
Programming Interactive Music Scores with INScore

D. Fober, S. Letz, Y. Orlarey
GRAME

Lyon - France
fober, letz, orlarey@grame.fr

F. Bevilacqua
IRCAM

Paris - France
Frederic.Bevilacqua@ircam.fr

ABSTRACT

INSCORE is an environment for the design of interactive
music scores that includes an original event-based interac-
tion system and a scripting language for associating arbi-
trary messages to these events. We extended the previous
version by supporting scripting languages offering a great
flexibility in the description of scores and in the interac-
tions with scores. The textual format is directly derived
from the OSC message format that was defined in the orig-
inal INSCORE version. This article presents the scripting
language and illustrates its ability to describe interactions
based on events, while remaining in the temporal space.
It also introduces the IRCAM gesture follower and how it
is embedded into INSCORE to provide gestural interaction
capabilities.

1. INTRODUCTION

INSCORE is a dynamic music score viewer that can be con-
trolled in real-time via OSC messages as well as using
OSC based scripts. It supports extended music scores [1],
combining symbolic notation with arbitrary graphic ob-
jects. All the objects of a score have a time dimension
and can be synchronized in a master/slave relationship i.e.
any object can be placed in the time space of another ob-
ject [2]. It can be used in concert, notably for interactive
music pieces, for music analysis, for pedagogical applica-
tions, etc.

INSCORE has been designed in response to a lack of com-
puter tools for music notation, which did not evolved in
proportion to the new forms of musical creation (see eg
[3] [4]). In particular, there is a significant gap between
interactive music and the way it is statically written.

Music notation generated in interaction with live perfor-
mance exists for more than a decade. As mentioned by
Freeman [5], numerous approaches exist: selection of pre-
determined score excerpts [6], mixture of symbolic and
graphic elements [7], use of unconventional graphical no-
tation [8], complex staff based notation [9].

These works are based on custom tools, sometimes de-
signed using Max, that are generally specifically suited to
a composer approach. Didovsky used JMSL [10] to design
interactive scores, but JMSL should be considered more as

Copyright: c©2013 D. Fober et al. This is an open-access article distributed under

the terms of the Creative Commons Attribution 3.0 Unported License, which per-

mits unrestricted use, distribution, and reproduction in any medium, provided the

original author and source are credited.

a programming language for Java applications developers
than an environment for composers. Baird is using Lily-
pond [11] for audience interaction [12], that can’t be con-
sidered as a real-time environment for generating music
scores, although it works in Baird’s context due to relaxed
time constraints.

With the recent Bach [13] or MaxScore [14] environ-
ments, the symbolic dimension of the music notation starts
to be accessible to interaction, first using Max and next the
Live environment. However, they are not designed to sup-
port unconventional graphical notation, although it could
be implemented in Max using Jitter for example.

A unified environment, covering symbolic and graphic
notation, opened to real-time interaction is missing and IN-
SCORE aims at fulfilling the needs emerging from the con-
temporary creation.

Designed to be controlled by OSC messages, INSCORE

is naturally turned to an interactive use. The approach to
music score programming is also supported by a scripting
language based on an extension of the OSC messages, and
providing interaction primitives based on events. These
events are similar to those typically available for user in-
terfaces management (e.g. via Javascript DOM [15]), with
an extension in the time domain.

The next section shows two examples of interactive scores,
implemented in recent creations using INSCORE. Then it
presents the message system and the interaction events,
that allow both to describe the music score and to inter-
act with it. Examples of uses are finally given, to illustrate
the expressive capabilities of the system.

2. INTERACTIVE MUSIC SCORES

Today, interactive music is subject of convergent artistic
and scientific interests. Interaction raises issues for the
artistic work composition, description and performance as
well. These issues are addressed in the temporal aspects
of interactive scores [16] or control [17], and are related to
the music piece computation.

For interactive pieces notation, two recent works have
used INSCORE to create dynamic scores with original ap-
proaches, that also reflect the needs of the contemporary
music creation. These works are Calder’s Violin and Alien
Lands.

