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Simulation of fractional-order low-pass filters
Thomas Hélie

Abstract—The attentuation of standard analog low-pass filters
corresponds to a multiple value of -6 decibels per octave. This
quantified value is related to the order of the filter. The issue
addressed here is concerned with the extension of integer orders
to non integer orders, such that the attenuation of a low-pass filter
can be continuously adjusted. Fractional differential systems are
known to provide such asymptotic behaviors and many results
about their simulation are available. But even for a fixed cutoff
frequency, their combination does not generate an additive group
with respect to the order and they involve stability problems. In
this paper, a class of low-pass filters with orders between 0 (the
filter is a unit gain) and 1 (standard one-pole filter) is defined to
restore these properties. These infinite dimensional filters are not
fractional differential but admit some well-posed representations
into weighted integrals of standard one-pole filters. Based on
this, finite dimensional approximations are proposed and recast
into the framework of state-space representations. A special care
is given to reduce the computational complexity, through the
dimension of the state. In practice, this objective is reached for
the complete family, without damaging the perceptive quality,
with dimension 13. Then, an accurate low-cost digital version of
this family is built in the time-domain. The accuracy of the digital
filters is verified on the complete range of parameters (cutoff
frequencies and fractional orders). Moreover, the stability is
guaranteed, even for time-varying parameters. As an application,
a plugin has been implemented which provides a new audio tool
for tuning the cutoff frequency and the asymptotic slope in a
continuous way. As a very special application, choosing a one-
half order combined with a low cutoff frequency (20Hz or less),
the filter fed with a white noise provides a pink noise generator.

Index Terms—Irrational transfer function, Fractional order,
Simulation, State-space methods, Signal synthesis.

Note: A few sound examples are available at

http://recherche.ircam.fr/anasyn/helie/TASLP-FractionalFilter

I. INTRODUCTION

Low-pass filters are widely used in electronic music. For

standard analog circuits, their attenuation corresponds to a

multiple value of −6 decibels per octave, beyond some cutoff

frequency. This quantified value is related to the order of

the filter. Thus, typical configurations that are used in analog

synthetizers are −6 decibels per octave for a one-pole filter

(order 1), −12 decibels per octave (order 2), and −24 decibels

per octave (order 4). But, there is no standard configuration for

which intermediate values can be found, such as -3 decibels

per octave, which would correspond to a one half order.

In this paper, we consider a family of causal stable filters

with fractional order 0 ≤ α ≤ 1. In the frequency domain,
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their attenuation corresponds to −6α decibels per octave.

Thus, cascading such a filter with any standard filter (of integer

order) allows the synthesis of any attenuation slope beyond the

cutoff frequency. The main difficulty to cope with such filters

is that they do not correspond to any finite dimensional differ-

ential system and that their transfer functions are not rational.

Hence, finite dimensional approximations and efficient digital

versions must be derived for the complete family.

Some first results have been established in [1], from which

the perceptive relevance of the family of filters had been tested

and confirmed. However, these results had three practical

limitations. First, filters with integer and non-integer orders

had to be processed separately so that a (simple but) special

interpolation had to be derived when order α ∈ (0, 1) ap-

proached the boundary values 0 and 1. Second, to be accurate

enough, the approximated filters had to be of dimension larger

than about 20. Third, because of the numerical scheme used

in [1], the phase of the digital filters was a bit poor in the high

frequency range.

The results proposed in this paper remove the first limitation

while significantly improving the two other ones. In particular,

the approximation with dimension 13 proposed here appear to

be sufficient and even better than the previous solution (with

dimension 20). Moreover, the complete family of the approxi-

mated digital filters is proved to be stable, including for time-

varying parameters. This has also been practically checked

using a real-time version (implemented in FAUST language).

As a special case, these results can be straightforwardly used to

produce a low-computionnal real-time generator of pink noise.

Indeed, for α = 1/2 and using a low cutoff frequency (such as

20Hz or less), the digital filter behaves in the audio range as a

fractional integrator of order one half (slope of -3 decibels per

octave over the all audio frequency range). When this filter is

excited by white noise, this is known to produce a pink noise,

as detailed in [2].

This paper is organized as follows. Section II defines the

family of filters. Section III gives some of their properties.

It introduces well-posed representations of the associated

infinite dimensional systems. They correspond to continuous

aggregations of one-pole filters (also so-called ”diffusive rep-

resentation”). In section IV, finite dimensional approximations

are derived. Two methods of approximation are examined.

The first one is based on a finite dimensional interpolation

of the original infinite state. The second one is based on an

optimization with respect to an audio measure. This second

method fits better with the objective. In section V, these ap-

proximations are used to derive a finite dimensional state-space

representation of the complete family, in the continuous-time

domain. A diagonal form is obtained. Then, digital versions of

the family of filters are proposed in section VI, with a special0000–0000/00$00.00 c© 2013 IEEE
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care to both the low computational complexity and stability

issues, including for time-varying parameters. Section VII

presents simulations and results which are compared with

the original exact family. Finally, section VIII gives a short

discussion about the second method in relation with other

standard techniques.

II. FAMILY OF FILTERS

A. Motivation

A causal stable first-order low-pass filter with cutoff fre-

quency fc and with unit gain is described by the transfer

function H1

(
s/(2πfc)

)
where H1(s) = 1/(s + 1) is defined

in the complex Laplace half-plane

C
+
0 =

{
s ∈ C

∣∣ℜe(s) > 0
}
.

The corresponding impulse response is h1(2πfct) with

h1(t) = exp(−t) for positive times and 0 otherwise. The

cascade of n ≥ 2 of these filters yields the same results with

Hn(s) = H1(s)
n, hn(t) =

(
tn−1/(n − 1)!

)
exp(−t). More

generally, introducing H0(s) = 1 and h0 = δ (Dirac measure),

the following property is straightforward: if p and q are non

negative integers, Hp Hq = Hp+q and hp⋆hq = hp+q (additive

group of filters with respect to the order).

