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ABSTRACT
Several methods are available to simulate electronic circuits. However, for nonlinear circuits, the stability
guarantee is not straightforward. In this paper, the approach of the so-called ”Port-Hamiltonian Systems”
(PHS) is considered. This framework naturally preserves the energetic behavior of elementary components
and the power exchanges between them. This guarantees the passivity of the simulations.

1. INTRODUCTION
Several methods (Wave Digital Filter [1], Nodal DK
method [2], etc.) are available to simulate electronic
circuits. However, for nonlinear circuits, the sta-
bility guarantee is not straightforward. In this pa-
per, the approach of the so-called ”Port-Hamiltonian
Systems” (PHS) is considered. This framework nat-
urally preserves the energetic behavior of elementary
components and the structure of power exchanges
between them, leading to passive modeling. PHS
have been introduced in the 1990’s [4, 5, 6]. They
correspond to open dynamical systems made of en-
ergy storage components, dissipative components,
and some connection ports through which energy
can transit.

The method is applied to the CryBaby wah pedal
circuit, which involves nonlinear and time-varying
components (see e.g. [7] for simulation based on the
Nodal DK approach).

A short introduction to PHS is given in sec-
tion 2. The CryBaby’s circuit is presented in
section 3. Its network is analysed within the
graph theory framework, and a dictionary of its
elementary components is given. In section 4, these
elements are used to derive a PHS corresponding
to this circuit. Section 5 is concerned with the
derivation of a numerical scheme which is designed
to preserve the power balance. Finally, simulation
results are presented in section 6.
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2. PORT-HAMILTONIAN SYSTEMS: BASICS
AND INTRODUCTORY EXAMPLE

2.1. Formalism

Consider an electronic circuit composed of:

nS storage components, energy of which is Es=
hs(xs)≥0, (typically, for a capacitance C, the
state and the positive definite function can be
the charge x=q and h(q)=q2/(2C));

nD dissipative components, for which the dissi-
pated power is Dd=Dd(wd)≥0 (typically, for a
standard resistance R, w can be a current w= i
and D(i) = R.i2 );

nP external ports, with incoming power Pp.

Denoting voltages v and currents i in receiver
convention, the power received by a dipole is given
by the product v.i. For storage components, these
quantities are related to dxs

dt and dhs

dxs
in some

way, as their product is precisely the received
power (vs.is = dEs

dt = dhs

dxs
.dxs

dt ): for the capacitance,
these constitutive laws are i = dq/dt = dx/dt and
v=q/C=dh/dq. A similar mapping of quantities is
provided for dissipative components, based on the
factorization Dd(wd)=wd.zd(wd): for the resistance,
i = w and v = R.i = z(w). For external ports, we
arrange voltages vp and currents ip in two vectors:
one is considered as an input up and the other one
as the associated output yp so that Pp=yp.up.

The linear relations fulfilled by all the voltages
and the currents due to the connection of compo-
nents are derived by applying Kirchhoff’s laws to the
network of the circuit (see § 3.1 and [7]). Combining
these relations and constitutive laws provides the
equations that governs the circuit. These equations
have the form of a so-called Port-Hamiltonian
System (PHS) [6, eq 2.53]:dx

dt

w
y

=

 Jx −K Gx

KT Jw Gw

GT
x GT

w Jy

 .

∇H(x)
z(w)

u

 , (1)

where matrices Jx, Jw, Jy are skew-symmetric.
∇H :RnS→RnS denotes the gradient of the total en-
ergy E=H(x)=

∑nS

s=1 hs(xs) w.r.t. the vector of the

states [x]s = xs. Function z :RnD→RnD denotes the
collection of functions zd w.r.t. the vector w∈RnD

of [w]d =wd so that z(w)T.w =
∑nD

d=1Dd(wd) is the
total dissipated power.

2.2. Example
Consider the RLC circuit in figure 1 described as

follows. For the inductance L, the state and the

Fig. 1: RLC circuit (notations and orientations).

positive definite function can be the magnetic flux
x1 = φ and h1(φ) = φ2/(2C) so that vL = dh1/dx1
and iL = dx1/dt. For the capacitance and the resi-
tance, quantities are defined as above with x2 = q
and w =w1 = iR. Port variables are arranged as in-
put u = [v1, v2]T and output y = [i1, i2]T . Applying
Kirchhoff’s laws to this simple serial circuit yields

vL
iC
iR
i1
i2

 =


0 −1 −1 +1 −1

+1 0 0 0 0
+1 0 0 0 0
+1 0 0 0 0
−1 0 0 0 0

 .


iL
vC
vR
v1
v2

 .

