

BIBLIOGRAPHY 57

Montecchio, Nicola and Arshia Cont (May 2011a). “A Unified Approach to Real
Time Audio-to-Score and Audio-to-Audio Alignment Using Sequential Mon-
tecarlo Inference Techniques.” In: Proceedings of International Conference on
Acoustics, Speech and Signal Processing (ICASSP).

— (September 2011b). “Accelerating the Mixing Phase in Studio Recording
Productions by Automatic Audio Alignemtn.” In: 12th International Sym-
posium on Music Information Retrieval (ISMIR). in press.

Muttersbach, J., T. Villiger, andW. Fichtner (2000). “Practical design of globally-
asynchronous locally-synchronous systems.” In: Advanced Research in Asyn-
chronous Circuits and Systems (ASYNC 2000) Proceedings. Sixth Interna-
tional Symposium on. IEEE, pp. 52–59.

Nielsen, Frank, ed. (2009). Emerging Trends in Visual Computing, LIX Fall
Colloquium, ETVC 2008, Palaiseau, France, November 18-20, 2008. Revised
Invited Papers. Vol. 5416. Lecture Notes in Computer Science. Springer.
isbn: 978-3-642-00825-2.

Noble, Joshua (2009). Programming Interactivity: A Designer’s Guide to Pro-
cessing, Arduino, and Openframeworks. 1st. O’Reilly Media, Inc. isbn: 978-
0-596-15414-1.

Orio, Nicola and F. Déchelle (2001). “Score Following Using Spectral Analysis
and Hidden Markov Models.” In: Proceedings of the ICMC.

Orlarey, Y., D. Fober, and S. Letz (2009). “Faust: an efficient functional ap-
proach to DSP programming.” In:

Page, E. S. (1954). “Continuous Inspection Scheme.” In: 41, pp. 100–115.
Peeters, Geoffroy (2004). “Deriving Musical Structures from Signal Analysis for

Audio Summary Generation: “Sequence” and “State” approach.” In: CMMR.
Vol. 2771.

Pennec, Xavier (2009). “Statistical Computing on Manifolds: From Riemannian
Geometry to Computational Anatomy.” In: Emerging Trends in Visual Com-
puting. Springer-Verlag, pp. 347–386. isbn: 978-3-642-00825-2. doi: http:
//dx.doi.org/10.1007/978-3-642-00826-9_16.

Puckette, M. (September 2002). “Using Pd as a score language.” In: Proc. Int.
Computer Music Conf. pp. 184–187. url: http://www.crca.ucsd.edu/
~msp.

Puckette, Miller (1988). “The Patcher.” In: Proceedings of International Com-
puter Music Conference (ICMC), pp. 420–429.

— (1991). “Combining Event and Signal Processing in the MAX Graphical
Programming Environment.” In: 15, pp. 68–77.

— (September 1997). “Pure data.” In: Proc. Int. Computer Music Conf. pp. 224–
227. url: http://www.crca.ucsd.edu/~msp.

— (2002). “Max at Seventeen.” In: 26.4, pp. 31–43. issn: 0148-9267. doi: http:
//dx.doi.org/10.1162/014892602320991356.

— (2004). “A divide between ‘compositional’ and ‘performative’ aspects of Pd.”
In: First International Pd Convention.

Puckette, Miller and Cort Lippe (1992). “Score Following in Practice.” In: Pro-
ceedings of the ICMC, pp. 182–185.

Raphael, Christopher (1999). “A Probabilistic Expert System for Automatic
Musical Accompaniment.” In: 10.3, pp. 487–512.

http://dx.doi.org/http://dx.doi.org/10.1007/978-3-642-00826-9_16
http://dx.doi.org/http://dx.doi.org/10.1007/978-3-642-00826-9_16
http://www.crca.ucsd.edu/~msp
http://www.crca.ucsd.edu/~msp
http://www.crca.ucsd.edu/~msp
http://dx.doi.org/http://dx.doi.org/10.1162/014892602320991356
http://dx.doi.org/http://dx.doi.org/10.1162/014892602320991356

58 BIBLIOGRAPHY

Raphael, Christopher (2001). “Music Plus One: A System for Expressive and
Flexible Musical Accompaniment.” In: Proceedings of the ICMC.

Risset, Jean-Claude (1999). “Composing in real-time?” In: 18.3, pp. 31–39.
Rowe, Robert (1992). Interactive music systems: machine listening and compos-

ing. MIT Press. isbn: 0-262-18149-5.
Scheirer, Eric D. (2000). Music listening systems. url: http://web.media.mit.

edu/~tristan/Classes/MAS.945/Papers/Technical/Scheirer_Thesis.
pdf.

Schnell, Norbert et al. (September 2005). “FTM — Complex data structures for
Max.” In: International Computer Music Conference (ICMC). url: http:
//mediatheque.ircam.fr/articles/textes/Schnell05a/.

Smaragdis, Paris and Judy Brown (2003). “Non-negative matrix factorization
for polyphonic music transcription.” In: IEEE Workshop on Applications of
Signal Processing to Audio and Acoustics.