2.1 Calder’s Violin

Calder’s violin, composed by Richard Hoadley, has been
created in Cambridge in October 2011. The piece is de-

ha
l-0

08
51

95
6,

 v
er

si
on

 1
 -

19
 A

ug
 2

01
3

Author manuscript, published in "Sound and Music Computing, Stockholm : Sweden (2013)"

mailto:fober@grame.fr
mailto:letz@grame.fr
mailto:orlarey@grame.fr
mailto:Frederic.Bevilacqua@ircam.fr
http://creativecommons.org/licenses/by/3.0/
http://hal.archives-ouvertes.fr/hal-00851956
http://hal.archives-ouvertes.fr

fined as a composition for violin and automatic piano. Dy-
namic symbolic music notation is generated algorithmi-
cally and presented to the musician (figure 1) in real-time.
This score is played by the musician in parallel to sounds
generated by the computer. The technological environment
includes SuperCollider for the audio programming and IN-
SCORE for the music notation. For more details, you can
refer to [18].

Figure 1. Calder’s Violin: sample of music notation.

2.2 Alien Lands

Alien Lands is a set of pieces for percussions and string
quartet, composed by Sandeep Bhagwati. The interactive
version of the pieces has been given in Montreal in Febru-
ary 2011. Use of INSCORE falls in 4 categories:

• traditional music score with automatic page turning,

• music score including automatic choices made by
the computer: order of the measures, staves selec-
tion,

• complex automatic music score, including elements
generated algorithmically (figure 2),

• complex interactive music score, where the dynamic
element are generated at musician request.

Figure 2. Alien Lands : a complex automatic music score.

3. MUSIC SCORE DESIGN USING MESSAGES

The basic principle for the description of a music score
consists in sending OSC messages to the system to cre-
ate the different score components and to control their at-
tributes, both in graphic and time spaces.

3.1 Format of the messages

The global format of the INSCORE messages is illustrated
in figure 3 in a syntax diagram specified in EBNF. It con-
sists in a specialization of the OSC specification that may
be viewed as object oriented, where the address indicates
the target object of the message, method indicates a method
of the target object and params, the method parameters.
An INSCORE message could be viewed as a method call of
an object of the score.

OSC address method params

Figure 3. Format of the INScore messages.

The system includes messages to control the objects graph-
ical attributes (position, color, scale, rotation, effects ...) to
control their temporal attributes (date, time), to express the
relationship between graphic and time spaces, to synchro-
nize different score components, to draw graphic signals,
and to manage interaction events.

Example 1
Changing the x position of an object named obj. The ad-
dress describes the objects hierarchy: obj is embedded in
a score named scene that is included in the application
which address is ITL.

/ITL/scene/obj x -0.5

3.2 Scripting

Although intended to be sent as packets over a network,
the OSC messages can be expressed under a textual form,
which constitutes the file storage format of a score. This
textual form has been extended to enforce the scripting ca-
pabilities of the system. The INSCORE viewer supports
loading or drag & drop of scripts files, which is equiva-
lent to send the enclosed or evaluated OSC messages to
the system.

3.2.1 Extended adresses

The OSC addresses have been extended to support target-
ing external applications and/or stations (Figure 4). It al-
lows to initialize both the music score and external re-
sources as well using the same script.

OSC address
hostname:port

Figure 4. Addressing scheme extension.

Example 2
Initializes a score with a Guido Music Notation file [19]
and sends a message to an external application listening on
port 12000 on a station named host.adomain.net. The
semicolon (;) is used as a message terminator in a script.

/ITL/scene/score set gmnf ’myscore.gmn’;

host.adomain.net:12000/run 1;

ha
l-0

08
51

95
6,

 v
er

si
on

 1
 -

19
 A

ug
 2

01
3

3.2.2 Variables

Variables have been introduced to allow sharing of param-
eters between messages. A variable associates an identifier
and a parameter list or a list of messages (Figure 5). Vari-
ables can be used as message parameter using the form
$identifier.

identifier = param

variable

messages()

Figure 5. Variables.

Example 3
Variable declaration and use. The exclamation point (!)
starts a line comment.

color = 200 200 200;

! using the previous color variable

colorwithalpha = $color 100;

/ITL/scene/obj color $colorwithalpha;

3.2.3 Languages

INSCORE scripts support programming languages like java-
script (default) or lua. The corresponding sections are in-
dicated by angle brackets as in html (Figure 6). The code
is evaluated at parse time and the output of the evalua-
tion should be a set of INSCORE messages that will be next
parsed in place of the corresponding section.

