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ABSTRACT2

The mammalian auditory system extracts features from the acoustic environment based on the3
responses of spatially distributed sets of neurons in the subcortical and primary cortical audi-4
tory structures. The characteristic responses of these neurons (linearly approximated by their5
spectro-temporal receptive fields, or STRFs) suggest that auditory representations are formed6
on the basis of a time, frequency, rate (temporal modulations) and scale (spectral modulati-7
ons) analysis of sound. However, how these four dimensions are integrated and processed in8
subsequent neural networks remains unclear. In this work, we present a new methodology to9
generate computational insights into the functional organization of such processes. We first pro-10
pose a systematic framework to explore more than a hundred different computational strategies11
to process the output of a generic STRF model. We then evaluate these strategies on their abi-12
lity to compute perceptual distances between pairs of environmental sounds. Finally, we conduct13
a meta-analysis of the dataset of all these algorithms’ accuracies to examine whether certain14
combinations of dimensions and certain ways to treat such dimensions are, on the whole, more15
computationally effective than others. We present an application of this methodology to a dataset16
of ten environmental sound categories, in which the analysis reveals that (1) models are most17
effective when they organize STRF data into frequency groupings - which is consistent with the18
known tonotopic organisation of receptive fields in A1 -, and that (2) models that treat STRF19
data as time series are no more effective than models that rely only on summary statistics along20
time - which corroborates recent experimental evidence on texture discrimination by summary21
statistics.22

Keywords: Spectro-temporal receptive fields; auditory cortex; audio pattern recognition23

1 INTRODUCTION

The mammalian auditory system extracts features from the acoustic environment based on the responses24
of spatially distributed sets of neurons in the primary auditory cortex (A1). These neurons operate on the25
preprocessing done by subcortical structures such as the inferior colliculus, and the auditory periphery.26
Their behaviour can be modelled as a spectro-temporal filterbank, in which the transformation between27
the sound input and the firing-rate output of each neuron is approximated linearly by its spectro-temporal28
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receptive field (STRF)(Chi et al., 2005). An auditory neuron’s STRF can be described as a 2-dimensional29
filter in the space of spectro-temporal modulations, with a bandwidth in the two dimensions of rate (tem-30
poral modulation, in Hz) and scale (spectral modulation, in cycles/octave). In addition, because auditory31
cortical neurons are tonotopically organized and respond to frequency-specific afferents, a given neuron’s32
STRF only operates on a specific frequency band. The convolution between the rate-scale STRF and the33
time-frequency spectrogram of the sound gives an estimate of the time-varying firing rate of the neuron34
(Figure 1).35

Although the experimental measurement of A1 STRFs in live biological systems is plagued with meth-36
odological difficulties (Christianson et al., 2008), and their approximation of the non-linear dynamics37
and context-dependency of auditory cortical neurons is only partial (Gourévitch et al., 2009), computa-38
tional simulations of even simple STRFs appear to provide a robust model of the representational space39
embodied by the auditory cortex. Patil et al. (2012) have recently demonstrated a system which uses a40
Gabor-filter implementation of STRFs to compute perceptual similarities between short musical tones. In41
their implementation, sound signals were represented as the mean output energy in time of a bank of more42
than 30,000 neurons, evenly spaced according to their characteristic frequencies, rates and scales. This43
high-dimensional representation was then reduced using principal component analysis, and used to train a44
gaussian-kernel distance function between pairs of sounds. The authors found that their model approxima-45
tes psychoacoustical dissimilarity judgements made by humans between pairs of sounds to near-perfect46
accuracy, and better so than alternative models based on simpler spectrogram representation.47

Such computational studies (see also Fishbach et al. (2003)) provide proofs that a given combination of48
dimensions (e.g. frequency/rate/scale for Patil et al. (2012); frequency/rate for Fishbach et al. (2003)),49
and a given processing applied on it, is sufficient to give good performance; they do not, however, answer50
the more general questions of what combination of dimensions is optimal for a task, in what order these51
dimensions are to be integrated, or whether certain dimensions are best summarized rather than treated52
as an orderly sequence. In other words, while it seems plausible that cognitive representations are formed53
on the basis of a time, frequency, rate and scale analysis of auditory stimuli, and while much is known54
about how A1 neurons encode such instantaneous sound characteristics, how these four dimensions are55
integrated and processed in subsequent neural networks remains unclear.56