Smith, J.O. (1992). “Physical modeling using digital waveguides.” In: 16.4,
pp. 74–91.

Snoussi, Hichem and Cédric Richard (January 2009). “Monte Carlo Tracking on
the Riemannian Manifold of Multivariate Normal Distributions.” In: IEEE
DSP’09.

Sorensen, A. (2005). “Impromptu: An interactive programming environment for
composition and performance.” In: Proceedings of the Australasian Computer
Music Conference 2009.

Sorensen, Andrew and Henry Gardner (2010). “Programming with time: cyber-
physical programming with impromptu.” In: Proceedings of the ACM in-
ternational conference on Object oriented programming systems languages
and applications. OOPSLA ’10. Reno/Tahoe, Nevada, USA: ACM, pp. 822–
834. isbn: 978-1-4503-0203-6. doi: 10.1145/1869459.1869526. url: http:
//doi.acm.org/10.1145/1869459.1869526.

Steinmetz, R. and K. Nahrstedt (2004). Multimedia systems. Springer.
Stroppa, Marco (1999). “Live electronics or live music? Towards a critique of

interaction.” In: 18.3, pp. 41–77.
Sukittanon, Somsak, Les E. Atlas, and James W. Pitton (2004). “Modulation-

Scale Analysis for Content Identification.” In: 52.10, pp. 3023–3035.
Szendy, Peter (1998). “Musique, temps réel.” In: 14. url: http://articles.

ircam.fr/textes/Szendy98b/.
Vercoe, Barry (1984). “The Synthetic Performer in the Context of Live Perfor-

mance.” In: Proceedings of the ICMC, pp. 199–200.
— (1993). Csound, A Manual for the Audio Processing System and Supporting

Programs with Tutorials. 1993.
“Multiple F0 estimation” (2006). In: Computational Auditory Scene Analysis:

Principles, Algorithms and Applications. Ed. by D.-L. Wang and G.J. Brown.
IEEE Press / Wiley, pp. 45–72.

Wang, G. (2009). The ChucK audio programming language." A strongly-timed
and on-the-fly environ/mentality".

Xia, G-S. et al. (2012). “Compact Representations of Stationary Dynamic Tex-
tures.” In: Proc. ICIP’12. url: http://hal.archives-ouvertes.fr/hal-
00662719.

http://web.media.mit.edu/~tristan/Classes/MAS.945/Papers/Technical/Scheirer_Thesis.pdf
http://web.media.mit.edu/~tristan/Classes/MAS.945/Papers/Technical/Scheirer_Thesis.pdf
http://web.media.mit.edu/~tristan/Classes/MAS.945/Papers/Technical/Scheirer_Thesis.pdf
http://mediatheque.ircam.fr/articles/textes/Schnell05a/
http://mediatheque.ircam.fr/articles/textes/Schnell05a/
http://dx.doi.org/10.1145/1869459.1869526
http://doi.acm.org/10.1145/1869459.1869526
http://doi.acm.org/10.1145/1869459.1869526
http://articles.ircam.fr/textes/Szendy98b/
http://articles.ircam.fr/textes/Szendy98b/
http://hal.archives-ouvertes.fr/hal-00662719
http://hal.archives-ouvertes.fr/hal-00662719

BIBLIOGRAPHY 59

Zeigler, B.P., H. Praehofer, and T.G. Kim (2000). Theory of modeling and sim-
ulation: Integrating discrete event and continuous complex dynamic systems.
2nd ed. Academic Press.

Zhang, Jun (2004). “Divergence function, duality, and convex analysis.” In:
16.1, pp. 159–195. issn: 0899-7667. doi: http://dx.doi.org/10.1162/
08997660460734047. url: http://neco.mitpress.org/cgi/content/
full/16/1/159.

http://dx.doi.org/http://dx.doi.org/10.1162/08997660460734047
http://dx.doi.org/http://dx.doi.org/10.1162/08997660460734047
http://neco.mitpress.org/cgi/content/full/16/1/159
http://neco.mitpress.org/cgi/content/full/16/1/159

	Introduction
	Synthetic Summary
	Publication List 2007-2012
	Research Advising Summary

	Realtime Machine Listening
	Automatic Transcription
	Automatic Alignment
	Discrete State-space Models of Time
	Continuous State-space Models of Time

	Music Information Geometry
	Motivations and Approach
	Automatic Change Detection
	Automatic Structure Discovery

	Reactive Synchronous Programming
	Computing and Programming of Mixed Music
	Authoring
	Software Architecture
	Performance

	Antescofo
	Informal Description of the Language
	Runtime Semantics

	Future Perspectives

	Towards Cyber-Physical Music Systems
	Motivations and Context
	Practical Challenges
	Domain-Specific Softwares
	Realtime Computing
	Distributed Deployment

	Scientific Challenges
	Heterogeneous Models of Time & Computation
	Temporal Semantics
	Preservation & Predictablity
	Architectures for Embedded Computer Audition

	Bibliography