From the constitutive laws of components, this equa-
tion exactly restores the form (1), block by block. It
provides the algebro-differential equations that gov-
ern the system with input u and output y.

Remark 2.1. PHS [5, 6] are not restricted to
the “classical Hamiltonian systems” (CHS) [8], for
which nD = 0, nS is even and Jx is similar to

J?x =

(
0nS/2 −InS/2

InS/2 0nS/2

)
for symplectic coordinates.

For PHS, Jx can even be rank deficient: remov-
ing the capacitor (or the inductor) in figure 1 still
yields (1) with nS=1 and Jx=∅. However, PHS and
CHS can coincide for conservative systems (nD=0)
with nS/2 components that store kinetic energy and
nS/2 that store potential energy: removing the resis-
tor and closing the circuit (nP =0) in figure 1 yields
nS=2 and dx

dt = J?x.∇H(x).
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2.3. Passivity property
The following property holds.

Property 2.1 (Power Balance). The total energy
E=H(x) of a system governed by (1) is such that

dE

dt
= P −D, (2)

where P =uT.y (incoming power, external sources),
and D=z(w)T.w ≥ 0 (total dissipated power).

Proof. Rewrite (1) as a = M.b. By definition of E,
P and D, we have dE

dt + D −P = bT.Λ.a with Λ =
diag(InS

, InD
,−InP

). Moreover, from (1), bT.Λ.a =
bT.Λ.M.b is zero since Λ.M is skew-symmetric.

In electronics, this property is known as the Tel-
legen’s theorem [7]. More generally, this property
proves the passivity of (1) in the sense of dynamical
systems [9, def. 6.3], recalled below.

Definition 2.1 (Passive input/output system). A
system with input u, state x and output y is said
to be passive if there exists a continuously differen-
tiable positive semidefinite function V(x) (called a

storage function) so that dV(x)
dt ≤ yT.u . Moreover,

if dV(x)
dt ≤−ψ(x,u)+yT.u for some positive semidef-

inite function ψ, the system is said to be strictly
passive.

When the excitation stops (u = 0), the positive
storage function V stops increasing (passive sys-
tem), and decreases for strictly passive system
as long as ψ(x,0) > 0. Moreover, since V is
continuous and definite, if V decreases towards 0,
then x also tends towards 0 (Lyapunov asymptotic
stability).

PHS (1) proves passive (V ≡ H). Moreover, if
there exists a unique function F such that

F(x,u)=KT .∇H(x)+Jw.z
(
F(x,u)

)
+Gw.u, (3)

then ψ(x,u) = D(x,u) = zT
(
F(x,u)

)
.F(x,u). A

sufficient condition on z is given below.

Proposition 2.1. F(x,u) exists and is unique if z
is injective and its Jacobian matrix Jz(w) is positive
definite for all w.

Proof. If G(w) = w − Jw.z(w) is invertible,
then F in equation (3) is given by F(x,u) =
G−1

(
KT .∇H(x) + Gw.u

)
. This is true from the

global inverse function theorem if G is injective and
its jacobian matrix is always invertible. Indeed,
since Jw is skew-symetric, G(w1) − G(w2) = 0 im-

plies
(
z(w1) − z(w2)

)T
.
(
w1 − w2

)
= 0, and thus G

is injective if z is injective. If additionaly Jz(w) is
positive definite, X T.Jz(w)T .(InD

−Jw).X 6=0nD
for

all vector X 6=0nD
, so that JG(w) is invertible.

This paper aims to simulate such passive systems by
deriving numerical version of (1) so that a numerical
version of the power balance (2) is satisfied and the
Lyapounov stability is preserved.

3. CIRCUIT UNDER CONSIDERATION
The method is applied in this paper on the Cry-

Baby wah pedal, whose schematic is given in fig-
ure 3. First, the network is analysed in the meaning
of the graph theory. Second, a dictionary of some
elementary components is built.