This paper aims at extending this family of filters and this

property to any non negative real order r ∈ R+. The difficulty

is concerned with the fractional part 0 ≤ α < 1 of the order

r = [r] + α ([r] ∈ N), to which the following of the paper is

devoted.

B. Definition

We consider the family of stable causal low-pass filters,

described by the transfer functions defined in the complex

Laplace half-plane C
+
0 by

Fα,fc
(s) = Hα

( s

2πfc

)
(1)

with Hα(s) =
1

(s + 1)α
, (2)

where function Pα : z 7→ zα (α > 0) is the analytic

continuation of the positive root for positive z over the

complex plane C except on the branch cut R
−. Note that in

Fα,fc
, the complex variable s = σ+ ι̇ω is a scale unit variable

where −σ stands for a damping (in s−1) and ω is an angular

frequency (in rd.s−1). In Hα, the same labels correspond to

normalized dimensionless variables. For sake of conciseness,

these variables will be used according to the same convention

in the following, without ambiguity.

The impulse response is positive and is given by [3,

(29.3.11)]

fα,fc
(t) = hα(2πfct) (3)

with hα(t) =
tα−1

Γ(α)
e−t if t > 0 and 0 otherwise, (4)

where Γ(α) =
∫ +∞

0
tα−1e−t dt denotes the factorial func-

tion. For non integer orders α, such an impulse response

corresponds to an infinite dimensional system, as detailed in

section III.

In this paper, parameter α is real and greater than 0 (filter is

identity) and lower than 1 (standard one pole filter). Inside this

range, the impulse response (4) is singular at t = 0 and has a

non standard decreasing behavior. Parameter fc is typically a

frequency inside the audio range (F−=20Hz to F+=20 kHz).
It corresponds to the tuning frequency of the filter: this is

the standard -3dB cutoff frequency if α = 1 and corresponds

to a −3α dB cutoff frequency in the general case. On the

Fourier axis, the asymptotic behavior of f 7→ Fα,fc
(2ι̇πf) =

1/(1 + ι̇f/fc)
α corresponds to:

(i) a unit gain if f ≪ fc;

(ii) a “−6α dB/octave” behavior with phase −α×90 degrees

if f ≫ fc.

Bode diagrams are displayed in figure 1.

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

−60

−50

−40

−30

−20

−10

0

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

−80

−60

−40

−20

0

ω (dimensionless angular frequency)

ω (dimensionless angular frequency)

M
o
d
u
lu
s
(i
n
d
B
)

P
h
as
e
(i
n
d
eg
re
es
)

Fig. 1. Bode diagrams of Hα (s= ι̇ω), where ω is the dimensionless angular
frequency, for fractional orders α increasing from 0 (curve at the top, - -) to
1 (curve at the bottom -·-) with step 0.1. Bode diagrams of Fα,fc

are the
same, replacing ω=1 by the frequency fc (in Hz).

C. Remarks

Such filters can be encountered in physics and especially in

some materials produced in electrical engineering. Examples

are the admittances of coils, or some copper wires formed

into a serpentine structure, or some electric materials involving

“skin effects” [4]. More generally, this filter is known to model

the so-called Cole-Davidson dielectric relaxation [5], [6].

Note that another family of filters with similar asymptotic

behaviors (i-ii) corresponds to the fractional differential sys-

tems defined by Gα(s) = 1/(sα +1). There is a large amount

of work about these systems, as witnessed by e.g. [7], [8],

[9], [10] and references therein. However, the family Gα is not

investigated here because, contrarily to Hα, it has a number of

weaknesses for audio applications. First, it does not provide

a natural extension of the “filter order” with respect to the

cascade. Second, the stability is not fulfilled on the wide range
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α > 0 [11]. Third, some impulse responses involve regular

oscillations (g2(t) = sin(t) for positive times) whereas the

behavior of the family is wanted to be “regular” and without

resonance, as for the reference first-order filter.

III. INFINITE DIMENSIONAL REPRESENTATION

The family of filters defined by (1-4) does not correspond

to any standard ARMA filter. Moreover, it is ill-suited to be

approximated by short finite impulse responses: there is a

singularity at t = 0 and the decay is not fast enough. However,

it benefits from some properties and exact representations that

can be exploited as a first step, in order derive efficient ARMA

approximations. More precisely, in the Laplace domain, the

singularities are not reduced to poles as usual, but define a

continuous set, namely, a “cut” (or “branch cut”). This section

details this first step and properly introduce this information,

which is precisely the one that is used in the sequel to build

“efficiently informed” approximations.

A. Properties

For 0 < α < 1, transfer function Hα is irrational so that it

does not correspond to any finite order filter. However, several

standard properties are fulfilled.
Indeed, Hα is hermitian symmetric (Hα(s) = Hα(s)),

analytic and bounded on C
+
0 with norm ‖Hα‖H∞ = 1 for the

Hardy space H
∞(C+

0 ) (see appendix IX-A for some recalls

on the definition and basic properties). This implies that it

corresponds to a causal stable system with finite gain (of

maximal value ‖Hα‖H∞ = 1) which maps a real input to

a real output.
More precisely, because of its asymptotic low-pass behavior,

Hα also belongs to the Hardy spaces H
β(C+

0 ) ⊃ H
∞(C+

0 )
for all β > 1/α. This implies that for α > 1/2, the impulse

response of the system has a finite energy. This is not the case

otherwise.
Moreover, according to the definition of Pα : z 7→ zα

used in (2), Hα admits a (hermitian symmetric) analytic

continuation over C \ C with branch cut C = −1 + R
−,

where \ denotes the set difference. This cut is the locus of

the singularities of the transfer function Hα (for 0 < α < 1)
in the Laplace domain. It corresponds to the half-line starting

from the branch point s = −1 (the pole of H1) and going to

s = −∞.

