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ABSTRACT

This paper introduces a new unsupervised and score-informed
method for the segmentation of singing voice into syllables. The
main idea of the proposed method is to detect the syllable onset
on a probability density function by incorporating a priori syl-
lable duration derived from the score. Firstly, intensity profiles
are used to exploit the characteristics of singing voice depending
on the Mel-frequency regions. Then, the syllable onset proba-
bility density function is obtained by selecting candidates over
the intensity profiles and weighted for the purpose of emphasiz-
ing the onset regions. Finally, the syllable duration distribution
shaped by the score is incorporated into Viterbi decoding to deter-
mine the optimal sequence of onset time positions. The proposed
method outperforms conventional methods for the segmentation
of syllable on a jingju (also known as Peking or Beijing opera) a
cappella dataset. An analysis is conducted on precision errors to
provide direction for future improvement.

1. INTRODUCTION
1.1 Context and motivations

Indication from both psychoacoustic and psycholinguisti-
cal research Massaro (1974); Segui et al. (1990); Green-
berg (1996) suggests that the syllable is a basic perceptual
unit for speech processing in humans. The syllable was
recommended as a basic unit of automatic speech recog-
nition as early as 1975 Mermelstein (1975). The syllabic
level offers several potential benefits; for one, contrary to
the phoneme system which is specific to a language, the
syllable is universally defined in terms of acoustic sonor-
ity ! : a syllable segment is fully determined by a maximum
of sonority (the vowel nucleus) surrounded by local min-
ima of sonority. Additionally, the syllable is the basic unit
of the prosody analysis of speech or singing voice.

In contrast to speech syllables, the duration of singing
voice syllables varies enormously and their vowel nucleus
may consists of numerous local sonority maxima due to the
various ornaments, typically the vibrato - amplitude and
frequency modulation, which poses new challenge for the
segmentation task. A musical score contains a wide range
of prior information, such as the pitch, the onset time and
the duration of the note and the syllable, which can be used
to guide the segmentation process.

! the relative loudness of a speech sound.
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1.2 Related work

Most of existing speech syllable segmentation methods can
be divided into two categories: unsupervised Mermelstein
(1975); Wang & Narayanan (2007); Obin et al. (2013) and
supervised Howitt (2000); J. Makashay et al. (2000). In
the Mermelstein method Mermelstein (1975), the syllable
onset are detected by recursively searching on the con-
vex hull of the loudness function. Wang & Narayanan
(2007) have explored the Mel-frequency spectral represen-
tations for syllable segmentation. Most recently, the Syll-
O-Matic system Obin et al. (2013) exploited the fusion of
Mel-frequency intensity profiles and voicing profiles which
gives the best segmentation result for the methods of the

first category. Supervised methods Howitt (2000); J. Makashay

et al. (2000) adopted from Automatic Speech Recognition
need the support of a language model and an acoustic model.
The latter is learned from a set of audio recordings and
their corresponding transcripts, which takes a considerable
amount of time to adapt this method from one language to
another.

The syllable segmentation of singing voice is still a re-
search gap which needs to be filled. The related subjects
are singing voice phonetic segmentation Lin & Jang (2007),
lyrics-to-audio alignment Fujihara & Goto (2012); Dzham-
bazov et al. (2016), and score-to-audio alignment of singing
voice Gong et al. (2015). The approaches adopted in these
works are mostly supervised, so the problems of the lan-
guage specificity and the need for a large amount of train-
ing data remain.

Various applications such as score-informed source sep-
aration Ewert et al. (2014); Miron et al. (2015), tonic iden-
tification Sentiirk et al. (2013) and score-to-audio align-
ment Cont (2010) have been proposed in recent years which
exploit the availability of a musical score. Dzhambazov
et al. (2016) shows that modeling of duration improves
the phrase-level lyrics-to-audio alignment accuracy signif-
icantly.

This paper introduces a new unsupervised and score-
informed method for the segmentation of singing phrase
into syllables. We present the definitions of speech sylla-
ble and jingju singing voice syllable, and disclose the is-
sues existing in syllable segmentation in section 2. The
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approach is explained in section 3. The evaluation and the
error analysis are conducted on a jingju a cappella singing
voice dataset in section 4.