Human psychophysics and animal neurophysiology have recently cast new light on some of these sub-57
sequent processes. First, psychoacoustical studies of temporal integration have revealed that at least part58
of the human processing of sound textures relies only on temporal statistics, which do not retain the tem-59
poral details of the feature sequences (McDermott et al., 2013; Nelken and de Cheveigné, 2013). But60
the extent to which this type of timeless processing generalizes to any type of auditory stimuli remains61
unclear; similarly, the computational purpose of this type of representation is unresolved: does it e.g. pro-62
vide a higher-level representational basis for recognition, or a more compact code for memory? Second,63
a number of studies have explored contextual effects on activity in auditory neurons (e.g. Ulanovsky64
et al. (2003), David and Shamma (2013)). These effects are evidence for how sounds are integrated over65
time, and constrain their neural encoding (Asari and Zador, 2009). Finally, the neurophysiology of the66
topological organization of auditory neuronal responses also provides indirect insights into the compu-67
tational characteristics of the auditory system. For instance, it is well-established that several auditory68
cortical areas show an orderly mapping of characteristic frequency (CF) in space: the tonotopical map69
(Eggermont, 2010). This organization plausibly reflects a computational need to process several areas of70
the frequency axis separately, as shown e.g. with frequency-categorized responses to natural meows in cat71
cortices (Gehr et al., 2000). However, the topology of characteristic responses in the dimensions of rate72
and scale remains intriguing: while STRFs are orderly mapped in the auditory areas of the bird forebrain,73
with clear layer organization of rate tuning (Kim and Doupe, 2011), no strong organization of STRF74
shapes has been observed to date in the mammalian auditory cortex (Atencio and Schreiner, 2010) - but75
it has in the midbrain (Baumann et al., 2011). Conversely, if, in birds, scale gradients seem to be mapped76
independently of tonotopy, in A1 they vary systematically within each isofrequency lamina (Schreiner77
et al., 2000). It is therefore plausible that the mammalian cortex has evolved networks able to jointly78
process the time, frequency, rate and scale dimensions of auditory stimuli into a combined representations79
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optimized for perceptive tasks such as recognition, categorization and similarity. But there are many ways80
to form such representations, and insights are lacking as to which are most effective or efficient.81

This work presents a new computational approach to derive insights on what conjunct processing of the82
4 dimensions of time, frequency, rate and scale makes sense at a cortical level. To do so, we propose a83
systematic pattern-recognition framework to, first, design more than a hundred different computational84
strategies to process the output of a generic STRF model; second, we evaluate each of these algorithms85
on their ability to compute acoustic dissimilarities between pairs of sounds; third, we conduct a meta-86
analysis of the dataset of these many algorithms’ accuracies to examine whether certain combinations of87
dimensions and certain ways to treat such dimensions are more computationally effective than others.88

2 METHODS

2.1 OVERVIEW

Starting with the same STRF implementation as Patil et al. (2012), we propose a systematic framework89
to design a large number of computational strategies (precisely: 108) to integrate the four dimensions90
of time, frequency, rate and scale in order to compute perceptual dissimilarities between pairs of audio91
signals.92

As seen below (section 2.2), the STRF model used in this work operates on 128 characteristic freque-93
ncies, 22 rates and 11 scales. It therefore transforms a single auditory spectrogram (dimension: 128×time,94
sampled at SR=125Hz) into 22×11=242 spectrograms corresponding to each of the 242 STRFs in the95
model. Alternatively, its output can be considered as a series of values taken in a frequency-rate-scale96
space of dimension 128×22×11=30,976, measured at each successive time window.97

The typical approach to handling such data in the field of audio pattern recognition, and in the Music98
Information Retrieval (MIR) community in particular (Orio, 2006), is to represent audio data as a tem-99
poral series of features, which are computed on successive temporal windows. Features are typically100
seen as points in a corresponding vector space; the series of such feature points in time represents the101
signal. Feature series can then be modelled and compared to one another with e.g. first-order statisti-102
cal distributions (the so-called bag-of-frame approach of Aucouturier and Pachet (2007a)), dynamical103
models (Lagrange, 2010), Markov models (Flexer et al., 2005) or alignment distances (Aucouturier104
and Pachet, 2007b). Taking inspiration from this approach, we construct here twenty-six models that105
treat the dimension of time as a series that takes its values in various combinations of frequency, rate and106
scale: for instance, one can compute a single scale vector (averaged over all frequencies and rates) at each107
time window, then model the corresponding temporal series with a Gaussian mixture model (GMM), and108
compare GMMs to one another to derive a measure of distance.109