B. Integral formalism

Following [12], an exact representation of Hα is given by

an integral of one-pole filters, with respect to an appropriate

measure M , where the poles σ describe the cut C. It is given
by, for all s ∈ C

+
0 ,

Hα(s) =

∫

C

Mα(dσ)

s − σ
, (5)

with Mα(dσ) = µα(σ) dσ,

where, for all σ ∈ C, the density µα(σ) =
(
Hα(σ − ι̇ 0+) −

Hα(σ + ι̇ 0+)
)
/(2ι̇π) corresponds in this case to the positive

function

µα(−1 − ξ) =
sin(απ)

πξα
, for ξ > 0. (6)

Note that in (5), µα plays the same role for the continuous

sum over the cut C as the residues for a discrete sum over

a countable set of poles. More precisely, as the measure

Mα(dσ) is absolutely continuous with respect to the Lebesgue

measure, the density can be derived by applying the residues

theorem for an adapted (oriented) Bromwich contour (see

appendix IX-B for some recalls). An integral representation

such as (5) (sometimes denominated diffusive representation

if the cut is a subset of R
−) is well-posed provided that Mα

fulfills the criterion (see e.g. [13, § 5-6] and [14])

∫

C

∣∣∣∣
dMα(σ)

1 − σ

∣∣∣∣ < +∞.

This is the case here.

From (5-6), the transfer function Hα is given by, for all

s ∈ C
+
0 ,

Hα(s) =

∫

C

µα(σ)

s − σ
dσ =

∫ +∞

0

sin(απ)

πξα

1

s − (1+ξ)
dξ. (7)

The impulse response corresponding to (7) is

hα(t) =

∫

C

e+
σ (t) Mα(dσ) =

∫ +∞

0

sin(απ)

πξα
e+
−1−ξ(t) dξ,

(8)

where e+
σ (t) = eσt 1R+

(t) is the causal exponential associated
with the one-pole filter Eσ : s 7→ 1

s−σ
.

Moreover, the filter with impulse response (8) can be

realized (in the sense of the system theory), using the following

infinite set of first order differential systems, for all t ∈ R
+

and σ ∈ C,

∂tx(σ, t) = σ x(σ, t) + u(t), with x(σ, 0)=0, (9)

y(t) =

∫

C

x(σ, t)Mα(dσ) , (10)

that is, a state-space representation with input u(t), infinite
dimensional state x(·, t) and output y(t).

Finally, following (1), a well-posed diffusive representation

of Fα,η is obtained by replacing s in (5) by its scaled version

s/(2πfc). Accordingly, t must be replaced by 2πfct in (8),

and ∂t by 1
2πfc

∂t in (9).

IV. FINITE DIMENSIONAL APPROXIMATIONS

In order to obtain simulations, finite dimensional approxi-

mations of diffusive representations (5-10) are built, based on

a finite set of poles σn localized on the cut C, that is,

Ĥα(s) =
N∑

n=1

µn(α)

s − σn

. (11)

The issue addressed below is concerned with the poles

placement and the estimation of weights µn. Two methods,

detailed in [12], are tested with parameters which are specially

designed for the family of filters described in (1-2).
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A. Accuracy requirements

To get accurate approximations of Fα,fc
on the audible

range (F−= 20Hz to F+= 20 kHz) for any cutoff frequency

fc in the same range, function ω 7→ Hα(s = ι̇ω) must be

accurately approximated on

(i) the (dimensionless) angular frequency range ωmin =
F−

F
+
c

=10−3 to ωmax = F+

F
−

c

=10+3.

Additionally, we consider the other following features based

on simplified principles of audio perception [15]:

(ii) frequencies are perceived according to a logarithmic

scale;

(iii) gain deviations are perceived relatively to the refer-

ence gains.

B. Method 1: interpolation of the state

As proposed in [16] and [12, § 4.1], a first method consists

of approximating the state x(σ, t) (σ∈C) over a bounded part

of the cut by an interpolation derived from a finite subset of

states (x(σn, t) for 1≤n≤N ).

According to (ii), the poles σn’s are chosen as

σn =−1−ξn =−1−10ℓn ∈C, for 0≤ n ≤N+1, (12)

where the ℓn’s are equally spaced, with step δ = ℓN+1−ℓ0
N+1 ,

from ℓ0 to ℓN+1 (see [12, example 2]) for typical values for

a fractional integrator of order 1/2).
Then, the output y in (10) is built from the (exact) state

variables xn(t) = x(σn, t) (1 ≤ n ≤ N ) by considering the

interpolated state x̂(σ, t) in place of x(σ, t), where

x̂(σ, t) =
N∑

n=1

Λ
(L(σ) − ℓn

δ

)
xn(t), (13)

with the standard “hat interpolation” function Λ(η) =
(
1 −

|η|
)
1[−1,1](η), and for the log-scale variable ℓ = L(σ) =

log10(−σ − 1), corresponding to (12).

For this approximation, equation (10) yields ŷ(t) =∑N
n=1 µn(α)xn(t) with

µn(α) =

∫

C

Λ
(L(σ) − ℓn

δ

)
Mα(dσ)

=
sin(απ)

π

κ
(
(1−α)δ ln 10

)

1 − α
ξ1−α
n , (14)

where κ(w) = 2
(
cosh(w) − 1

)
/w is such that κ(w) ∼ w

if 0 ≤ w ≪ 1. Note that compared to [12], the log-scale

adaptation in the interpolation (through Ln) allows the exact

computation of the µn’s. Finally, equations (11) with (12) and

(14) define a family of ARMA filters of order N , with closed-

form expressions with respect to α, namely, with ξn =10ℓn ,

Ĥα(s) =
sin(απ)

π

κ
(
(1−α)δ ln 10

)

1 − α

N∑

n=1

ξ1−α
n

s+1+ξn

.

