
Because of technological constraints, transducers are usually not ideal. In musical and audio applications, this
is the case of electrodynamic loudspeakers used eg. in guitar amplifiers. Thus, to build realistic numerical
simulations of such systems, it is important to pay close attention to their non ideality. These systems include
several nonlinearities, mainly due to mechanical suspensions, magnetic properties and temperature variations. At
the same time, it is not straightforward to model such refinements while preserving basic physical properties such as
causality, stability, passivity. In this paper, we introduce a new modeling of loudspeaker which includes fractional
order dynamics and nonlinearities, such that the power balance is guaranteed. Since the mechanical-acoustic
coupling is well described in the literature, we focus on the functioning of loudspeaker in the electrical, magnetical
and mechanical domains, applying a standard acoustical load on the diaphragm. The approach is based on Port-
Hamiltonian Systems theory. This formalism naturally preserves the energetic behavior of elementary components
and the power balance, including the nonlinear case. In conjunction, we describe the nonlinearities due to the lossy
coil in terms of fractional derivative. This permit to well approximate the nonlinear electrical impedance using
a reduced number of parameters, still preserving passivity of continuous-time models despite the approximation.
By transcribing this property in the digital domain, we guarantee the stability of the simulations. Thermodynamic
effects are neglected in this preliminary work, but can directly be incorporated in the Port-Hamiltonian model.

Introduction
For several acoustic instruments (such as guitars,

keyboards, strings, etc.), an electric version exists. These
electric instruments require amplification. This stage of
the audio chain has a determinant influence on the audio
output. Combo amplifiers, which include conditioning,
processing, amplification, and finally transduction are
generally used. These complex nonlinear systems integrate
several physical fields: electrical, magnetic, mechanical,
acoustic, and also thermal effects (see eg. [1, 2]). Thus,
building a realistic digital simulation of electric input to
acoustical output behavior of these systems is a challenge.
In a divide and conquer strategy, we focus here on the
transducer, namely the electrodynamic loudspeaker. Those
systems are well-known electrodynamic systems whose use
has been widespread, whether in sound diffusion or as a
part of measurement systems (musical and room acoustic,
nondestructive testing, etc.). However, they are themselves
complex nonlinear systems coupling between multiple
physical domains. For these reasons, it is difficult to predict
their response to varied stimuli.

An electrodynamic loudspeaker is classically described
by the Thiele and Small model [3, 4], which is valid when
the system is used in its linear operating region. However,
this model does not reflect all the nuances that appear
when the system is used at high level. The modeling of
non-linear effects have been extensively studied and several
methods have been proposed: variation of the Thiele and
Small parameters [5, 6], Volterra [7] and Wiener-Volterra [8]
series, or nonlinear state representation [9, 10]. However,
the physical interpretation of these various models and the
preservation of passivity is not obvious. Moreover, the
moving coil has a solid iron core, inducing fractional order
dynamic [11, 12].

In this paper, we propose a simplified model of the
electrodynamic loudspeaker, preserving the inherent
passivity of the original physical system. This model is
given in the formalism of ” Port-Hamiltonian Systems”. It
includes in particular fractional order dynamic for the coil
and nonlinear stiffness for the suspension. Thermal effects
are neglected, and acoustic load is expressed as an external
source of power.

The paper is organized as follows. The Port-Hamiltonian
framework is recalled section 1. In section 2 we recast
the lossy coil as a fractional order integrator and give its
port-Hamiltonian formulation. Section 3 is devoted to the
formulation of the complete model, including the non-linear
stiffness. Finally, a first order numerical scheme preserving
passivity and simulation results are given section 4.

1 Port-Hamiltonian Systems: basics
and introductory example

We firstly present the PHS framework. Note that
our formulation of SHP is slightly different from that
found in the literature [13, 14, 15] since the memoryless (ie.
dissipative) part of the system is computed aside, introducing
a dissipative state. Then we give an illustrative example.

1.1 Formalism
Physical systems proves passive. They are made of:

• storage components with total energy E(t)≥0

• dissipative components with dissipated power PD(t)≥0

• external ports with total provided power PS(t).