<? javascript

lua

code ?>

Figure 6. Languages.

4. EVENTS BASED INTERACTION

Interaction is based on associations between events and
messages. The messages are sent when the event occurs.
The general format of the messages to create such associa-
tions is described in Figure 7.

address watch event messages()

Figure 7. Format of an interaction message.

4.1 Events typologie

Events defined by the system are basically 1) typical user
interface events (e.g. mouse click and mouse move) and 2)
events defined in the time domain (table 1). This typology

has been extended to gesture events, described in section
6.3.

Graphic domain Time domain
mouseDown timeEnter

mouseUp timeLeave
mouseEnter durEnter
mouseLeave durLeave
mouseMove

Table 1. Main events of the system.

In the time domain, an event is triggered when an object
date enters (timeEnter) or leaves (timeLeave) a time in-
terval defined by 2 dates, or when an object duration enters
(durEnter) or leaves (durLeave) an interval bounded by
2 durations.

4.2 Contextual variables

A contextual variable is a variable which value depends
on an event context (unlike script variables that are eval-
uated when loading the script). Most of these variables
concern the graphic domain and are associated to user in-
terface events; they give the mouse position at the time of
the event occurrence and expressed in different reference
spaces ($x $y $sx $sy). A variable can also give the
date corresponding to the current mouse position ($date).
When an event occurs, the associated messages are evalu-
ated because they may refer to contextual variables.

Example 4
Asking an object to follow the mouse down. The comma
(,) is used as separator in a messages list.

/ITL/scene/obj watch mouseDown (

/ITL/scene/obj x ’$sx’,

/ITL/scene/obj y ’$sy’);

4.3 Managing interaction states

Every score component includes a stack to store interaction
states. The methods push and pop are provided to push the
current interaction state to the stack and to pop and restore
a state from the top of the stack. Examples are given in
section 5.3.

5. USE CASES

5.1 Page turning

A simple use case consists in automatic page turning. An
object can watch the time intervals corresponding to the
different pages and recall a page when it enters its time
interval. Time is specified in music time where 1 is a whole
note. Note that the obj object could be a cursor moving on
the score as well.

ha
l-0

08
51

95
6,

 v
er

si
on

 1
 -

19
 A

ug
 2

01
3

! first page duration is 12 whole notes

/ITL/scene/obj watch timeEnter 0 12

(/ITL/scene/score page 1);

/ITL/scene/obj watch timeEnter 12 24

(/ITL/scene/score page 2);

etc.

5.2 Sequence of interactions

Interaction messages described in figure 7 accept arbitrary
messages to be associated to an event. Thus it is possible to
associate an interaction message to an event and to describe
sequences of interaction.

Example 5
Decription of an interaction sequence based on mouse clicks:
the first click changes the object color, the second affects
the scaling, the third rotates the object, the fourth modifies
the scale too...

/ITL/scene/obj watch mouseDown (

/ITL/scene/obj color 100 100 255,

/ITL/scene/obj watch mouseDown (

/ITL/scene/obj scale 1.4,

/ITL/scene/obj watch mouseDown (

/ITL/scene/obj angle 45. ,

/ITL/scene/obj watch mouseDown (

/ITL/scene/obj scale 0.8))));

5.3 Looping a sequence of interactions

A sequence of interactions can be executed n times using
the push and pop methods.

Example 6
Executing a sequence of 2 interactions 3 times.

/ITL/scene/obj watch mouseDown (

/ITL/scene/obj color 255 0 0,

/ITL/scene/obj watch mouseDown (

/ITL/scene/obj color 0 0 255,

/ITL/scene/obj pop))

/ITL/scene/obj push;

/ITL/scene/obj push;

Example 7
Executing a sequence of 2 interactions in an infinite loop.