2. WHAT IS A SYLLABLE?
2.1 Definition

The task of automatically detecting the speech syllable is
based on the assumption that a syllable is typically vowel
centric and neighboring vowels are always separated by
consonants Howitt (2000). A precise characterization of
the syllable structure can be made in terms of sonorityAs-
sociation (1999), which hypothesizes that syllables con-
tain peaks of sonority that constitute their nuclei and may
be surrounded by less sonorous sounds Goldsmith et al.
(2011). According to the Sonority Sequencing Principle
Dressler (1992), vowels and consonant sounds span a sonor-
ity continuum with vowel nuclei being the most sonorous
and obstruents being the least, with glides, liquids, and
nasals in the middle.

Mandarin is a tonal language and there are in general
4 lexical tones and 1 neutral tone in it. Every charac-
ter of spoken Mandarin language is pronounced as mono-
syllable Lin et al. (1993). The jingju singing is the most
precisely articulated rendition of the spoken Mandarin lan-
guage. Although certain special pronunciations in jingju
theatrical language differ from their normal Mandarin pro-
nunciations, due to firstly the adoption of certain regional
dialects, and secondly the ease or variety in pronunciation
and projection of sound, the mono-syllabic pronouncing
structure of the standard Mandarin doesn’t change Wich-
mann (1991).

A syllable of jingju singing is composed of three dis-
tinct parts in most of the cases: the “head” (tou), the “belly”
(fu) and the “tail” (wei). The head consists of the ini-
tial consonant or semi-vowel, and the medial vowel if the
syllable includes one, which itself is normally not pro-
longed in its pronunciation except for the one with a me-
dial vowel. The belly follows the head and consists of the
central vowel. It is prolonged throughout the major por-
tion of the melodic-phrase for a syllable. The belly is the
most sonorous part of a jingju singing syllable and can be
analogous to the nuclei of a speech syllable. The tail is
composed of the terminal vowel or consonant Wichmann
(1991).

The speech syllable only contains one prominent sonor-
ity maximum due to its short duration (average < 250 ms

and standard deviation < 50 ms for Mandarin Wang (1994)).

In contrast, a singing voice syllable may consists of numer-
ous local sonority maxima, of which the reason is either in-
tentional vocal dynamic control for the needs of conveying
a better musical expression or unintentional vocal intensity
variation as a by-product of the FO change Titze & Sund-
berg (1992).

2.2 Issues in syllable segmentation

The issues of speech syllable segmentation has been sum-
marized in Obin et al. (2013). Jingju singing voice brings

up two new issues. Firstly, the syllable duration of jingju
singing voice varies enormously. According to the statis-
tics of our dataset, the syllable durations range from 70 ms
to 21.7 s and its standard deviation is 1.74 s, which makes
it impossible to model the durations with one single distri-
bution as it has been done for speech Obin et al. (2013).
Secondly, as mentioned in section 2.1, the syllable’s cen-
tral vowel may consists of numerous local sonority max-
ima, which introduces noisy information for the syllable
segmentation.

A priori syllable duration information is often easy to
obtain from the score and this is an advantage which can
be exploited. The repertoire of jingju includes around 1400
plays Wichmann (1991), among which are still performed
and used in teaching are mostly well transcribed into sheet
music. Constructing the syllable duration distribution from
the score and using it to guide the segmentation process is
a feasible way of solving the two new issues mentioned
above.

3. APPROACH

The objective of this study is automatically segmenting
singing phrases into syllables by incorporating syllable du-
ration information derived from the score into syllable on-
set detection. Firstly, Mel-frequency intensity profiles are
measured over various frequency regions. An observation
probability function of syllable onsets is obtained by se-
lecting candidates over the intensity profiles and weighted
for the purpose of augmenting its value in the onset re-
gions. Secondly, the a priori duration distribution derived
by the score is incorporated into the Viterbi decoding to
determine the optimal sequence of syllabic onset time po-
sitions (Fig.1). The conventional unsupervised speech syl-
lable segmentation method is based on the detection of syl-
lable onset and landmark Obin et al. (2013). However, we
focus the issue only on onset detection because the def-
inition of syllable landmark Howitt (2000) doesn’t apply
to jingju singing voice due to the numerous local sonority
maxima within the central vowel.
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Figure 1: Approach diagram.