Port Hamiltonian Systems (PHS) encode this passivity
property through the power balance

dE(t)
dt

= −PD(t) + PS(t). (1)

The Hamiltonian is the total energy H : x 7→ H(x) ∈ R+

expressed on a choosen state x∈RnS so that dE
dt =∇H(x)T dx

dt .
The dissipated power is factorized as PD = z(w)T w with
w ∈ RnD a choosen dissipative state and z : RnD → RnD a
dissipation function. A similar factorization is done for
external sources with input vector u ∈RnP and output vector
y ∈ RnP so that PS = uT y. A port-Hamiltonian system is the
structure (2), with Jx ∈ R

nS×nS , Jw ∈ R
nD×nD , Jy ∈ R

nP×nP

skew symmetric matrices (such that JT =−J). This structure
restores the power balance since S is skew-symmetric:
BT A = BT SB = dE

dt + PD − PS = 0.
dx
dt
w
−y

︸ ︷︷ ︸
A

=


Jx −K Gx
KT Jw Gw
−Gx

T −Gw
T Jy

︸                         ︷︷                         ︸
S

·


∇H(x)
z(w)

u

︸      ︷︷      ︸
B

(2)



Figure 1: A simple RLC circuit.

1.2 Example
Consider the simple RLC-circuit of figure 1, where q is

the charge on one of the two plates of the capacitor with
capacitance C and φ is the magnetic flux considered in the
solenoid with inductance L. R is a linear resistor. The two
storage components are the capacitor C and the inductor
L with energies HC(q) = q2/(2C) and HL(φ) = φ2/(2L)
respectively. The Hamiltonian is H(x) = HC(x1) +HL(x2),
with the state x = (q, φ)T , so that ∇H(x) = (eC , iL)T

and dx
dt = (iC , eL)T . The power dissipated in the resitor is

PD = z(w)w with the state w = iR and the linear characteristic
z(w) = Rw = eR. The input is u = (e1, e2)T and the output is
y = (i1, i2)T . Applying Kirchhoff’s laws, the dynamic of this
circuit is recasted as the PHS (2), with

Jx =

(
0 +1
−1 0

)
, K =

(
0

+1

)
, Gx =

(
0 0

+1 −1

)
,

Jw = 0, Gw = (0, 0), Jy =

(
0 0
0 0

)
.

Note that replacing linear components by nonlinear ones
lets the structure matrices unchanged. A method to
automatically generate this structure for analog circuit based
on a dictionary of elementary components and graph theory
is described in [16]. The next section is devoted to the PHS
formulation of the fractional moving coil.

2 Fractional moving coil
The standard linear inductor of example 1.2 can be

expressed as a PHS with state xL =φ, input uL = eL = dxL
dt and

output yL = iL = dHL
dφ

:(
dxL
dt
−yL

)
=

(
0 1
−1 0

)
·

(
∂HL(xL)
∂xL

uL

)
, (3)

so the energy stored in a storage component is obtained
by accumulation of the input through the storage function
HL(xL) = HL

(∫ t
0 u(τ)dτ

)
. Thus the fractional coil has to

be considered as a fractional integrator [11, 12]. In Laplace
domain:

iα(s) =
eα(s)
Lαsα

(4)

where s is the complex frequency and Lα is of unit
[V].[T]α.[A]−1. First, we recast the fractional integrator
as an infinite dimensional PHS. Second, we give the finite
dimensional approximation for practical implementation.

2.1 PHS formulation of fractional integrator
Here we build a PHS which restores the fractional

integrator of order α ∈]0, 1[. A well established formalism
for the realization of such transfer functions exists: the so

called diffusive representation [17]. The complete theory
is out the scope of this paper, but we recall the main
steps of the method. Defining s = ρ.eiθ, with ρ ≥ 0 and
θ ∈ [−π, π[, the transfer function of the fractional integrator
Tα(s) = s−α exhibits a cut C = R−. The jump of Tα across C
is µ(−ξ ∈ C) :

µ(−ξ) =
Tα(−ξ − i0+) − Tα(−ξ + i0+)

2iπ
=

sin(βπ)
πξα

. (5)

The residue theorem gives a realization of the transfer
function as the sum of contributions of the singularities
along the cut (weighted continuous aggregation of linear
damping Tξ(s)= 1

s+ξ , ξ∈R
+):