In practice, an appropriate range for the poles corresponds

to ℓ0 = −10 and ℓN+1 = +10. Results are displayed for

N =20 poles in figure 2, and N =40 poles in figure 3. Their

observation shows that they are usable for N =20 and accurate

for N = 40. In practice, the trend observed on the regularity
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Fig. 2. (Interpolation, N =20) Bode diagrams of bHα (s= ι̇ω) for fractional
orders α increasing from 0.1 (top) to 0.9 (bottom) with step 0.1 for ℓ0 =
−10, ℓN+1 = +10. These curves are to be compared with those of figure 1.
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Fig. 3. (Interpolation, N =40) Idem as in figure 2 for N =40.
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of the shapes between N = 20 and N = 40 continue when

increasing the number of poles N . In this sense, this method

provides a set of results with an increasing quality: they appear

to be qualitatively acceptable for audio applications and they

allows the selection of a complexity according to one target

CPU load. However, from the mathematical point of view, it

suffers from severe drawbacks: first, the maximal error over

the (useful dimensionless) range ω ∈ [10−3, 10+3] saturates

for orders α 6= 0.5 meaning that even if the shape seems to be

better when increasing the order, biases appear; second, even

for α = 0.5, the convergence towards 0 is quite slow. These

numerical observations supported by the figure 4 clearly allow

for opportunities for further mathematical investigations.
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Fig. 4. (Interpolation, 1 ≤ N ≤ 1000 for fractional orders α increasing from
0.1 to 0.9 with step 0.1 for ℓ0 = −10, ℓN+1 = +10) Left: the maximal

error Emax = max
ω∈[10−3,103]

˛̨
˛Hα(ι̇ω) − bHα(ι̇ω)

˛̨
˛ decreases for α = 0.5

and saturates for other orders; Right: Bode diagrams of bHα (s = ι̇ω) for
N = 1000.

But, for practical reasons about real time issues, the fol-

lowing section focuses on reducing the dimension N while

preserving (or even increasing) the accuracy, rather than

improving the asymptotic behaviour of the method 1: a second

method is used below, for which the µn’s are optimized.

C. Method 2: optimization of weights

Rewrite the finite dimensional model (11) as

Ĥα(s) = Eσ(s)T µ(α), (15)

with Eσ(s) =




1
s−σ1

...
1

s−σN


 and µ =




µ1

...

µN


 ,

where the weights µ are real-valued in order to preserve

the hermitian symmetry of the transfer function. To optimize

the weights µ, we consider the objective function proposed

in [12], defined from (15) by

G(µ) =

∫ ωmax

ωmin

∣∣∣∣∣1 − Ĥα(s= ι̇ω)

Hα(s= ι̇ω)

∣∣∣∣∣

2

d ln ω, (16)

which takes the audio features (i-iii) into account.

In practice, a discretized version of G must be considered

to allow numerical computations: the integral in (16) is ap-

proximated by a finite sum on an appropriate frequency grid,

here, lnωk =lnωmin+ k
K

ln ωmax

ωmin
for 0≤k≤K. Moreover, a

regularization term is required to avoid ill-conditioned matrix

inversion if N = dim(µ) is not sufficiently small. We use a

standard Tikhonov penalty term [17], [18] which is propor-

tional to µT µ.

This yields the following practical objective function

Ĝ(µ) =

K∑

k=1

∣∣∣∣∣1 −
Ĥα(s= ι̇ωk− 1

2
)

Hα(s= ι̇ωk− 1
2

∣∣∣∣∣

2

(lnωk−lnωk−1)

+ εµT µ

= (Mµ − H)
T
W (Mµ − H)+εµTµ, (17)

where, for 1 ≤ k ≤ K, ωk− 1
2

=
√

ωk−1ωk denotes the

geometric mean of ωk−1 and ωk, matrix M is composed of

the rows [M ]k,∗=Eσ(s= ι̇ωk− 1
2
)T defined in (15), vector H

is composed of [H]k = Hα(s = ι̇ωk− 1
2
), the diagonal matrix

W is defined by [W ]k,k = (lnωk−lnωk−1) /
∣∣ [H]k

∣∣2.
The minimization of (17) is straightforward: first, the com-

plex values in M and H are decomposed into their real and

imaginary parts (z = x + ι̇y), so that the objective function is

re-expressed as a real nonnegative function of exclusively real

quantities with respect to the real-valued vector µn; second,

this standard least square problem is analytically solved; third,

the analytic result is recomposed into a closed form with

respect to the complex quantities for conciseness. This yields

the real-valued optimal weights

µopt =
[
M

T
WM + εIN

]−1

Re
(
M

T
WH

)
. (18)

If the condition number of the inverse matrix is larger than

the targeted precision (here, that of floats), no regularization

is needed so that the Tikhonov penalty parameter is set to

ε = 0. Otherwise, there is no general rule to select this

parameter [19], [20]. Here, we use a basic iterative dichotomy:

(step n = 0) we introduce ε−0 = 0 (bad condition number) and

a value ε+
0 > 0 sufficiently large to provide a condition number

that is better than the target; (step n+1) if ε∗n = (ε−n + ε+
n )/2

provides a condition number that is better than the target,

we set ε−n+1 = ε−n , ε+
n+1 = ε∗n, and otherwise, we set

ε−n+1 = ε∗n, ε+
n+1 = ε+

n ; the sequence is stopped when the

targeted condition number obtained for ε∗n is reached (with a

margin of factor 2).

Compared to § IV-B, some adaptations of parameters appear

to be relevant in practice. In order to reject ripples near

the boundaries of the useful range [10−3, 103], the range

[ωmin, ωmax] used in the objective function is enlarged to

[10−4, 104]. Moreover, when significantly reducing the number
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N poles, it appears that contracting the range of the poles is

also relevant, corresponding to ℓ0 = −5 and ℓN+1 = +5.