However, we propose here to generalize this approach to devise models that also take series in other110
dimensions than time (see sections 2.3 and 2.4). For instance, one can consider values in rate/scale space111
as successive steps in a frequency series (or, equivalently, successive “positions” on the frequency axis).112
Such series can then be processed like a traditional time series, e.g. modelled with a gaussian mixture113
model or compared with alignment distances. Using this logics, we can create twelve frequency-series114
models, twelve rate-series models and twelve scale-series models. Many of these models have never115
been considered before in the pattern recognition literature. Finally, we add to the list fourty four models116
that do not treat any particular dimension as a series, but rather apply dimension reduction (namely,117
PCA) on various combinations of time, frequency, rate and scale. For instance, one can average out the118
time dimension, apply PCA on the frequency-rate-scale space, yielding a single high-dimensional vector119
representation for each signal; vectors can then be compared with e.g. euclidean distance. One of these120
‘vector” models happens to be the approach of Patil et al. (2012); we compare it here with fourty-three121
alternative models of the same kind.122
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We can then test each of these 108 models for their ability to match reference judgements on any given123
dataset of sound stimuli. For instance, given a dataset of sound files organized in categories, each of124
the models can be tested for its individual ability to retrieve, for any file, nearest neighbors that belong125
to the same category (i.e. its precision). The better precision is achieved by a given model, the better126
approximation to the actual biological processing it is taken to represent, at least for the specific dataset it127
is being tested on.128

Finally we conduct a meta-analysis of the set of 108 precision values achieved by the models. By129
comparing precisions between very many models, each embedding a specific sub-representation based on130
the STRF space, we can generate quantitative evidence of whether certain combinations of dimensions and131
certain ways to treat such dimensions are, on the whole, more computationally effective than others for132
that dataset of sounds. For instance, among the 106 models considered here, 16 operate only on frequency,133
16 on frequency and rate, and 16 on frequency and scale ; if compared with inferential statistics, these 48134
models provide data to examine whether there is a systematic, rather than incidental, advantage to one or135
the other combination.136

2.2 STRF IMPLEMENTATION

We use the STRF implementation of Patil et al. (2012), with the same parameters. The STRF model137
simulates the cortical processing occurring in the auditory thalamus and cortex. It processes the output of138
the cochlea - represented by an auditory spectrogram in log frequency (SR= 24 channels per octave) vs139
time (SR=125Hz, 8ms time windows) using a multitude of STRFs centered on specific frequencies (128140
channels, 5.3 octaves), rates (22 filters: +/-4.0, +/-5.8, +/-8.0, +/-11.3, +/-16.0, +/-22.6, +/-32.0, +/-45.3,141
+/-64.0, +/-90.5, +/-128.0 Hz) and scales (11 filters: 0.25, 0.35, 0.50, 0.71, 1.0, 1.41, 2.00, 2.83, 4.00,142
5.66, 8.00 c/o). (Figure 1-1)143

Each time slice in the auditory spectrogram is Fourier-transformed with respect to the frequency axis144
(SR=24 channels/octave), resulting in a cepstrum in scales (cycles per octave) (Figure 1-3). Each scale145
slice is then Fourier-transformed with respect to the time axis (SR=125Hz), to obtain a frequency spectrum146
in rate (Hz) (Figure 1-4). These two operations result in a spectrogram in scale (cycles/octave) vs rate147
(Hz). Note that we keep all output frequencies of the second FFT, i.e. both negative rates from -SR/2148
to 0 and positive rates from 0 to SR/2. Each STRF is a bandpass filter in the scale-rate space. First, we149
filter in rate: each scale slice is multiplied by the rate-projection of the STRF, a bandpass-filter transfer150
function Hr centered on a given cut-off rate (Figure 1-5). This operation is done for each STRF in the151
model. Each band-passed scale slice is then inverse Fourier-transformed w.r.t. rate axis, resulting in a152
scale (c/o) vs time (frames) representation (Figure 1-6). We then apply the second part of the STRF153
by filtering in scale: each time slice is multiplied by the scale-projection of the STRF, a bandpass-filter154
transfer function Hs centered on a given cut-off scale (Figure 1-7). This operation is done for each STRF155
in the model. Each band-passed time slice is then inverse Fourier-transformed w.rt. scale axis, returning156
back to the original frequency (Hz) vs time (frames) representation (Figure 1-8). In this representation,157
each frequency slice therefore corresponds to the output of a single cortical neuron, centered on a given158
frequency on the tonotopic axis, and having a given STRF. The process is repeated for each STRF in the159
model (22×11=242).160

2.3 DIMENSIONALITY REDUCTION

The STRF model provides a high-dimensional representation: (128×22×11 = 30,976) × time sampled161
at SR=125Hz. Upon this representation, we construct more than a hundred algorithmic ways to compute162
acoustic dissimilarities between pairs of audio signals. All these algorithms obey to a general pattern163
recognition workflow consisting of a dimensionality reduction stage, followed by a distance calculation164
stage (Figure 2). The dimensionality reduction stage aims to reduce the dimension (d=30,976×time)165
of the above STRF representation to make it more computationally suitable to the algorithms operating166
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in the distance calculation stage and/or to discard dimensions that are not relevant to compute acoustic167
dissimilarities. Algorithms for dimensionality reduction can be either data-agnostic or data-driven.168