/ITL/scene/obj watch mouseDown (

/ITL/scene/obj push,

/ITL/scene/obj color 255 0 0,

/ITL/scene/obj watch mouseDown (

/ITL/scene/obj color 0 0 255,

/ITL/scene/obj pop))

5.4 Interaction in the time domain

The sequence of interactions described above (section 5.2)
could be defined in the time domain using associations be-
tween messages and time events and by moving the object
in time. With this approach, it is possible to access the
events in a random order but also to control the time flow
of the events.

This kind of description combines event based approach,
non-sequential access and temporal control.

Example 8
Description of an interaction sequence using time events
that are triggered when the object enters consecutives time
zones, which duration is a whole note.

/ITL/scene/obj watch timeEnter 1 2

(/ITL/scene/obj color 100 100 255);

/ITL/scene/obj watch timeEnter 2 3

(/ITL/scene/obj scale 1.4);

/ITL/scene/obj watch timeEnter 3 4

(/ITL/scene/obj angle 45.);

/ITL/scene/obj watch timeEnter 4 5

(/ITL/scene/obj scale 0.8);

6. INTERACTION WITH GESTURES

INSCORE may embed the IRCAM gesture follower as an
external plugin. The corresponding objects are similar to
signals from input viewpoint. They provide specific inter-
action events and may also generate streams of messages.

6.1 Principle of the gesture follower

The IRCAM gesture follower if a tool to perform template-
based recognition [20, 21]. Technically, the algorithm is
available as a C++ library that can be implemented in var-
ious environments (up to now the objet called gf was the
most common instantiation of the library in the Max en-
vironment). The gestures can be any type of temporal
multidimensional times series, that must be regularly time-
sampled. Typically, a drawing is a two-dimensional signal,
but other signal types can be used such as three, six or nine
dimension data obtained from inertial measurement units.

The gesture follower, as most recognition system, is based
on two steps. The first step, called learning, corresponds
to setting a series of ”templates”. Each template is used to
set a Markov Chain modeling the times series. The sec-
ond step, called following, corresponds to ”compare” in-
coming data flow with the stored templates. Technically,
the decoding is based on the forward procedure to estimate
likelihoods of the incoming data to match each templates
(note that the forward procedure is incremental compared
to a standard Viterbi algorithms). The gesture follower also
outputs the position (or temporal index) that is an estima-
tion of the corresponding current position within the tem-
plates, and the estimated speed (relative to their templates).

6.2 Gesture follower object

Provided that the corresponding plugin is available, a ges-
ture follower object may be embedded in a score. It is
created with a fixed set of named gestures to be recognized
and thus, its address space is automatically extended to the
set of named gestures.

Example 9
Address space of a gesture follower named myFollower
created to handle 2 gestures named gestureA and gestureB

ha
l-0

08
51

95
6,

 v
er

si
on

 1
 -

19
 A

ug
 2

01
3

/ITL/scene/myFollower

/ITL/scene/myFollower/gestureA

/ITL/scene/myFollower/gestureB

A gesture follower may take 3 states: a learning state, a
following state and an idle state. It receives values that are
stored to the corresponding gesture when in learning state,
analysed to recognize a gesture when in following state and
ignored when idle. Each time the follower receives data in
the following state, it produces a set of likelihood, position
and speed for each of the gestures.

6.3 Gestures events

Specific events are available from gestures and depends on
the gesture state. A gesture may be active or idle: it is
active when its likelihood is greater or equal than a given
threshold, otherwise it is idle (figure 8).

Gesture states active

idle
likelihood threshold

gfEnter

gfLeave

Figure 8. A gesture states and events.

Two specific events are associated to gestures :

• gfEnter: triggered when a gesture state moves from
idle to active,

• gfLeave: triggered when a gesture state moves from
active to idle.

6.4 Gesture streams

A gesture supports messages streaming, depending on its
state. Figure 9 presents the send method that associates a
list of messages to the active or idle state of a gesture.
The messages are sent when the gesture follower state is
refreshed i.e. when it is in following mode and each time
it receives data.

gesture address send messages

active

idle

Figure 9. Associating messages to gesture states.

6.5 Variables defined in the context of gestures

Specific variables may be used by messages associated to
gesture events or streams:

• $likelihood : gives the current gesture likelihood,

• $pos : indicates the current position in the gesture,

• $speed : indicates the current speed of the gesture.