Here, results are displayed for N = 20 in figure 5, and

N =10 in figure 6.
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Fig. 5. (Optimization, N =20) Bode diagrams of bHα (s= ι̇ω) for fractional
orders α increasing from 0.1 (top) to 0.9 (bottom) with step 0.1. Parameters
are ℓ0 = −5, ℓN+1 = +5, ωmin = 10−4, ωmax = 10+4] and ε ∼ 10−13.
These curves are to be compared with those of figure 2.
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Fig. 6. (Optimization, N = 10) Idem as in figure 5 for N = 10, with
ε ∼ 5 × 10−14.

D. Observation and first conclusion

In practice, approximations based on optimizations appear

to be better than those based on interpolations: in figures 2

to 6, similar qualities are obtained with twice fewer poles for

optimization than for interpolation.

An interpretation is that the method based on interpolations

fully depends on the approximation quality of each analytic

density µα through a refined mesh whereas that based on

optimization is less contraining. Indeed, this last method only

exploits the structural information which is shared by the

family of (infinite dimensional) filters, namely, the cut. In this

sense, it acutely combines a structural information which is

not obvious to identify by most of blind methods, with the

flexibility and the efficiency of such “blind” approximation

methods, according to “scalings, dimensions and measures”

of audio interest.

At this step, parameters ℓ0 = −5, ℓN+1 = +5, ωmin =
10−4, ωmax = 10+4 for N = 20 poles and a regularization

about ε ∼ 10−13 yield a good trade-off. This will still

be improved by optimizing the parameters of the global

representation of the family which is introduced below.

V. STATE-SPACE REPRESENTATION

A. Representation of the complete family up to the limit oders

Consider a (fixed) vector of N poles σ defined as in

section IV. A finite dimensional state-space representation,

with input u ∈ R, state x ∈ R
N+1 and output y ∈ R, which

approximates the complete family of filters Fα,fc
(fc > 0 and

0 ≤ α ≤ 1) is given by

1

2πfc

∂tx = Ax + B u, (19)

y = C(α)x + D(α)u, (20)

where A = diag(−1;σ) is a constant diagonal matrix of

dimension (N +1) × (N +1), B = [1, . . . , 1]T is a constant

vector ((N +1) × 1), and where matrix C (1 × (N +1)) and
D (1 × 1) exclusively depend on α, as detailed below.

In order to handle the limit orders α = 0 and α = 1, we
introduce the equally-spaced sequence αj = j/J for 0≤ j ≤
J , and where J is a fixed mesh number which is chosen to

linearly interpolate orders αj . Indeed, for α = α0 = 0, the
filter is a unit gain so that C = C0 = [0, . . . , 0] and D =
D0 = 1. For α = αJ = 1, the filter is a one-pole filter and

C = CJ = [1, 0, . . . , 0] and D = DJ = 0. For α = αj with

1≤ j ≤ J − 1, an approximation of the filter is obtained for

C = Cj = [0,µ(αj)
T ] and Dj = 0 where µ(αj) is computed

as in section IV, using methods 1 or 2 for α=αj . For other

values, the filter is approximated using a linear interpolation

of Cj and Dj as follows:

if αj ≤α≤αj+1 (with 0 ≤j≤ J − 1), then

C(α) = (j + 1 − Jα)Cj + (Jα − j)Cj+1 (21)

D(α) = (j + 1 − Jα)Dj + (Jα − j)Dj+1. (22)

This allows fast calculations of functions C(α) and D(α)
from a set of (J+1) pre-computed matrices Cj and Dj .

Moreover, the approximation introduced by (21-22) can be

reduced as much as desired by increasing J . For instance, for
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J = 60, the maximal gain deviation 20 log10

∣∣Hαj
/Hαj+1

∣∣ is

lower than 1 dB (which is only reached at f = 20 kHz for

fc = 20Hz).

Aside from giving a continous interpolation of the filters

over the complete range 0 ≤ α ≤ 1, without considering

special treatments for the limit orders, equations (19-22) can

also be used to advantage in order to improve the quality of

the approximation, as detailed below.

B. Optimized approximation used for the simulation

The direct gain D and the pole 2πfc[A]1,1 have been

included in (19-20) to tackle the limit cases α=0 and α=1,
respectively. As they introduce some additional computations,

an interesting issue is to take them into account in the

optimization method (method 2): equation (15) has simply to

be modified by including functions s 7→ 1 and s 7→ 1/(s + 1)
in Eσ(s) and including the associated weights (D and [C]1)
in µ.

In practice, this significantly improves the results, especially

below the cutoff frequency, while equations (19-22) are not

modified.

Thus, considering N + 1 = 13 poles with ℓ0 = −1 and

ℓN = 5 leads to accurate approximations for the complete

family. Moreover, for these parameters, no Tikhonov penalty

is required in the objective function (ε = 0). These results

are displayed in figure 7. The detailed contributions of all the

individual one-pole filters (including the constant gain filter

D(α)) are displayed in figure 8. This figure shows that:

• for the poles with a high index, the perceptible informa-

tion is concentrated in the phase in the high frequency

range;

• since the objective function (16) involves a log-frequency

measure (d lnω) as in the Bode diagram, the law which

is naturally adapted to the poles placement is −ξn with

ξn = 10ηn from η0 = 0 to ηN = lnωmax; the grid chosen

in (12) (concatenated with ξ = −1 and rearranged) is

similar to this law with a slightly refined mesh near the

cutoff angular frequency ω = 1, so that it improves the

approximations in this critical frequency area.

This last result is chosen to build the simulation proposed

below. The approximation error (maximal with respect to the

dimensionless range ω ∈ [10−3, 103]) is displayed versus the

number of poles (N+1) and several orders α in figure 9. This

error provides a bound which is available for all the cutoff

frequencies over all the audible frequency range. For N+1=13

poles, this relative error is less than 1.5× 10−3 (2.47× 10−3

and 1.13 × 10−3 for 12 and 14 poles respectively). Over 14

poles, the gain in accuracy becomes much smaller.