1. Algorithms of the first type rely on reduction strategies that are independent of the statisti-169
cal/informational properties of the specific data to which they are applied, but rather decided based170
on a priori, generic intuitions. As a representative example of this type of approach, we use171

• summary statistics, in which we collapse the original STRF representation by averaging out data172
along one or several of its 4 physical dimensions. For instance, by averaging along time, we173
reduce the original time-series in a feature space of d=30,976 to a single mean frame of size d:174

STRFT (f, r, s) =
1

NT

t=NT∑
t=1

STRF (t, f, r, s),∀f, r, s (1)

where NT is the number of measured time points in the original representation. By averaging175
along frequency, we obtain a time-series of rate-scale maps of size d=22×11=242:176

STRFF (t, r, s) =
1

NF

t=NF∑
f=1

STRF (t, f, r, s),∀t, r, s (2)

whereNF is the number of measured frequency points in the original representation (NF = 128).177

2. Data-driven approaches to dimensionality reduction select or reorganize the dimensions of the data178
based on the data’s specific properties, often in the aim of optimizing a criteria such as its variability179
or compactness. As a representative example of this approach, we use180

• Principal Component Analysis (PCA), which finds optimal linear combinations of the data’s ori-181
ginal dimensions so as to account for as much of the variability in the data as possible, while182
having fewer dimensions than the original. In order to compute data variability, PCA operates183
on the complete dataset of audio signals used for the evaluation, and then applies the optimal184
reduction rules on each individual signal. In this work, we implemented PCA using the fast tru-185
ncated singular value decomposition (SVD) method (Halko et al., 2011), and used it to reduce186
the original number of dimensions to a variable number of principal components accounting for187
a fixed variance threshold of 99.99% of the original variance.188

As illustrated in Figure 2, the two types of approaches can be applied jointly, and on any combination189
of dimensions. For instance, one can collapse the time dimension to create a single mean frame of size190
d=30,976 (approach 1), then consider this collapsed data as a frequency-series (of 128 measured frequency191
points) taking values in the rate-scale space (d=242) and apply PCA on this space to account for 99.99%192
of the rate-scale variance (approach 2). The result is a frequency-series (of 128 points) taking its values in193
a reduced feature space of dimension d < 242.194

Table 1 lists the fifteen combinations of dimensions to which the original STRF representation can be195
reduced. Some of these reduced representations correspond to signal representations that are well-known196
in the audio pattern recognition community: for instance, by averaging over frequency, rate and scale,197
the STRF representation is reduced to a time series of energy values, i.e. a waveform; by averaging only198
over rate and scale, it is reduced to a spectrogram. More sophisticated combinations are also conceptually199
similar to existing, if sometimes more obscure, proposals: by averaging over frequency and rate, STRF200
can be viewed as a time series of scale values, which is reminiscent of the Mel-frequency cepstrum201
coefficients that are prevalent in speech and music recognition (Logan and Salomon, 2001); time-rate202
representations have been previously called “modulation spectrum” (Peeters et al., 2002), and frequency-203
rate representations “fluctuation patterns” (Pampalk, 2006). At the other extreme, a number of reduced204
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representations derived here from the STRF model are probably entirely original, albeit obeying to the205
same combinatorial framework as their better known parents.206

2.4 DISTANCE CALCULATION

Following dimensionality reduction, STRF representations are compared in order to compute acoustic207
distances between pairs of audio signals. Distance calculation algorithms differ on whether they treat a208
signal’s STRF data as a single multidimensional point in a vector space, or as a series of points.209

1. Algorithms treating STRF data as a single multidimensional point rely on distance functions operating210
on the data’s vector space. For the purpose of this work, we use two representative instances of such211
functions:212

• the simple euclidean distance, defined as213

dε(p, q) =

√∑
i

(pi − qi)2 (3)

where pi and qi are the ith coordinate of points p and q, and.214
• the gaussian kernel distance, which generalizes the approach of the euclidean distance by scaling215

each dimension i separately with a weight σi optimized to match the reference distance matrix216
we seek to obtain. It is computed as217

dK(p, q) = exp(−
∑
i

(pi − qi)2

σ2i
) (4)

where the σis are learned by gradient descent to minimize the difference between the calculated218
dK(p, q) and the true d(p, q) ∀p, q, using the cost function given as:219

J = − 1

n2

∑
p

∑
q

(d(p, q)− d̄)(dK(p, q)− d̄K (5)

where d(p, q) is the true distance between p and q, d̄ is the mean distance over all (p, q) pairs,220
dK(p, q) is the kernel distance between p and q and d̄K is the mean kernel distance over all221
(p, q) pairs. We used the Matlab gradient descent implementation of Carl Edward Rasmussen and222
Olivier Chappelle (http://olivier.chapelle.cc/ams/).223

2. Algorithms treating STRF data as a series of points rely on distance functions able to operate either on224
ordered data, or on unordered collections of points. As a representative instance of the first approach,225
we use:226