These variables support scaling and translation of their val-
ues when suffixed using an interval. The values denoted by
$pos[1,5] represents the current position scaled between
1 and 5.

Example 10
Using a gesture to move a cursor date from 0 to 1.

/ITL/scene/gf/gesture send active

(/ITL/scene/cursor date $pos);

7. CONCLUSION

Using the OSC protocol to design a scripting language con-
stitutes an original approach which is simple to apprehend
for people familiar with OSC. While none of classical pro-
gramming languages constructs exists in INSCORE scripts,
programming capabilities emerge from the objects behav-
ior and leads to new conceptions of music score design.

The association of messages to events reveals to be a sim-
ple, powerful and homogeneous way to describe dynamic
music scores. A single textual script serves the need of
both the static and dynamic parts of the score, leading to
new kind of programming e.g. moving of objects in the
time domain using an external application when these ob-
jects are designed using behaviors linked to time intervals.

This system opens a new dimension to the score com-
ponents that were previously passive objects: they could
react to messages but didn’t send messages by themselves.
While becoming active and able to send messages, autonomous
dynamic behaviors emerge and since each object may em-
bed its own behavior, the system may be viewed as a par-
allel programmable music score.

However, an external application or the user interaction
is necessary to move objects in time. This is currently not
considered as a limitation since external applications re-
main also necessary for the music itself.

Acknowledgments

This research has been conducted in the framework of the
INEDIT project that is funded by the French National Re-
search Agency [ANR-12-CORD-009-03].

8. REFERENCES

[1] D. Fober, C. Daudin, Y. Orlarey, and S. Letz, “Inter-
lude - a framework for augmented music scores,” in
Proceedings of the Sound and Music Computing con-
ference - SMC’10, 2010, pp. 233–240.

[2] D. Fober, C. Daudin, S. Letz, and Y. Orlarey, “Time
synchronization in graphic domain - a new paradigm
for augmented music scores,” in Proceedings of the In-
ternational Computer Music Conference, ICMA, Ed.,
2010, pp. 458–461.

[3] T. Magnusson, “Algorithms as scores: Coding live
music,” Leonardo Music Journal, vol. 21, pp. 19–23,
2011.

ha
l-0

08
51

95
6,

 v
er

si
on

 1
 -

19
 A

ug
 2

01
3

[4] J. Freeman, “Bringing instrumental musicians into in-
teractive music systems through notation,” Leonardo
Music Journal, vol. 21, no. 15-16, 2011.

[5] ——, “Extreme sight-reading, mediated expression,
and audience participation: Real-time music notation
in live performance,” Comput. Music J., vol. 32,
no. 3, pp. 25–41, Sep. 2008. [Online]. Available:
http://dx.doi.org/10.1162/comj.2008.32.3.25

[6] D. Kim-Boyle, “Musical score generation in valses
and etudes,” in Proceedings of the 2005 conference
on New interfaces for musical expression, ser. NIME
’05. Singapore, Singapore: National University of
Singapore, 2005, pp. 238–239. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1085939.1086007

[7] G. E. Winkler, “The realtime score. A missing link in
computer music performance.” in Proceedings of the
Sound and Music Computing conference - SMC’04,
2004.

[8] J. Gutknecht, A. Clay, and T. Frey, “Goingpublik:
using realtime global score synthesis,” in Proceedings
of the 2005 conference on New interfaces for musical
expression, ser. NIME ’05. Singapore, Singapore:
National University of Singapore, 2005, pp. 148–151.
[Online]. Available: http://dl.acm.org/citation.cfm?id=
1085939.1085980

[9] N. Didkovsky, “Recent compositions and performance
instruments realized in the java music specification lan-
guage,” in Proceedings of the 2004 international com-
puter music conference, 2004, pp. 746–749.

[10] N. Didkovsky and P. Burk, “Java music specification
language, an introduction and overview,” in Proceed-
ings of the International Computer Music Conference,
2001, pp. 123–126.

[11] H.-W. Nienhuys and J. Nieuwenhuizen, “LilyPond, a
system for automated music engraving,” in Proceed-
ings of the XIV Colloquium on Musical Informatics,
2003.