3.1. Network analysis
An oriented graph is defined by a set N of nN nodes
and a set B of nB oriented branches. Such objects
are described by their incidence matrix Γ∈RnN×nB :

[Γ]n,b =

 1 if branch b is outgoing node n,
−1 if branch b is ingoing node n,
0 otherwise.

A graph representation of electronic ciruits is ob-
tained defining an electric potential εn on each node
n of the system’s graph, and assigning both a poten-
tial difference vb and a current ib for each branch b
(see convention figure 2). Then, it becomes possible
to use the Kirchhoff’s laws on graphs.

Fig. 2: Definition of potential ε, tension v and current
i on a branch b going from node n to node m.
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Fig. 3: Schematic of the circuit under consideration.

The graph of the CryBaby’s cicruit is made of 19
nodes (see figures 3 and 4). N1 is the input, N2 is
the output, N3 is the power supply and nodes N15 to
N19 are connected to the ground of the circuit (that
is, up = vp = 0, ∀p ∈ [15, · · · , 19]). The branches
of the network represent the components, which are
described thereafter.

3.2. Dictionary of elementary components
The dictionary is given in table 1. Note that choos-

ing variables x and w as in the dictionary, matrices
of the PHS (1) are canonical, that is, they do not
involve any physical constants.

Storage components: Such components are de-
fined by their storage function h associated with
the constitutive laws of table 1. In this paper,
all storage components are linear dipoles. The
roles of dh

dx and dx
dt are switched for inductors

and capacitors.

Resistors: The characteristics of dissipative com-
ponents are algebraic relations on w. Note that
one differentiates the resistive and the reactive
cases (see table 1).

Diodes: PN junctions are modeled as reactive com-
ponents by the Shockley equation. As in SPICE
simulators, a minimal conductance Gmin is
added to help convergence in the simulation
process. This avoids zero values in the com-
putation of the gradient for low values. IS is

the saturation current, µ is an ideality factor
and v0 the reference tension, specified for each
diode type. Note that the passivity property is
fulfilled (zD(wD)T.wD ≥ 0).

Transistors: NPN junctions are passive 3-ports
(PQ=DQ=εB .iB+εC .iC+εE .iE ≥ 0). In this
paper, we use the standard Ebers-Moll model
which preserves this passivity property. It is
described by:

iC = IS
(
evBE/vt − evBC/vt

)
− IS

βR

(
evBC/vt − 1

)
,

iB = IS
βF

(
evBE/vt − 1

)
− IS

βR

(
evBC/vt − 1

)
,

iE = IS
(
evBC/vt − evBE/vt

)
− IS

βF

(
evBE/vt − 1

)
,

where IS is the saturation current, βR and βF
are respectively the reverse and forward com-
mon emitter current gains and vt is the ther-
mal voltage. As for the diode, minimal conduc-
tances are included. The correponding dissipa-
tive characteristic zQ(wQ)=[iBC , iBE ]T is given

in table 1, denoting αR= βR+1
βR

and αF = βF+1
βF

.

The dissipated power is zQ(wQ)T.wQ=q1+q2+q3
with

q1 = IS .vBC

βR
.
(
evBC/vt−1

)
+ IS .vBE

βF
.
(
evBE/vt−1

)
,

q2 =IS .
(
vBC−vBE

)
.
(
evBC/vt−evBE/vt

)
,

q3 =Gmin.
(
(vBC−vBE)2+

v2BC

βR
+
v2BE

βF

)
,

which proves to be non-negative. The incidence
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Table 1: Dictionary of elementary components.
2-ports

Storage Diagram x h(x) Voltage v Current i

Inductance φ φ2

2L
dφ
dt

dh
dφ

Capacitance q q2

2C
dh
dq

dq
dt

Dissipative Diagram w z(w) Voltage v Current i

Resistance i R.i z(w) w

Reactance v v/R w z(w)

PN Diode v IS

(
exp

(
v
µv0

)
− 1
)

+ v.Gmin w z(w)

3-ports

Dissipative Diagram w z(w)

NPN Transistor
(
vBC
vBE

) (
iBC
iBE

)
=
(
αR −1
−1 αF

)
.