3.1 Mel-frequency intensity profiles

A time-frequency representation is used to measure the in-
tensity contained into various frequency regions. For each




frequency region, the specific loudness is measured as:
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where k denotes the k-th frequency region, A(¢,n) the am-
plitude of the n-th frequency bin at time ¢ in the considered
frequency region, and n = 1 the start value of the sum-
mation index in the k-th frequency region. The specific
loudness is related to the sound intensity - the square of
the amplitude A(¢,n) through a power law with an expo-
nent 0.23 Zwicker & Fastl (2013). In this study, the spe-
cific loudness is measured over 40 Mel-frequency bands,
with unitary integrated energy in order to enhance the in-
formation contained in low-frequency regions relatively to
high-frequency regions. The frequency bands are equally
spaced on the mel scale Slaney (1998), which approxi-
mates the human auditory system’s response more closely
than the linearly-spaced frequency bands. Then, the spe-
cific loudness Lgk) is normalized into a probability density
function Lgk)norm so that each intensity profile will be fur-
ther equally processed (Fig.2-b).

3.2 Onset candidates selection

A syllable has a great probability of starting with a con-
sonant. Stop consonants consist of an interval of com-
plete closure. Because of this, all stops have a period of
silence. Affricates consonants have frication portion pre-
ceded by stop-like ‘silent’ portion. Liquids consonants are
normally voiced, but have less energy than vowels Johnson
(2011). Accordingly, consonants, apart from fricatives and
nasals, contain a complete silence or less energy (inten-
sity) than vowels. Additionally, a syllable is usually pre-
ceded by some silence or breath frames which also have
low intensities in certain frequency regions. These char-
acteristics incite us to conduct the syllabic onset detection
on Lgk)norm by a local maxima-minima detection method
Obin et al. (2013), which gives a local minima onset can-
didate sequence Onset™ for each Mel-frequency band k.

The local maxima-minima detection method consists of
two steps: in the first step, we conduct a coarse search to
find all the maxima and minima positions; in the second
step, the positions are selected such that the maxima are
required to exceed both neighboring minima by at least
a heuristic height threshold (0.01 relative amplitue) and
to be separated by at least an heuristic offset threshold
(0.025s); otherwise, the maxima together with their neigh-

boring minima are considered as insignificant and suppressed.

This process forms a (K x T) matrix of onset time-
frequency position candidates (Fig.2-c). K and T denote
respectively the numbers of the Mel-frequency bands and
the time frames. Then, it is summed up into a (1 x T)
probability density function p (Fig.2-d) because the more
frequent is observed a time position of a candidate over fre-
quency bands, the more likely is the presence of an onset.
However, the exact time position of an onset may differ
from one frequency region to the other due to the asyn-
chronism of the information contained in the frequency re-

gions. Thus, a moving average window MA (typically, a
20 ms. window) is employed.

K
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Figure 2: Spectrogram (a), Mel-frequency intensity pro-
files (b), (K x T') matrices of onset time/frequency position
candidates (c), onset probability density function p (d) and
its loudness weighted version (e), determined sequence of
syllable onsets (f) for the singing phrase: “Meng ting de
jin gu xiang hua jiao sheng zhen.”

3.3 Loudness weighting

Certain prominent peak positions can be identified as the
syllable onsets on the graph of the probability density func-
tion p (Fig. 2-d). However, numerous less prominent peaks
can also be found, which do not correspond to the real
syllable onsets. This noisy information (less prominent
peaks) will eventually degrade the performance of the on-
set sequence decoding. By observing the graph (Fig.2-d),
we clearly see that most of these noisy peaks appear in the
vowel regions which usually show a high intensity Dressler
(1992). To reduce these noisy peaks, we scale down the
high-intensity regions of p by multiplying it by a weight-
ing coefficient.

Inspired by the loudness gating method used in EBU
(2016), we employ an absolute gating threshold 6,, a rel-
ative gating threshold 6, and a sound pressure level stor-
ing block SPL; to detect the high-intensity signal frames.



The intensity of the input singing voice signal is measured
frame by frame by the sound pressure level of its RMS am-
plitude SPLgys = 20log;o(RMS). The current frame
is detected as high-intensity if its S P Lgrys meets both of
the following conditions:

SPLrus > 0, 3
SPLgms = 0, + SPL; “

where SPL; is the mean value of the integrated preceding
stored SPLrwus, 04, 0, are heuristically selected as -35 dB
and -10 dB. Once a frame is detected as high-intensity, its
S P Lgs is added to the storing block SPL;.