[12] K. C. Baird, “Real-time generation of music notation
via audience interaction using python and gnu
lilypond,” in Proceedings of the 2005 conference on
New interfaces for musical expression, ser. NIME
’05. Singapore, Singapore: National University of
Singapore, 2005, pp. 240–241. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1085939.1086008

[13] A. Agostini and D. Ghisi, “Bach: An environment for
computer-aided composition in max,” in Proceedings
of International Computer Music Conference, ICMA,
Ed., 2012, pp. 373–378.

[14] N. Didkovsky and G. Hajdu, “Maxscore: Music no-
tation in max/msp,” in Proceedings of International
Computer Music Conference, ICMA, Ed., 2008.

[15] B. Höhrmann, P. Le Hégaret, and T. Pixley, “Docu-
ment object model (dom) level 3 events specification,”
World Wide Web Consortium, Working Draft WD-
DOM-Level-3-Events-20071221, December 2007.

[16] A. Allombert, “Aspects temporels d’un système
de partitions musicales interactives pour la com-
position et l’exécution,” Ph.D. dissertation, Univer-
sité Bordeaux 1, Oct. 2009. [Online]. Available:
http://tel.archives-ouvertes.fr/tel-00516350

[17] A. Cont, “Antescofo: Anticipatory synchronization
and control of interactive parameters in computer mu-
sic.” in Proceedings of International Computer Music
Conference, ICMA, Ed., 2008.

[18] R. Hoadley, “Calder’s violin: Real-time notation
and performance through musically expressive algo-
rithms,” in Proceedings of International Computer Mu-
sic Conference, ICMA, Ed., 2012, pp. 188–193.

[19] H. Hoos, K. Hamel, K. Renz, and J. Kilian, “The
GUIDO Music Notation Format - a Novel Approach
for Adequately Representing Score-level Music.” in
Proceedings of the International Computer Music Con-
ference. ICMA, 1998, pp. 451–454.

[20] F. Bevilacqua, B. Zamborlin, A. Sypniewski,
N. Schnell, F. Guédy, and N. Rasamimanana, “Contin-
uous realtime gesture following and recognition,” in
In Embodied Communication and Human-Computer
Interaction, volume 5934 of Lecture Notes in Com-
puter Science. Springer Berlin / Heidelberg, 2010,
pp. 73—84.

[21] F. Bevilacqua, N. Schnell, N. Rasamimanana, B. Zam-
borlin, and F. Guédy, “Online gesture analysis
and control of audio processing,” in Musical
Robots and Interactive Multimodal Systems, ser.
Springer Tracts in Advanced Robotics, J. Solis
and K. Ng, Eds. Springer Berlin Heidelberg,
2011, vol. 74, pp. 127–142. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-22291-7 8

ha
l-0

08
51

95
6,

 v
er

si
on

 1
 -

19
 A

ug
 2

01
3

http://dx.doi.org/10.1162/comj.2008.32.3.25
http://dl.acm.org/citation.cfm?id=1085939.1086007
http://dl.acm.org/citation.cfm?id=1085939.1085980
http://dl.acm.org/citation.cfm?id=1085939.1085980
http://dl.acm.org/citation.cfm?id=1085939.1086008
http://tel.archives-ouvertes.fr/tel-00516350
http://dx.doi.org/10.1007/978-3-642-22291-7_8

	 1. Introduction
	 2. Interactive Music Scores
	2.1 Calder's Violin
	2.2 Alien Lands

	 3. Music score design using messages
	3.1 Format of the messages
	3.2 Scripting
	3.2.1 Extended adresses
	3.2.2 Variables
	3.2.3 Languages

	 4. Events based interaction
	4.1 Events typologie
	4.2 Contextual variables
	4.3 Managing interaction states

	 5. Use cases
	5.1 Page turning
	5.2 Sequence of interactions
	5.3 Looping a sequence of interactions
	5.4 Interaction in the time domain

	 6. Interaction with gestures
	6.1 Principle of the gesture follower
	6.2 Gesture follower object
	6.3 Gestures events
	6.4 Gesture streams
	6.5 Variables defined in the context of gestures

	 7. Conclusion
	 8. References