VI. DISCRETE TIME DOMAIN

This section is concerned with the discrete-time simulation

of the differential system (19), that is, the computation of

X(m) = x(mTs) from U(m) = u(mTs) (m ∈ N), for the

sampling frequency fs = 1/Ts.
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Fig. 7. Bode diagram obtained for the state-space representation (19-22)
of dimension N + 1 = 13, optimized for paremeters ε = 0, ℓ0 = −1 and
ℓN = +5.
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Fig. 8. Bode diagrams of the approximated filter for α = 0.5 in dashed line
and of the individual one-pole filters (including the constant gain filter D(α))
in solid lines. The optimization is performed on the range ω ∈ [10−4, 10+4]
which includes the usefull range ω ∈ [10−3, 10+3].
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Fig. 9. Maximal relative error Emax = max
ω∈[10−3,103]

˛̨
˛1−

bHα(ι̇ω)

Hα(ι̇ω)

˛̨
˛: (left)

error versus the number of poles N+1 for fractional orders α increasing from
0.1 (-) to 0.5 (- -) with step 0.2; (center) idem from 0.5 (- -) to 0.9 (-); (right)
error versus α for N+1=12, 13, 14 and 15 poles. The error increases from
α = 0 (error is zero) to a maximal value between 0.2 and 0.5 (depending on
the number of poles) and decreases to zero at α = 1.

A. Choice of a numerical scheme

Numerous numerical methods are available for simulat-

ing ordinary differential equations (see e.g. [21]) and finite-

dimensional state-space systems (see e.g. [22]). Basic ones are

the Euler (forward or backward, respectively) methods: their

main disavantage is that they strongly distort the pole mapping

s 7→ z = exp(s T ) which is exact if |ℑm(s)| < πfs/2, and
that they do not preserve the stability domain (under or over

stabilization, respectively). For these reasons, these methods

are discarded here.

A second family of methods is based on expontential inte-

grators, which provide an ideal pole mapping (so, the stability

domain) and restore exact free regimes. The approximation is

introduced on the input through the choice of its interpolation

(from samples). Typical interpolations are sample-and-hold or

affine interpolations. A third method often used for audio

applications is based on the bilinear transform (also called

the “Tustin’s method”): a transfer function G in the Laplace

domain is approximated by Gd(z) = G
(
S(z)

)
in the z-

domain, using the mapping S(z) = 2
T

1−z−1

1+z−1 . Although the

pole mapping is not exact, the bilinear transformation exactly

preserves the stability domain and avoids the problem of

aliasing because it maps the Fourier axis (s = ι̇ω ∈ ι̇R) and

the left-half complex plane C
+
0 onto the unit circle and the

unit disk in the z-plane, respectively.

These two last family of methods have been applied to

the state-space representation described in section V-B for an

over-sampling ratio 2. Bode diagrams computed from impulse

response have been compared, for several parameters α and fc.

It appears that the modulus is more accurate for exponential

integrators (especially for the sample-and-hold approximation)

than for the bilinear transform. But, it is the opposite for the

phase.

Alternative modified versions of Tustin’s method based

on interpolations between Tustin’s method and the backward

Euler methods have been designed in order to improve the

magnitude frequency response of digital integrators and differ-

entiators. One first mapping corresponds to the nonminimum

phase integrator 1/S(z) = T
2

1+γ+(1−γ)z−1

1−z−1 , and a second one

is the associated minimum phase integrator. These mappings

are usually tuned choosing γ = 3/4 in order to restore an

accurate magnitude at the half Nyquist frequency (see [23] for

a more detailed presentation). For this reason, they have even

been used for the design of digital fractional differentiators

and integrators [24]. However, contrarily to Tustin’s method,

these modified versions do not map the Fourier axis onto the

unit circle: the original phase constancy (with respect to the

positive/negative frequencies) is significantly damaged, which

makes the approximation error on s 7→ 1+s and Hα increase,

even with the over-sampling ratio 2.

For all these reasons, the bilinear transform is chosen in

the following. In practice, this choice provides an acceptable

trade-off on the modulus and the phase with the over-sampling

factor. Moreover, it only requires standard floating point oper-

ations and avoids the computation of the exponential for the

pole mapping.

B. Discrete state-space representation

Equation (19) rewrites

∂tx = Ac x + Bc u, (23)

with Ac(fc) = 2πfc A and Bc(fc) = 2πfc B.

Combined with (20), this state-space representation approx-

imates Fα,fc
defined in (1-2) by

F̂α,fc
(s) = C(α)

(
s I − Ac(fc)

)−1
Bc(fc) + D(α), (24)

in the Laplace domain. A discrete state-space representation

X(m+1) = Ad X(m) + Bd U(m), (25)

Y (m) = Cd X(m) + Dd U(m), (26)

which restores the bilinear transform, that is, which is such

that Cd

(
I−z−1 Ad

)−1
Bd+Dd = F̂α,fc

(
2
T

1−z−1

1+z−1

)
, is derived

using the Cayley transform (see e.g. [25]). Introducing ν =

2/T and Q =
(
νI − Ac

)−1
, matrices are given by

Ad =
(
νI + Ac

)
Q,

Bd =
√

2ν QBc,

Cd =
√

2ν C Q,

Dd = F̂α,fc
(ν) = C QBc + D.

C. Low-complexity digital fractional-order filter

As Ad is diagonal, equation (25) describes a set of decou-

pled first order AR filters. This involves 2N+2 products and

N+1 sums. The observation equation (26) involves N+2 prod-

ucts and N+1 sums. The total amounts are then 3N+3 products

and 2N+2 sums.
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The amount of products can be reduced to only 2N+2

products, by using a change of state X = diag(Bd)Z so that

Bd become a vector of unit gains. This leads to

Zn(m+1) = −ac
n Zn(m) + U(m), for 1≤n≤N+1,(27)

Y (m) = Gc(α) Zn(m) + Dc(α)U(m), (28)

where ac
n = [−Ad]n,n, Gc = Cd diag(Bd), Dc = Dd.