A continuous sequence of high-intensity frames is de-
tected as the high-intensity region if it is followed by a con-
tinuous sequence of low-intensity frames. The length of
the latter should be larger than a threshold §; which will be
optimized by the grid search method. Finally, the p value
in the high-intensity regions is multiplied by a weighting
coefficient wy, which will also be optimized later. (Fig.2-

e).

3.4 A priori duration distribution

The a priori duration distribution N (z; 17, 07) is modeled
by a Gaussian function whose mean y; equals to [-th sylla-
ble duration of the score and whose standard deviation o is
proportional to p;: o; = yp; (Fig.3). The proportionality
constant vy will be optimized by the grid search method.

1 (z —p)*
A () o
The relative duration of each note is measured on the quar-
ter note length, so an eighth note has a duration of 0.5. We
only keep the relative duration and discard the tempo infor-
mation of the score. By normalizing the summation of the
notes’ relative durations to unity, then multiplying it by the
duration of the incoming audio recording, we obtain the
absolute score duration of the entire singing phrase which
is equal to the latter. The note’s absolute duration along
with its subsequent silence or the summation of the notes’
absolute durations (e.g. syllable gu in Fig.3) corresponding
to [-th syllable is assigned to ;. The duration distribution
(Eq.5) will be incorporated into Viterbi algorithm as the
state transition probability, which holds the highest expec-
tation on its mean value - the syllable duration of the score.
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Figure 3: A priori relative duration distributions (bottom)
of the syllables in the singing phrase: “Meng ting de jin gu
xiang hua jiao sheng zhen.”

3.5 Decoding of the syllable onsets sequence

A sequence of a priori absolute duration M = iy puo -+ - pif,
is deduced from the score and the length of the incoming
audio (section 3.4). To decode the syllable boundaries, we
construct an hidden Markov model characterized by the
following:

1. The state space is a set of N candidate onset posi-
tions Sp,.Ss, - , Sy determined by picking the lo-
cal maxima positions from the probability function
D.

2. The state transition probability at decoding time [ is
defined by a priori duration distribution N'(d;j; ., alZ )
where d;; is the time distance between states S; and
S; (j > 1). The overall decoding time is equal to the
total syllable number L written in the score.

3. The observation probability for the state S; is repre-
sented by its corresponding value in the onset detec-
tion function p, which is denoted as p;.

As we assume the onset of the current syllable is also the
offset of the previous syllable, the problem is translated
into finding the best offset position state sequence () =
q192 - - - qr, for the given a priori duration sequence M,
where g; denotes the offset of the ith decoding syllable or
the onset of the ¢ 4+ 1th decoding syllable. gg and g, are
fixed as S and S as we expect that the onset of the first
syllable is located in the beginning of the incoming audio
and the offset of the last syllable is located in the ending of
the audio. One can fulfill this assumption by truncating the
silences at both ends of the incoming audio. According to
the logarithmic form Viterbi algorithm Rabiner (1989), we
define

5[(1) = max logP[q1q2"'QZ, NLUQ"'M]

q1,92," " ,q1

the initially step
81(i) = log(N (dy; 1, 07)) + log(ps)
P1(i) = S
the recursion step
01(j) = max [31-1(i) + log(N'(dij; pu, o)) + log(p;)
vi(j) = arg max 61 (i) + log(N (dugs u, o7))
and termination step

log P* = max [6-1(i) + log(N (dins iz, 07))]

1<

q, = arg 12%\/[&—1(@') + log(N (din; pir, 07))]

Finally, the best offset position state sequence () is ob-
tained by the backtracking step (Fig.2-f).

4. EVALUATION
4.1 Dataset

The a cappella singing dataset > used for this study comes
from MTG and C4DM Black et al. (2014) and focuses

2 http://doi.org/10.5281/zenodo.345490




on two most important jingju role-types Repetto & Serra
(2014): dan (female) and laosheng (old man). It contains
39 interpretations of 31 unique arias sung by 11 jingju
singers. The syllable onset ground truth is manually an-
notated in Praat Boersma (2001), which represents 298
phrases and 2672 syllables (including padding written -
characters Wichmann (1991)). The average syllable du-
ration is 1.1s and the standard deviation is 1.74s. The syl-
lable duration dataset is manually transcribed from sheet
music.

The whole dataset is randomly split into 2 parts with the
constraint that each part is selected without role-type bias
and contains almost an equal number of onsets. One of
them is reserved as the development set for the purpose of
parameter optimization. Another part is used as the test set
to evaluate the syllable segmentation algorithms.