• the dynamic time warping (DTW) algorithm, dDTW (p, q), which is computed as the cost of227
the best alignment found between the 2 series p and q, using the individual cosine distances228
between all frames p[n], n < length(p) and q[m],m < length(p). Note that, if it is traditio-229
nally used with time-series, the DTW algorithm can be applied regardless of whether series p230
and q are ordered in time, or in any other dimension (we therefore also refer to it here by its231
more generic name dynamic programming (DP)). We computed dDTW using Dan Ellis’ Matlab232
implementation (http://www.ee.columbia.edu/∼dpwe/resources/matlab/dtw/).233

As a representative instance of the second approach, we use:234
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• Gaussian mixture models (GMM), compared with Kullback-Leibler divergence. A GMM is a235
statistical model to estimate a probability distribution P(x) as the weighted sum of M gaussian236
distributions Ni, ∀i < M , each parameterized by a mean µi and covariance matrix Σi,237

P(x) =
M∑
i

πiNi(x, µi,Σi) (6)

where πi is the weight of gaussian distribution Ni. Given a collection of points, viewed as sam-238
ples from a random variable, the parameters πi,µi,Σi,∀i < M of a GMM that maximizes the239
likelihood of the data can be estimated by the E-M algorithm (Bishop and Nasrabadi, 2006).240
For this work, we take M=3. In order to compare two series p and q, we estimate the parameters241
of a GMM for each of collection of points p[n] and q[m], and then compare the two GMMs Pp242
and Pq using the Kullback Leibler (KL) divergence:243

dKL(p, q) =

∫
Pp(x) log

Pq(x)

Pp(x)
(7)

computed with the Monte-Carlo estimation method of Aucouturier and Pachet (2004). Note244
that, similarly to DTW, if GMMs and KL divergence are traditionally used with time-series, they245
can be applied regardless of whether series p and q correspond to successive positions in time, or246
in any other dimension.247

The choice to view data either as a single point or as a series is sometimes dictated by the physical248
dimensions preserved in the STRF representation after dimensionality reduction. If the time dimension is249
preserved, then data cannot be viewed as a single point because its dimensionality would then vary with250
the duration of the audio signal and we wouldn’t be able to compare sounds to one another in the same251
feature space; it can only be processed as a time-series, taking its values in a constant-dimension feature252
space. For the same reason, series sampled in frequency, rate or scale cannot take their values in a feature253
space that incorporates time. The same constraint operates on the combination of dimensions that are254
submitted to PCA: PCA cannot reduce a feature space that incorporates time, because its dimensionality255
would not be constant. PCA can be applied, however, on the constant-dimension feature space of a time-256
series. Table 1 describes which modeling possibility applies to what combination of dimensions. The257
complete enumeration of all algorithmic possibilities yields 108 different models.258

3 CASE STUDY: TEN CATEGORIES OF ENVIRONMENTAL SOUND TEXTURES

We present here an application of the methodology to a small dataset of environmental sounds. We com-259
pute precision values for 108 different algorithmic ways to compute acoustic dissimilarities between pairs260
of sounds of this dataset. We then analyse the set of precision scores of these algorithms to examine261
whether certain combinations of dimensions and certain ways to treat such dimensions are more com-262
putationally effective than others. We show that, even for this small dataset, this methodology is able263
to identify patterns that are relevant both to computational audio pattern recognition and to biological264
auditory systems.265

3.1 CORPUS AND METHODS

One hundred 2-second audio files were extracted from field recordings contributions on the Freesound266
archive (http://freesound.org). For evaluation purpose, the dataset was organized into 10 categories of267
environmental sounds (birds, bubbles, city at night, clapping door, harbour soundscape, inflight infor-268
mation, pebble, pouring water, waterways, waves), with 10 sounds in each category. File formats were269
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standardized to mono, 44.1kHz, 16-bit, uncompressed, and RMS normalized. The dataset is available as270
an internet archive: https://archive.org/details/OneHundredWays.271

On this dataset, we compare the performance of exactly 108 different algorithmic ways to compute272
acoustic dissimilarities between pairs of audio signals. All these algorithms are based on combinaisons273
of the four T,F,R,S dimensions of the STRF representation. To describe these combinations, we adopt the274
notation X>A,B. . . for a computational model based on a series in the dimension of X, taking its values in275
a feature space consisting of dimensions A,B. . .. For instance, a time series of frequency values is written276
as T>F and time series of any suitable feature space are written as T>*, where * is a wildcard character.277
In the following, PCA refers to principal component analysis (a data-driven dimensionality reduction278
method), GMM and KL to gaussian mixture model and Kullback-Leibler divergence resp. (a statistical279
distribution estimation method used to model series, and a distance measure used to compare models280
to one another), DP to dynamic programming (a method to compare series by computing the optimal281
alignment from one to the other), KERNEL SC. and KERNEL to kernel scaling and kernel distance resp.282
(the process of estimating optimal weights in a gaussian kernel distance with respect to a target set of283
dissimilarities, and the utilization of such weights to compute a distance between vectors) and EUCL to284
the euclidean distance. All these algorithms correspond to those described in section 2.285