In the z domain, this corresponds to the transfer function

F̃α,fc
(z) =

N+1∑

n=1

Gc
n(α)

1 + ac
nz−1

+ Dc(α).

Coefficients depending on fc are marked with a superscript

c, those depending on α are written as functions of α.
Introducing qc

n = 1/(1 − ωc
n), they are given by

ac
n = −(1 + ωc

n)qc
n, (29)

Gc
n(α) = 2ωc (qc

n)2 Cn(α), (30)

Dc(α) = D(α)+Gc
0 with Gc

0 = ωc

N+1∑

n=1

qc
nCn(α),(31)

where ωc = πfc/fs, ωc
n = ωc[A]n,n (with A given in (19))

and C, D are given by (21-22) for the coefficients µ computed

in section V-B.

D. Stability for time-varying parameters

Equations (27-28) provide a stable system for all parameters

fc ∈ [F−, F+] and α ∈ [0, 1], even when they are time-

varying. Indeed, each first order recursive equation provides a

stable time-varying system with input U and output Zn with

finite maximal gain Gn: |ac
n| < amax

n < 1 where amax
n = (ν+

2πF−αn)/(ν − 2πF−αn) so that |Zn(m)| ≤ amax
n |Zn(m −

1)| + Umax ≤ GnUmax with Gn = 1
1−amax

n
and Umax =

supm′≤m |U(m′)|.
Moreover, coefficients Gc(α) and Dc(α) in the observation

equation (28) are all finite and bounded, proving that the result

also stands for the output Y .

Note that as coefficients in (28) do not depend on α, this
implementation of the filter does not include any memory due

to the time-variation of α: this equation renders the output of

the filter of order α(tm) at time tm as if α had been constant

from the initial time.

An illustration is provided in figure 10. In this example,

the input is a gaussian white noise. The cutoff frequency and

the order are time-vayring with both slow and fast variations.

They cover the full range in a non synchronuous way. In spite

of these furthest conditions, the stability of the filter appears

to be unaltered.

VII. SIMULATION AND RESULTS

The Bode diagrams built from the discrete Fourier transform

of simulated outputs are displayed in figures 11-12 for the

following choice: the input is a unit pulse so that the output is

the impulse response, parameters are constant (fc = 200Hz,
α=αj for 0≤ j ≤J =10), the weights µ are those obtained

in section V-B, the sampling frequency is Fs = 96 kHz and
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Fig. 10. (Time domain) Simulation with Tustin’s method at fs = 96 kHz of
the filter fed by a Gaussian white noise with a unitary standard deviation on
0 ≤ t ≤ 1s. Time-varying parameters are such that ln fc(t) = ln fmin

c +
(ln fmax

c − ln fmin
c )

`
1 − cos(2π 10 t4)

´
/2 (top) and α(t) = αmin +

(αmax − αmin) (1 + sin
`
2π 10 (1 − x)4)

´
/2 (middle) for the maximal

parameter ranges (fmin
c = 20Hz, fmax

c = 20 kHz, αmin = 0 and αmax =
1). The output signal y is bounded (bottom).

the time of simulation is chosen sufficiently long (Tsimu =
217 F−1

s ≈ 1.37 s).

This discrete Fourier transform is denoted F̆α,fc
so that

it cannot be confused with the previous notations (recall

that Fα,fc
, F̂α,fc

, F̃α,fc
, respectively denote (i) the exact

transfer function, (ii) the finite dimensional approximation in

the Laplace(/Fourier) domain and (iii) the finite dimensional

approximation in the z-domain according to the numerical

scheme).

Results appear to be accurate and the main devia-

tion is observed at 20kHz on the modulus. This is con-

firmed by computing the errors. Three types of errors

(maximal with respect to the cutoff frequency fc ∈
{20Hz, 200Hz, 2000Hz, 20000Hz} and the fractional order

α increasing from 0 to 1 with step 0.1) are characterized

in figure 13. They are chosen as follows: the relative er-

ror
∣∣1 − F̆α,fc

/Fα,fc

∣∣, the magnitude deviation in decibels

20 log10 |F̆α,fc
| − 20 log10 |Fα,fc

|, and the phase deviation

arg
(
F̆α,fc

/Fα,fc

)
.

For all the parameter values, the maximal deviations are

about 5 on the phase and about about 1.4 dB on the modulus,

in the very high frequency range. These deviations are mainly

due to the numerical scheme (here, based on the bilinear trans-

form) and could be reduced by increasing the oversampling

ratio.

A real-time version of this family of filters has been

implemented in FAUST langage [26], which is available for

time-varying parameters.
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Fig. 11. Magnitude of the Bode diagrams obtained from: (top) the
exact transfer function (Fα,fc

); (bottom) the discrete Fourier transform of

the simulations (F̆α,fc
) for the same parameters as in figure 7 and with

fc = 200Hz, Fs = 96 kHz and Tsimu = 217 F−1
s ≈ 1.37 s.
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Fig. 12. Phase of Bode diagrams in figure 11.

VIII. DISCUSSION

Although the fractional order filters under consideration are

not fractional differential systems, these objects share common

properties. One of them is that they both corresponds to

pseudo-differential time operators, the spectrum of which is a

continuous set (interpreted here as a branch cut which lies on
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Fig. 13. The “Worst errors” (maximal deviations over fc ∈
{20Hz, 200Hz, 2000Hz, 20000Hz} and α increasing from 0 to 1 with

step 0.1) between the transfer function F̆α,fc
computed from the dis-

crete Fourier transform of simulations and the exact transfer function
Fα,fc

. Top: relative error
˛̨
1 − F̆α,fc

/Fα,fc

˛̨
. Center: magnitude deviation

in decibels 20 log10 |F̆α,fc
| − 20 log10 |Fα,fc
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arg
`
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´
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R
− in the complex Laplace plane). To handle the difficulty due

to the infinite dimension of such systems, specific approaches

such as that of Grunwald-Letnikov have been developed for

fractional integrators and differentiators [7]. Following this

approach, a fractional system can be directly converted into

a (very large) finite impulse response, which, in a second

step, can efficiently be converted into a short infinite impulse

response filter by solving a least square problem (see e.g. [27]).