4.2 Evaluation metrics

The objective of the syllable segmentation for singing phrases

is to determine the time positions of syllable boundaries.
The evaluation consisted in the comparison of the deter-
mined syllable onsets and offsets to the reference one. We
use the same metric for the speech syllable segmentation

evaluation: recall, precision and F-measure Obin et al. (2013).

The definition of a correct segmented syllable is borrowed
from the note transcription evaluation Molina et al. (2014):
for the syllable onset, we choose a evaluation tolerance 7
ms. For the offset, which is also the onset of the sub-
sequent syllable, =20% of the reference syllable’s dura-
tion or =7 ms, whichever is larger, is chosen as the tol-
erance. If both the onset and the offset of a syllable lie
within the tolerance of their reference counterparts, we say
it’s correctly segmented. As there is no standard toler-
ance previously defined for the evaluation of singing voice
syllable onset detection, and the tolerance for the evalua-
tion of speech syllable onset detection is too strict because
the average duration of speech syllable (200 ms) is much
shorter than that of singing voice syllable (1.1 s), we de-
cide to report the evaluation results for multiple tolerances,
7 =10.05,0.1,0.15,0.2,0.25, 0.3] (second).

4.3 Parameters optimization

The parameters which need to be optimized are: the length
threshold 6; of low-intensity regions, the weighting coef-
ficient wy, for p in high-intensity regions in section 3.3;
the proportionality constant «y in section 3.4. The syllable
segmentation accuracy can be reported by sweeping these
parameters on the development set. Table 1 lists the search
bounds and the optimal results.

Table 1: Search bounds, optimal results (OR) of the opti-
mization process for each parameter.

Parameters Search bounds OR
0; (s) [0.01,0.1] with step 0.01  0.02
wp, [0.1, 1] with step 0.1 0.2

vy [0.05, 1] with step 0.05 0.35

5. RESULTS AND DISCUSSION
5.1 Syll-O-Matic syllable segmentation

The evaluation includes the speech syllable segmentation
method Syll-O-Matic Obin et al. (2013) for a compari-
son with the unsupervised method. This method performs
the same Mel-frequency intensity profiles and onset can-
didate selection steps introduced in this paper. It detects
both the speech syllable onsets and the vowel landmarks.
We will not report its landmark detection performance be-
cause the definition of syllable landmark - the only and
most sonorous peak with the central vowel, doesn’t apply
to most of jingju singing syllables due to the existence of
numerous local sonority maxima within the central vowel.

Our proposed method can be seen as an adaption of the
original Syll-O-Matic method to the singing voice, which
introduces the loudness weighting to attenuate the noisy
peaks in the onset probability density function p, and a
priori syllable duration distribution to take account into the
duration information provided by the score, whereas only
a fixed mean (1.1s, the average syllable duration of our
dataset) normal distribution has been used in the Viterbi
decoding process of the original Syll-O-Matic method.

The Syll-O-Matic method performs bad on our dataset
(Fig.4) and causes a low F-measure. There are at least three
reasons for this bad performance. First, its Viterbi decod-
ing algorithm doesn’t restrict the overall decoding time, so
any peak position in p is able to be decoded as a sylla-
ble onset if it happens to have a high duration probability.
Second, the numerous sonorous peaks in p act as the noisy
information, which introduces many insertions. Third, the
duration distribution used in Syll-O-Matic is mean-fixed,
which doesn’t conform to the fact of the variable syllable
duration of the jingju singing voice.

5.2 HMM-based lyrics-to-audio alignment

The evaluation also includes a HMM-based lyrics-to-audio
alignment method Dzhambazov et al. (2016) for a compar-
ison with the supervised method. The HMM-based system
extends Viterbi decoding to handle the duration of states.
For each of 40 Mandarin phonemes and diphthongs, a one-
state HMM is trained from a 67 minutes corpus of a cap-
pella female jingju singing voice. This corpus is differ-
ent from the one mentioned in section 4.1 in terms of the
singer and the repertoire. For each state a 40-mixtures of
Gaussian distribution are fitted on the MFCCs feature vec-
tor. The HMM-based system outputs the decoded syllable
onset positions.