(
IS
(
evBC/vt−1

)
+ vBC .Gmin

IS
(
evBE/vt−1

)
+ vBE .Gmin

)

Potentiometer
(
vp1
ip2

) (
ip1
vp2

)
=
(

vp1/(1 + α.Rp)
ip2.(1 + (1 − α).Rp)

)

matrix for a transistor is

γQ =

BBC BBE( )1 1 NB
−1 0 NC
0 −1 NE

.

Potentiometer: This component is modeled as
two time-varying resistors, the sum of which is
Rp. To avoid 0 value of the resitors, 1Ω have
been added to those characteristics. The mod-
ulation parameter is α ∈ [0, 1]. We choose Bp1
as a conductance, and Bp2 as a resistance, so
that wP =[vp1, ip2]T (see table 1).

The incidence matrix for a potentiometer is

γP =

Bp1 Bp2( )1 0 N1

−1 1 N2

0 −1 N3

.

Remark 3.1. For the nonlinear components, some
resistors are added to model the resistance of con-
tacts. For sake of simplicity, they do not appear in
this paper. However, they are included in our final
simulation, choosing the same values as in the LT-
Spice models.

The circuit of figures 3 is composed of 6 capacitors
and 1 inductor organised as Bs = {C1, · · · , C6, L1}

AES 135th Convention, New York, USA, 2013 October 17–20
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Fig. 4: Equivalent graph of the CryBaby’s circuit.

(nS=7); 11 resistors, 1 PN diode, 2 NPN transis-
tors and a potentiometer (nD = 18) organised as
Bd = {R1, · · · , R11, D,Q1, Q2, P}; and nP =3 ports
(input/output signals and battery). Using the dic-
tionary, this circuit is formulated as the graph in
figure 4. The difficulty here remains in the choice
of variables which are adapted to realize the system
(see [6, sec. 2.4.5]). We choose resistors R1, R4, R8,
R9, R10 and R11 as conductances, and the other ones
as resistances. Thus, the sets of PHS variables are:

ẋ = [iC1, · · · , iC6 , vL1 ]T ,
∇H(x) = [vC1, · · · , vC6 , iL1 ]T ,

w = [{i, v}R|vd|vBC1 , vBE1 |vBC2 , vBE2 |vp1, ip2]T ,
z(w) = [{v, i}R|id|iBC1 , iBE1 |iBC2 , iBE2 |ip1, vp2]T ,

where {i, v}R is the set of wR and {v, i}R the set of
zR(wR) according to each resistor’s type, and

Inputs u = [vin, iout, vcc]
T ,

Outputs y = [iin, vout, icc]
T .

4. DERIVATION OF THE PHS
We proceed in two steps, as for the example in §2.2.

First, we establish the matrices of PHS (1). Second,
we replace each physical quantity using the adequate
constitutive laws. The difficulty here remains in the
first step. The method is illustrated on the simple
system of figure 5, whose net-list is:

C: N1, N2

L: N2, N3

R: N2, N4.

This is achieved as follows. We firstly need to
construct the unconnected incidence matrix γ̃, by
concatenating the incidence matrices of elementary
components. Recall that incidence matrix for 2-
ports with convention that the current goes from
N1 to N2 is

γ2-port =

B( )
1 N1

−1 N2

.

Thus, the unconnected incidence matrix for the sys-
tem of figure 5 is

γ̃ =

B1 B2 B3



1
...

... Ñ1

−1
...

... Ñ2

... 1
... Ñ2

... −1
... Ñ3

...
... 1 Ñ2

...
... −1 Ñ4

.

Then, rows having same node label are summed
together to form the actual incidence matrix:

γ =

B1 B2 B3


1
...

... N1

−1 1 1 N2

... −1
... N3

...
... −1 N4

.
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Fig. 5: Equivalent graph representation of an RLC
system: B1 ↔ C, B2 ↔ L and B3 ↔ R.