Like in this last approach, the method 2 is based on a

least square problem. But the particularity is to process the

optimization in the Fourier domain in order to avoid some

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TASLP.2014.2323715

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



IEEE TASL, VOL. ?, NO. ?, MONTH? 2010? 11

difficulties and benefit from several advantages, specifically

due to the target audio application, namely:

1) the singularity of hα at t = 0 would make the problem

ill-conditioned in the time domain whereas the criterion∫
C

∣∣∣dMα(σ)
1−σ

∣∣∣ < +∞ is fulfilled, meaning that the integral

representation is well-posed and can be used in practice;

2) for audio purposes, the design of the objective function

according to perception principles is easier and more

efficient in the frequency domain than in the time

domain;

3) because of the Parseval theorem, least square problems

are well-posed (and equivalent in frequency or the time

domain) for systems whose impulse response belongs to

L2(R+) (see appendix IX-A). However, as specified in

section III-A, for hα, this is true only if α > 1/2. For
α < 1/2, the energy is no more defined. In the frequency

domain, the truncated audio frequency range allows the

rejection of this problem, while keeping some sense

with respect to the audio objective. The efficiency of the

method proposed here and the difficulty for handling this

problem are both corroborated by the figure 9 (right):

this figure shows that the highest approximation error

corresponds orders α lying between α = 0 and α = 0.5
but that it is also well-controlled by the optimization.

However, one current limitation of the method 2 is conerned

with the choice of the poles: they are not estimated. The

heuristic law relying on a quasi-geometric series proves to be

relevant: it is naturally adapted to the (audio) log-frequency

scale. But, it is certainly not optimal. This is corroborated by

the biases that are generated by the interpolation method based

on this placement. Some interesting issues could be: (i) locally

optimize the poles placements with standard practical meth-

ods; (ii) investigate on the convergence of the interpolation

method to derive some laws from the weights µα; (iii) develop

links with the approaches above-mentioned.

IX. CONCLUSION

In this paper, a new family of low-pass filters has been

proposed. It allows the tuning of the cutoff frequency between

20Hz and 20 kHz and that of the filter attenuation between

0 and -6 decibels per octave, separately and independently

from one another. The realization of this family required

to optimize finite dimensional approximations of an exact

“diffusive representation” of the filters.
In practice, a simulation has been obtained using 13 one-

poles filters, the poles of which exclusively depend on the

desired cutoff frequency, and using a linear combination of

their 13 outputs, the coefficients of which exclusively depend

on the desired filter attenuation. This structure guarantees the

stability even for time-varying parameters. In this case and

with this choice, the simulation renders the memory effect due

to the time variation of the cutoff frequency whereas, for the

attenuation, it locally renders the output as if the attenuation

had been the current value from the initial time. The results

are accurate on the complete frequency range.
Perspectives for further work are to consider higher frac-

tional orders and other families of fractional order filters such

as high pass filters or resonant filters.

APPENDICES

A. Recalls on the Hardy spaces and the Paley-Wiener theorem

Let L2(R+) =
{
h : R

+ →
C

∣∣ h is measurable and
∫

R+ |h(t)|2dt < ∞
}

denote

the space of causal functions with finite energy, and

H
m(C+

0 ) =
{

H : C
+
0 → C

∣∣∣ H is holomorphic and

‖H‖Hm = sup
ζ>0

[
1

2π

∫

R

|H(x + ι̇y)|mdy

] 1
m

< ∞
}

(32)

denote the Hardy spaces for m > 0. The Hardy spaces

define transfer functions H of causal systems, that is, the

associated convolution kernels h are zero for t < 0 (see

e.g. [28]). The Paley-Wiener theorem gives the particular

following result: under the Laplace transform, L2(R+) is

isomorphic to H
2(C+

0 ) (see e.g. [29, p. 645] or [30]).

The limit Hardy space H
∞(C0) is the vector space of

bounded holomorphic functions that have a finite norm

‖H‖H∞ = sups∈C
+

0

∣∣H(s)
∣∣. Moreover, for 0 < p ≤ q ≤ +∞,

H
q is a subset of H

p, and the H
p-norm is increasing with p.

B. Integral representation and Bromwich contour

Consider the (oriented) Bromwich contour CB =C1 ∪ C+
2 ∪

C3 ∪ C−
2 parametrized by R > ǫx > ǫy > 0, as described in

figure 14.

ℜe(s)

ℑm(s)

ǫx−R

−1+ ι̇ǫy

C1

C+
2

C−
2

C3

−1

Fig. 14. Bromwich contour adapted to Hα.

Then, denote I = I1+I+
2 +I3+I−2 the integral of G : s 7→

1
2ι̇π

Hα(s) exp(st) onto CB with t>0, and define the jump of

Hα when s crosses the cut at σ ∈ C, namely,

ηα(σ)=Hα(σ− ι̇0+) − Hα(σ+ ι̇0+).

From the residue theorem, this integral is I = 0, since

G is analytic inside CB . Moreover, as R → +∞ and

0 < ǫy < ǫx → 0+, each integral absolutely converges
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towards the limit I1 → hα(t), I±2 → 0 (Jordan’s lemma) and

I3→ 1
2ι̇π

∫
C
[−ηα(σ)] eσt dσ so that for all positive t,

hα(t) =

∫

C

exp(σt) µα(σ) dσ

where µα(σ) = Hα(σ−ι̇0+)−Hα(σ+ι̇0+)
2ι̇π

. This is the result given

in (6).
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