Tα(s) =

∫ +∞

0

µ(−ξ)·dξ
1 + ξ

, (6)

which is well posed since
∫ +∞

0

∣∣∣∣ µ(−ξ)·dξ
1+ξ

∣∣∣∣<∞. Defining the
output of the fractional integrator as yα(s) = Tα(s).uα(s), an
input - state - output representation is: dxξ

dt = −ξ · xξ + uα, xξ(0) = 0,
yα =

∫ +∞

0 µ(−ξ) · xξ · dξ.
(7)

The system (7) can be written as a PHS with inductance
density Lξ = 1

µ(−ξ) , hamiltonian density Hξ(xξ) = x2
ξ/(2Lξ)

and resistance density Rξ = Lξ · ξ. The total energy is
Hα(xα) =

∫
ξ∈C
Hξ(xξ)dξ with infinite dimensional state

xα ∈RR+ . We denote the concatenation of local Hamiltonian
gradient dHξ

dxξ
and local dissipation zξ(wξ) = Rξ.wξ for all

ξ ∈ C by ∇Hα(xα) and z(wα) with wα ∈ R
R+ respectively.

Then the PHS corresponding to (7) is
dxα
dt

wα

yα

 =


0∞×∞ −I∞ 1∞×1

I∞ 0∞×∞ 0∞×1

11×∞ 01×∞ 01×1

 ·

∇Hα(xα)
zα(wα)

uα

 , (8)

with 0 a matrix full of 0, 1 a matrix full of 1, and I the identity
matrix, each with proper dimensions. The realization of the
coil (4) with transfert function TLα (s) = (Lα · sα)−1 is given
by system (8), with Lξ =

Lα
µ(−ξ) .

2.2 Finite order approximation
For implementation, finite approximation of diffusive

representation (6) is built based on a finite set of poles −ξn

localized on the cut C. Here we strictly apply the method
given in [17, sec. 5.1.2] to obtain a least square optimization
of the weights µ = (µ1 · · · µN)T by minimizing an appropriate
distance between Tα and its discretisation T̂α.

T̂α(s)
N∑

n=1

µn

s + ξn
= E(s) · µ; E(s) =

(
1

s+ξ1
· · · 1

s+ξN

)T
(9)

with E(s) =
(

1
s+ξ1
· · · 1

s+ξN

)T
. To obtain an accurate

approximations on the audible range (F− = 20 Hz to
F+= 20 kHz), function ω 7→ Gα(s = ι̇ω) must be accurately
approximated on the (dimensionless) angular frequency
range ωmin = F−

F+
c

= 10−3 to ωmax = F+

F−c
= 10+3. Additionally,

frequencies are perceived according to a logarithmic scale,
so the poles ξn’s are chosen as

−ξn =−1−10`n ∈C, for 0≤ n ≤N+1, (10)



where the `n’s are equally spaced, with step δ=
`N+1−`0

N+1 , from
`0 to `N+1 . Finally, gain deviations are perceived relatively
to the reference gains, so the weights µ, are optimized with
respect to the objective function

O(µ) =

∫ ωmax

ωmin

∣∣∣∣∣∣1 − T̂α(s= ι̇ω)
Tα(s= ι̇ω)

∣∣∣∣∣∣
2

d lnω. (11)

In practice, the integral in (11) is approximated by a finite
sum on a frequency grid, here, lnωk = lnωmin + k

K ln ωmax
ωmin

for 0 ≤ k ≤ K. Moreover, a regularization term (standard
Tikhonov penalty proportional to µTµ) is required to
avoid ill-conditioned matrix inversion if N = dim(µ) is
not sufficiently small. This yields the following practical
objective function

Ô(µ) = (Mµ − T)
T
W(Mµ − T) + εµTµ, (12)

where ωk− 1
2

=
√
ωk−1ωk denotes the geometric mean of ωk−1

and ωk for 1 ≤ k ≤ K. Matrix M is composed of the rows
[M]k,∗ = E(s = ι̇ωk− 1

2
)T defined in (9), vector T is composed

of [T]k =Tα(s= ι̇ωk− 1
2
) and the diagonal matrix W is defined

by [W]k,k = (lnωk−lnωk−1) /
∣∣∣ [T]k

∣∣∣2. The Tikhonov penalty
parameter ε ≥ 0 is automatically adjusted by dichotomy
and testing the condition number, in order that the final
condition number of the inverse matrix is larger than the
float precision. The minimization of (12) is straightforward:
first, the complex values in M and T are decomposed into
their real and imaginary parts; second, this standard least
square problem is analytically solved; third, the analytic
result is recomposed into a closed form with respect to
the complex quantities for conciseness. This yields the
real-valued optimal weights