Input/output quantities are introduced by defining
a (virtual) reference node N0 (see figure 6), and the
set of port branches Bp={Bp1 , · · · , BpnP

}. The cir-
cuit branches are sorted by type (storage, dissipa-
tive and then port branches) and by linearity for
components (linear and then non-linear constitutive
laws). Note that the total number of branches nB is
the sum nS + nD + nP of the number of storage
branches, dissipative branches and port branches.
In the receiver convention, the total incidence ma-

Fig. 6: Introducing reference node N0 and port
branches Bp in the graph of figure 5.

trix of the system is given by Γ = [γ, γp]∈RnN×nB

where element (n, b) of γp ∈ RnN×nP is −1 if the
port branch b is connected to node n, 0 otherwise.
Defining v = [vs,vd,vp]

T ∈ RnB the branches ten-
sions, i = [is, id, ip]

T ∈ RnB the branches currents,
and E = {ε1, · · · , εnN

} the set of the potentials on
the (real) nodes of the system, the Kirchhoff voltage
law can be expressed as v=ΓT.E, and the Kirchoff’s
current law as Γ.i = 0. Hence, passivity of the sys-
tem is guaranted if the following set of relations is
true all the time:(

v
0

)
=

(
ΓT 0
0 Γ

)
.

(
E
i

)
. (4)

Note that the Tellegen’s theorem can be expressed
as vT. i = 0, and thus vTp. ip = −P is the power
of the sources in emitter convention. To take it in
consideration, the tensions on port branches Bp are
considered in the opposite way. The equivalent PHS
formulation of the graph of the circuit is derived by
defining X=[v,E, i]T and rewriting equation (4) as[

−InB
ΓT 0

0 0 Γ

]
︸ ︷︷ ︸

�

.X = 0nN+nB
.

Then, the quantities are reorganized through the
permutation Π, to build the vector X̃ = Π[X] =
[ẋ,w,y,∇H(x), z(w),u,E]T . The same permuta-

tion Π is applied on the row vectors of � to form �̃.
Finally, the node potentials are eliminated using the
Gauss-Jordan elimination algorithm on the relation
�̃.X̃ = 0, in order to obtain [ẋ,w,y]T as the (looked
for) linear combinaison of [∇H(x), z(w),u]T .

5. SIMULATION
In this section, a numerical scheme is specially de-

signed so that a numerical time version of the power
balance (2) is satisfied.

5.1. Discrete-time version of the power balance
A numerical approximation of equation (2) is
δtE(k) = P(k) − D(k), where k denotes the sam-
ple number, δT is the sampling period and δtE(k) =
E(k+1)−E(k)

δT is a finite difference scheme. E = H(x)
is a composed function of time. This leads to in-
troduce the discrete hamiltonian gradient so that[
δxH(x, δx)

]
s

= hs[xs(k)+δxs(k)]−hs[xs(k)]
δxs(k)

, where

δxs(k)=xs(k + 1) − xs(k), ∀s∈ [1 · · ·nS ]. Specially
designed numerical scheme preserving the stability
for solving equation (2) is given by:

δtE(k) = [δxH(x, δx)]
T
. δtx(k)

where δtx(k)= x(k+1)−x(k)
δT . Hence, placing the sam-

ple number in subscript, a numerical version of sys-
tem (1) preserving the passivity is given by

xk+1−xk

δT
= Jx.δxH(x, δx) − K.z(wk) + Gx.uk

wk = KT .δxH(x, δx) + Jw.z(wk) + Gw.uk
yk = GT

x .δxH(x, δx) + GT
w.z(wk) + Jy.uk

.

(5)

System (5) is implicit on xk+1 and wk. This point
is discussed thereafter.

AES 135th Convention, New York, USA, 2013 October 17–20
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5.2. Linear storage components case
Given the constitutive laws of table 1, the (locally)
stored energy is hs(xs) = x2s/(2Cs) for s∈ [1 · · ·nS ],
with Cs the linear characteristic of the s-th storage
component (Cs is a capacitance or an inductance),

and δxs
hs(xs,k, δxs,k) = 1

2Cs
.
x2
s,k+1−x

2
s,k

xs,k+1−xs,k
. Hence,

defining Qx = diag[C−11 , · · · , C−1nS
], the numeri-

cal gradient of the Hamiltonian is δxH(x, δx) =
1
2 Qx [xk+1 + xk], and thus the system to solve is

xk+1 = Ax.Bx.xk + δT.Ax.[Gx.uk −K.z(wk)]
wk = Aw.xk + Bw.z(wk) + Cw.uk
yk = Ay.xk + By.z(wk) + Cy.uk