In order to compare the performance of the algorithms, we used the same evaluation methodology as286
earlier work about music similarity measures (Aucouturier and Pachet, 2004): each of the models is287
tested for its individual ability to retrieve, for any file, nearest neighbors that belong to the same category.288
More precisely, for a given algorithm and a given sound query in the dataset, a result is considered relevant289
if the retrieved sound belongs to the same category as the query. We quantify the precision of a query using290
the R-precision pR, which is the precision at R-th position in the ranking of results for a query that has R291
relevant documents (in this case, R=10):292

pR =
|{relevant documents} ∩ {first 10 retrieved}|

10
(8)

and averaged pR over all possible queries (n=100) in the test dataset to obtain a measure for each293
algorithm.294

3.2 DESCRIPTIVE STATISTICS

Figures 3,4,5,6 and 7 display precision scores, color-coded from blue (low, < 70%) to red (high, > 85%),295
for all computational models based, resp., on time-series, frequency-series, rate-series, scale-series and296
on the non-series, vector approach. We give here descriptive statistics in each of these five approaches. We297
then use inferential statistics on the complete dataset to address tranversal computational and biological298
questions, in the next section.299

Among models that treat signals as a temporal series of features (T>*, Figure 3), those who incor-300
porate frequency as one of the dimensions of the feature space tend to perform best regardless of the301
algorithms (DP, GMM, PCA) used to compare the series. There is little advantage if any to add rates302
(T>F,R: precision M=0.80, SD=0.05, max= 0.85) or scales (T>F,S: M=0.83, SD=0.07, max= 0.88)303
to frequency only (T>F: M=0.83, SD=0.08, max= 0.89). Summarizing F out of the feature space is lar-304
gely detrimental to precision: rates and scales alone are not effective if not linked to what frequency305
theyre operating on. T>R (M=0.73, SD=0.07, max= 0.77), T>S (M=0.64, SD=0.06, max= 0.68) and306
T>R,S (M=0.76, SD=0.07, max= 0.80) are all suboptimal. Among temporal series, models that compare307
series with GMMs (M=0.80,SD=0.07) tend to perform better than those who do with alignment distances308
(M=0.74, SD=0.09). Whether PCA is used or not has no effect on GMM accuracy, but it has for alignment309
distances: PCA: M=0.67, SD=0.07; no PCA: M=0.79, SD=0.06.310

For models treating data as a frequency series (F>*, Figure 4), the inclusion of rates and scales in the311
feature vector improves precision: frequency series taking values conjunctly in rate and scale (F>S,R:312
M=0.83, SD=0.07, max= 0.91) are better than independantly (F>S: M=0.73, SD=0.11, max= 0.89; F>R:313
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M=0.76, SD=0.03, max= 0.78). Interestingly, frequency series in rate-scale space are more effective than314
time-series in rate-scale (T>R,S: M=0.76, SD=0.07, max= 0.80). There was no effect among frequency315
series of comparing with GMMs or alignement distance. As for temporal series, PCA had no effect on316
GMM algorithms, but was detrimental to alignment distances (PCA: M=0.70, SD=0.06; no PCA: M=0.86,317
SD=0.06).318

For models treating data as a rate series (R>*, Figure 5) the frequency dimension is the single most319
effective contribution to the feature space (R>F: M=0.79, SD=0.10, max= 0.86; R>S: M=0.71, SD=0.14,320
max= 0.84). The conjunct use of F and S improves performance even further: R>F,S: M=0.84, SD=0.03,321
max= 0.86. The performance of R>F,S is in same range as T>F,S (M=0.83, SD=0.07, max= 0.88)322
and T>F (M=0.83, SD=0.08, max= 0.89). There was no effect among rate series of using either GMMs323
or alignment distances (GMM: M=0.77, SD=0.10 vs DP:M=0.77, SD=0.11). As above, there was no324
effect of PCA on GMM performance (PCA: M=0.77, SD= 0.11; no PCA: M=0.77, SD= 0.11), but it was325
detrimental to alignment distances: PCA: M=0.71, SD=0.14; no PCA: M=0.84, SD= 0.03.326