µopt =

(
M

T
WM + εIN

)−1
·Re

(
M

T
WT

)
. (13)

Defining Ln =
Lα
µ

opt
n

and Rn = Ln · ξn for all n ∈ [1 · · ·N], the
finite dimensional PHS for the realization of the lossy coil is
composed of N inductors with energies Hn(xn) =

x2
n

2Ln
and N

resistors with dissipations zn(wn)=Rn · wn. It reads as
dx̂α
dt

ŵα

ŷα

 =


0N×N −IN 1N×1

IN 0N×N 0N×1

11×N 01×N 01×1

 ·

∇Ĥα(x̂α)
ẑα(ŵα)

ûα

 , (14)

choosing the states x̂α = (x1 · · · xN)T and ŵα = (w1 · · ·wN)T ,
the total energy being Ĥα(x̂α) =

∑N
n=1

x2
n

2Ln
and the total

dissipation function being ẑα(ŵα) = (z1(w1) · · · zN(wN))T.
This correspond to the parallel connection of N serial RL
components (see figure 2). This model is used in the next
section to build the PHS of the electrodynamic loudspeaker.

Figure 2: Element realizing the fractional lossy coil.

3 PHS model of the loudspeaker
Firstly we recast a linear model of the loudspeaker in PHS

formalism using well known electro-mechanical analogy.
Secondly we built a parametric nonlinearity to model the
stiffness due to the surround and the spider. Thirdly we
design a numerical scheme that preserves passivity for
solving the system’s dynamic. Finally, simulation results for
a ”” are given.

Figure 3: Sectional view of a loudspeaker.

3.1 Port-Hamiltonian formulation of the
standard model

A well established electronic analog of the loudspeaker
is given figure 6. Choosing the momentum as the state of
the mass xm = m.vm, the kinetic energy is Hm(xm) =

x2
m

2.m .
Newton’s law of dynamic is then dxm

dt = Fm, and dHm(xm)
dxm

= vm.
With the analogies (see eg. [3, 4]) i ↔ v and e ↔ F, the
mass is equivalent to an inductance with L = m. Similarly,
choosing the deviation from the equilibrium as the state for
the linear stiffness K, the potential energy is HK(xK) = K x2

K
2 .

Using the previous analogies, it corresponds to a capacitance
with C = 1

K . Choosing wa = vm, the damping function is
Fa = za(wa) = Ra.wa, which corresponds to a resistance.

Figure 4: Basic electric analog of the loudspeaker.

The acoustical port variables are the fluid velocity vac
which is supposed to stick at the diaphragm, and the force
Fac due to the gradient of pressure between the two sides
of the diaphragm. The electro-mechanical conversion (ie.
Laplace force) is modeled as a conservative gyrator with ratio
Bl: FBl = Bl.iL and eBl = Bl.vm. Finally, the loudspeaker can
be recasted as the PHS (15).

eL

Fm

vk

va

−iin

−vac


=



0 −Bl 0 0 −1 0
+Bl 0 −1 −1 0 +1

0 +1 0 0 0 0
0 +1 0 0 0 0

+1 0 0 0 0 0
0 −1 0 0 0 0





iL

vm

Fk

Fa

ein

Fac


(15)



3.2 Non-linear stiffness
The main non-linearity is the saturation effect of the

spider’s stiffness (see eg. [5, 6]). In this section, we built
a parametric storage function which phenomenologically
restores the saturation, preserving passivity. Here, ∇HK(x)
is a linear combination of odd basis functions so that the
main part of the system is linear with respect to parameters
(K0, Ksat):

∇HK(x) = K0c0(x) + Ksatcsat

(
x

xsat

)
(16)

with c0(x) the linear behaviors around origin and csat(x) the
saturation normalized in x =

xsat
2 . We choose c0(x) = x and

csat(x) = 4
4−π .

(
tan( π.x2 ) − π.x

2

)
. The associated energy is

H̃K(x) =

∫ x

0
c(x̃)dx̃ = K0.H0(x) + Ksat.Hsat

(
x

xsat

)
(17)

with Hsat(x) = −
8.xsat
π(4−π) .