,

with

Ax =
(
InS
− (δT/2).Jx.Qx

)−1
(6)

Bx = InS
+ (δT/2).Jx.Qx (7)

Aw = (1/2).KT .Qx.
(
InS

+ Ax.Bx

)
(8)

Bw = Jw − (δT/2).KT .Qx.Ax.K (9)

Cw = Gw + (δT/2).KT .Qx.Ax.Gx. (10)

Ay = (1/2).Gx.Qx.
(
InS

+ Ax.Bx

)
(11)

By = Gw − (δT/2).Gx.Qx.Ax.K (12)

Cy = Jy + (δT/2).Gx.Qx.Ax.G
T
x . (13)

Remark 5.1. The dimension of the dissipative part
of the system can be significantly reduced by dis-
tributing the relations involving linear dissipative
components on the structure matrices.

System (6) is still implicite on wk, so one uses the
Newton-Raphson algorithm to approximate the dis-
sipative state value.

5.3. Newton-Raphson method
Newton-Raphson method can be summarized as fol-
lows. The nearest root w∗k of a function f : wk ∈
RnD → f(wk) ∈ RnD (so that f(w∗k) = 0) is itera-
tively approximated by the following algorithm:

wk,n+1 = wk,n −Jf (wk,n)−1. f(wk,n)

with Jf (.) the Jacobian matrix of f . In the present
case: f(wk) = wk −Bw.z(wk)− (Aw xk + Cwuk)︸ ︷︷ ︸

Ck

.

5.4. Simulation algorithm
Denoting by T the number of time-steps and N

the number of Newton-Raphson iterations per time-
step, the simulation algorithm is given thereafter:

compute equations 6 to 13

x1 ← 0nS

w0 ← 0nD

for k = [1→ T ]
wk,1 ← wk−1
Ck ← Aw.xk + Cw.uk
for n = [1→ N ]

f(wk,n)← wk,n −Bw.z(wk,n)− Ck
Jf (wk,n)← InD

−Bw.Jz(wk,n)
wk,n+1 ← wk,n −Jf (wk,n)−1.f(wk,n)

end for n

wk ← wk,N+1

yk ← Ay.xk + By.z(wk) + Cy.uk
xk+1 ← Ax.Bx.xk + δT.Ax.[Gx.uk −K.z(wk)]

end for k

6. RESULTS ON THE CRYBABY’S CIRCUIT
We use the algorithm of section 5.4 with the sam-

pling rate δT−1 = 192kHz, and N = 3 Newton-
Raphson iterations. Note that the wah parameter
is the potentiometer coefficient α(k), iout = 0A and
vcc = 9V . First, we apply a guitar sample as an
input on vin and make the wah parameter contin-
uously varying. The simulation performs well (au-
dio examples are available here1). Second, the in-
put vin is defined as a white noise normalised to
1V , and an equivalent LTSpice simulation of the cir-
cuit is realized. Note that LTSpice doesn’t support
”.wav” files at 192kHz, so the sample rate in LT-
Spice is δT−1 = 44, 1kHz. The transfer functions

Tcry = 20.log10
|TF (Vout)|
|TF (Vin)| are given in figure 7.

7. CONCLUSIONS
We have established a method to recast an analog
audio circuit into PHS formalism, which guarantees
passivity of the model. This method lies on two
points: (1) the graph theory to describe a circuit
network and (2) a dictionary of elementary com-
ponents which are conformable with PHS theory.
Then, we designed a first-order numerical scheme
that preserves passivity. The whole procedure has

1http://recherche.ircam.fr/anasyn/

falaize-skrzek/html/aes135.html
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Falaize-Skrzek AND Hélie Simulation of a wah pedal: a port-Hamiltonian approach

Fig. 7: Comparison of the transfer functions of LTSpice simulation and our PHS simulation of the CryBaby.

been applied to a time-varying audio circuit, the
CryBaby wah pedal. Finally, our simulations are
consistent with LTSpice results. One persective for
further work is to consider higher-order numerical
schemes (Runge-Kutta, etc.). Another perspective
is to automatically generate a SHP and its simula-
tion code from a netlist.
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