Scale-series (S>*, Figure 6) in frequency space (S>F: M=0.80, SD=0.04, max= 0.83) are better than in327
rate space (S>R, M=0.70, SD=0.04, max= 0.74), and only marginally improved by combining rate and328
frequency (S>FR, M=0.82, SD=0.03, max= 0.83). For rate series, GMMs tend to be more effective than329
alignment distances (GMM: M=0.80, SD=0.05; DP: M=0.75, SD=0.07). As above, there was no effect330
of PCA on GMM accuracy, and a detrimental effect of PCA on alignment distances (PCA: M=0.72, SD=331
0.06; no PCA: M = 0.78, SD= 0.08).332

Finally, models which did not treat data as a series, but rather as a vector data (Figure 7) performed333
generally worse (M=0.68, SD=0.18) than models treating data as series (M=0.77, SD=0.08). There was334
no clear advantage to any conjunction of dimensions for these models. Euclidean distances were more335
effective (M=0.71, SD=0.11) than kernel distances (M=0.65, SD= 0.23). PCA had no strong effect on336
the former (PCA: M=0.72, SD=0.10; no PCA: M=0.68, SD= 0.14) but was crucial to the latter (PCA:337
M=0.73, SD=0.16; no PCA: M=0.45, SD= 0.26).338

3.3 FIVE COMPUTATIONAL AND BIOLOGICAL QUESTIONS

We use here inference statistics to show how this set of precision scores can be used to give insights339
into questions related to computational and biological audio systems. In all the following, performance340
differences between sets of algorithms were tested with one-factor ANOVAs on the R-precision values,341
using various algorithmic properties as a between-subject factor.342

1. Is PCA-based dimensionality reduction a good idea with STRFs?343
344

PCA dimensionality reduction was tested both for series (with GMM and alignment distances) and345
for non-series models (with euclidean and kernel distances). Its effect on precision was surprisingly346
algorithm-dependent. For series models based on GMM modeling, PCA had no statistical effect on347
performance as tested by ANOVA: F(1, 14)=.00001, p=.99. However, using PCA was significantly348
detrimental when series were compared with alignment distances: F(1, 14)=46.932, p=.00001, with349
a 11% drop of R-precision (PCA: M=0.70, SD= 0.08; no PCA: M=0.81, SD=0.06). Similarly, for350
non-series models, PCA had no effect on euclidean distance: F(1, 21)=.49, p=.48 (PCA: M=0.72,351
SD=0.10; no PCA: M=0.68, SD= 0.14), but it was crucial to the good performance of kernel dista-352
nces: F(1, 21)=9.63, p=.005, with a 28% increase of R-precision (PCA: M=0.73, SD=0.16; no PCA:353
M=0.45, SD= 0.26).354

From a computational point of view, such mixed evidence does not conform to pattern-recognition355
intuition: data-driven dimensionality reduction is a standard processing stage after feature extraction356
(Müller et al., 2011) and efficient coding strategies are often directly incorporated in features them-357
selves (e.g. discrete cosine transform in the MFCC algorithm - Logan and Salomon (2001)). The358
detrimental impact of PCA on alignement distances may be a consequence of the whitening part of359
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the algorithm, which balances variance in all dimensions and does not not preserve the angles/cosine360
distances between frame vectors; whitening has no predicted consequence on GMMs, the covariance361
matrices of which can scale to compensate.362

From a biological point of view, that PCA-like processing should be of little effect if applied to363
STRF suggests, first, that the STRF representation extracted by A1 neurons is already the result of364
efficient coding. This confirms previous findings that codewords learned with sparse coding strate-365
gies over speech and musical signals loosely correspond to the STRFs elicited with laboratory stimuli366
(Klein et al., 2003). Second, this suggests that subsequent cortical processing that operates on the367
STRF layer of A1 does not so much generate generic and efficient representations based on STRF,368
but perhaps rather act as an associative level that groups distributed STRF activations into interme-369
diate and increasingly specific representations - eventually resulting in specializations such as the370
lateral distinctions between fast and slow features of speech prosody in the superior temporal gyri371
(Schirmer and Kotz, 2006).372

373
2. Are we right to think in time (-series)?374

375
All algorithms considered, models than treat signals as a series of either T,F,R or S tend to per-376

form better (M=0.77, SD=0.08) than models that are solely based on summary statistics (M=0.68,377
SD=0.18), F(1, 108)=13.04, p=.00046. However, among series, there was strikingly no performance378
advantage to any type of series: F(3, 60)=.02, p=.99 (T-series: M=0.77, SD= 0.08; F-series: M=0.77,379
SD= 0.08; R-series: M=0.78, SD= 0.10; S-series: M=0.77, SD= 0.06). In particular, there was no380
intrinsic advantage to the traditional approach of grouping features by temporal windows. Further,381
the best results obtained in this study were with a frequency series (F>R,S with DTW).382