(
ln

∣∣∣∣cos
(
π.x
2

)∣∣∣∣ + π2

8 .x
2
)

and H0(x) =

x2

2 . ThenHK(x) ≥ 0 for all (K0,Ksat) ∈ R+
∗ × R

+
∗ .

3.3 Final model
Simply replacing the linear stiffness by the non-linear

version from section 3.2 and the standard inductance by the
fractional version (14) in (15), the proposed PHS model of
the electrodynamic loudspeaker is

δxl
2δT
δxK
2δT
w
−y

 =


Jl Jlnl −Kl Gl

−Jlnl
T . . .

Kl
T . . .

−Gl
T . . .

 ·


δxH̄(x̄, δx̄)
δxH̃K(x̃K , δx̃K)

z(w)
u


(18)

with

x = (x̂1 · · · x̂N , xm, x̃K)T ,

∇H(x) =
(
∂xĤ1(x1) · · · ∂xĤN(xN), ∂xHm(xm), ∂xH̃K(x̃K)

)T
,

w = (ŵ1 · · · ŵN ,wR,wa)T ,

z(w) = (ẑ1(ŵ1), · · · , ẑN(ŵN), zR(wR), za(wa))T ,

u = (ein, Fac)T ,

y = (iin, vac)T .

Jl =

(
0N,N −Bl · 1N,1

+Bl · 11,N 0

)
, Jlnl =

(
0N,1
−1

)
Kl =

(
IN 0N,1

01,N −1

)
; Gl =

(
+1N,1 0N,1

0 −1

)

Figure 5: ?

4 Numerical simulation and results
In this section, a numerical scheme is specially designed

so that a numerical time version of the power balance (1) is
satisfied.

4.1 Discrete-time version of the power balance
Applying the midpoint rule δtE(k) =

E(k+1)−E(k−1)
2δT , with k

the sample number and δT the sampling period, a numerical
approximation of (1) is δtE(k) = PS(k) − PD(k). E = H(x)
is a composed function of time. This leads to introduce the
discrete hamiltonian gradient so that

[
δxH(x, δx)

]
s =
Hs[xs(k) + 1

2δxs(k)] −Hs[xs(k) − 1
2δxs(k)]

δxs(k)
,

(19)
where δxs(k)= xs(k + 1) − xs(k − 1), ∀s ∈ [1 · · · nS ]. Note
that for a set of nl linear storage components hs(xx) ≡ x2

s
2Cs

,
δxlHl(xl) = Qxl with Q = diag(x1 · · · xnl ) and Hl =

∑nl
s=1 hs.

Specially designed numerical scheme preserving the stability
for solving equation (1) is given by:

δtE(k) =
[
δxH(x, δx)

]T . δtx(k)

where δtx(k) =
x(k+1)−x(k−1)

2δT . Hence, a numerical version of
system (2) preserving the passivity is given by


δxl
2δT
δxK
2δT
−y

 =


Jl −KlRKl

T Jlnl Gl

−Jlnl
T . .

−Gl
T . .

 ·


Qxl

δxH̃K(x̃K , δx̃K)
u


(20)

δxH̄(x̄, δx̄) = 1
2 Q

(
2x̄(n) + δx̄(n)

)
4.2 Simulation algorithm

Denoting by T the number of time-steps, the simulation
procedure is given in algorithm 1.

1 xl(1)← 0
2 x̃K(1)← 0
3 for n = 1 to T do
4 dxHl← Q.xl(n)
5 δx̃K(n)← −2.δT.Jlnl

T .dxHl

6 dxHk← δxH̃K(x̃K(n), δx̃K(n))
7 δxl(n)← 2.δT.

[
(Jl−KlRKl

T ).dxHl+Jlnl.dxHk+Gl.u(n)
]

8 xl(n + 1)← xl(n) + 1
2δxl(n)

9 x̃K(n + 1)← x̃K(n) + 1
2δx̃K(n)

10 w(n)← Kl
T .dxHl

11 y(n)← Gl
T .dxHl

Algorithm 1: Simulation algorithm

5 Conclusion
Thank you for your efforts in following these instructions,

and welcome to the Acoustics 2012 Nantes conference!
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