5.3 Proposed method

Even without the loudness weighting step, the proposed

method (Score-informed) outperforms all the compared meth-

ods. Additionally, the loudness weighting (Score-informed
+ Loudness weighting) successfully improves the segmen-
tation performance due to the reduction of the noisy in-
formation in the high-intensity region of the probability
density function. Compared to supervised methods (e.g.
HMM-based), the results are encouraging for the use of



A A HMM-based
»® = Syll-O-Matic

* % Score-informed
€ @ Score-informed+Loudness weighting

Recall (%)
| 2

\ :

TN C R

Precision (%)
3
»

1
1
TR R R

F-measure (%)
3
»

0 L 1
0.05 0.1 0.15 0.2 0.25 0.3
Tolerance (s)

Figure 4: Recall, precision and F-measure results of the
syllable segmentation evaluation. The three metrics do not
look so different because the number of the segmented syl-
lable and the number of the ground truth syllable are al-
most the same.

unsupervised score-informed method for singing voice syl-
lable segmentation, which avoids the problems of the lan-
guage specificity and the need for a large amount of train-
ing data.

5.4 Error analysis

‘We conduct error analysis to make clear the causes of seg-
mentation errors of our proposed method, and also to pro-
vide direction for future improvement. First, only the er-
rors occurred in the segmented syllables (precision errors)
will be analyzed because the number of the segmented syl-
lable (1329) and the number of the ground truth syllable

(1334) are almost equal for the result of the proposed method,

which means almost all the syllables in the ground truth
are segmented. Second, only the errors out of 0.3s tol-
erance will be analyzed because the causes of these errors
are straightforward to be identified from observing the seg-
mentation plots. 169 syllables are mistakenly segmented
out of 1329 evaluated syllables (Table 2).

Table 2: Performance of the proposed method with 0.3s
tolerance.
Method

Recall(%) Precision(%) F-measure(%)

Score-informed+

Loudness weighting 86.83 87.28 87.05

Four types of error have been identified (Table 3) by
observing the plots of detected syllable onsets compared
to ground truth onsets:

e Redundant intensity minima: errors caused by re-
dundant intensity minima (redundant peaks) in the
onset probability density function p. Silence or large
intensity change within the syllable are the main causes
of this error type.

e Missed intensity minima: errors caused by missed
intensity minima (missed peaks) in p. Long silence
followed by the syllable is the main cause of this
error type, which usually happens in laosheng (old
man) singing.

e Ambiguous syllable transitions: errors caused by am-
biguous syllable transitions, such as transitions from
vowel to vowel or to semi-vowel, from semi-vowel
to semi-vowel. This cause has also been reported
in the unsupervised speech syllable segmentation re-
search Obin et al. (2013).

e Score and singing incoherent: errors caused by large
contrast between syllable duration in score and that
in real practice.

Table 3: Error analysis for the result of the proposed

method with 0.3s tolerance.
Types of error

Num. errors (frequency %)

Redundant intensity minima 92 (54.3)
Missed intensity minima 34 (20.3)
Ambiguous syllable transitions 32 (18.8)
Score and singing incoherent 11 (6.6)

Sum 169 (100)

The reason for the first three types of error is that our
proposed method only uses intensity-related feature and
technique (Mel-frequency intensity profiles and loudness
weighting) which are not knowledgeable in the phonetic
context of the signal frames. By applying phonetic fea-
tures to shape the peaks of the onset probability density
function in the future, for example, comparing the phonetic
content before and after the silence, we may reduce these
types of error. For the last type of error - Score and singing
incoherent, the effort should be put in improving the on-
set decoding method. Using different duration distribution
function, such as gamma distribution, and variable decod-
ing time can be the possible way to tackle this type of error.

6. CONCLUSION

In this paper, we present the definition of jingju singing
voice syllable and disclose the new issues arose by this
singing form. A new method is then introduced for the
segmentation of singing voice into syllables. The main
idea of the proposed method is to detect the syllable on-
set on a syllable onset probability density function by in-
corporating the syllable duration information of the score
into the decoding process. The main contribution of this
work is twofold: First, the loudness weighting is applied
on the high-intensity regions of the onset probability den-
sity function, which reduced the noisy sonorous peaks and
augmented the segmentation accuracy. Second, the syl-
lable duration distribution is incorporated into the decod-



ing process of the optimal syllable onset sequence to make
use of the a priori information of the score. The proposed
method outperforms conventional methods for the sylla-
ble segmentation of singing voice phrases, and provides a
promising paradigm for the segmentation of singing voice
into syllables.
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