From a computational point of view, this pattern is in stark contrast with the vast majority of audio383
pattern recognition algorithms that model signals as temporal series. A wealth of recent research384
focuses on what model best accounts for the temporal dynamics of such data, comparing statistical385
mixtures over time (Aucouturier and Pachet, 2007a) with e.g. Markov models (Flexer et al., 2005),386
explicit dynamical models (Lagrange, 2010) or multi-scale pooling (Hamel et al., 2011). Our results387
suggest that collapsing the temporal dimension does not necessarily lead to reduced performance;388
what seems to matter rather is to group feature observations according to any physical dimensions of389
the signal, e.g. frequency. Such alternative, non-temporal paradigms remain mostly unexplored in the390
audio pattern recognition community.391

From a biological point of view, this pattern suggests that, for the task studied here, structured392
temporal representations are not a computational requirement. This is compatible with recent experi-393
mental evidence showing that at least part of the human processing of sound textures relies only on394
summary statistics (McDermott et al., 2013; Nelken and de Cheveigné, 2013).395

396
3. Are STRF representations more effective than time-frequency representations?397

398
The results of Patil et al. (2012) were taken as a proof-of-concept that STRF representations are399

more effective in simulating human similarity judgements that representations based only on time and400
frequency. Their demonstration is based on a single algorithmic strategy to calculate similarities from401
STRFs. Our data, based on more than a hundred alternative algorithms, provides more contrasted402
evidence. In order to link performance to the conjunction of dimensions used in the models’ feature403
space, we performed a one-factor ANOVA using a 6-level dimension factor: R,S,R,F-S,F-R and F-404
S-R. For series data (regardless of the time,frequency, rate or scale basis for the series), there was a405
main effect of dimension: F(6, 55)=4.85, p=.0005. Posthoc difference (Fisher LSD) revealed that both406
*>R and *>S feature spaces are significantly less effective than *>F, *>RS and any combination of407
F with S,R. (Figure 8). For vector data, there was no main effect of dimension: F(6, 37)=.51, p=0.79.408
In other words, processing the rate and scale dimensions only benefits algorithms which also process409
frequency, and is detrimental otherwise. Moreover, algorithms which only process frequency are no410
less effective than algorithms which also process rate and scale.411
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It is still possible that, because of their sparser nature, scale and rate representations allow faster,412
rather than more effective, responses that the more redundant time-frequency representations, as do413
efficient coding strategies in the visual cortex (Serre et al., 2007). Second, such representations may414
also be more learnable, e.g. requiring fewer training instances to build generalizable sensory repre-415
sentations.416

417
4. Does the topology of neuronal responses determine cortical algorithms?418

419
The orderly mapping in cortical space of characteristic neuronal responses, such as the tonotopical420

map of characteristic frequencies, plausibly reflects a computational need to process several areas421
of the corresponding dimensions conjunctly (Eggermont, 2010). Performance data for the group422
of algorithms investigated in this study seems to corroborate this intuition. First, the most efficient423
models for our task tend to operate primarily on frequency: rate and scale data is only effective if424
treated conjunctly with frequency, and it can be summarized out to little cost as long as the frequency425
axis is maintained (Figure 8). Second, in F-R-S models, it was found more effective to reduce the426
dimensionality of the R-S space while preserving the F axis, rather than reducing the dimension of427
the conjunct F-R-S space (Figure 7). Third, the best performing algorithm found here treats data as428
a frequency series, i.e. a series of successive R-S maps measured along the tonotopical axis (F>RS).429
Finally, models that put similar emphasis on R and S rather than F are typically low performers, and430
processing either R and S appears to be relatively inter-changeable. This computational behaviour431
therefore fully supports a structurative role of the frequency dimension in cortical representations of432
sound, and is in accordance with the fact that no rate and scale gradients have been observed to date433
in the mammalian auditory cortex, even within each isofrequency lamina (Atencio and Schreiner,434
2010).435

436
5. What are the cortical equivalents of the series and vector approaches, and why is the former437

more effective?438
439

Contrary to the vector approach, series models proceed by grouping feature observations in succes-440
sive (if time-based) or simultaneous (if frequency-, rate- or scale-based) categories, providing a441
two-layer representation of the data. All algorithms considered, such representations (*>*) appear442
more effective (M=0.77, SD=0.08) than those which treat STRF data as a single unstructured ensem-443
ble (M=0.68, SD=0.18), F(1, 108)=13.0, p=.0004. While this computational observation is in some444
accordance with the tonotopic structure of the auditory cortex, it is unclear why it should be more445
effective. First, grouping STRF activation data into several categories that can be considered simul-446
taneously may be a simple and agnostic way to represent heterogeneous stimuli, e.g. stimuli that are447
slowly-changing in the low-frequency band while rapidly-changing in the high-frequency band (Lu448
et al., 2001). Second, such structured representations may provide a more compact code for storing449
exemplars in memory (McDermott et al., 2013). This may further indicate that the memory stru-450
ctures that store sensory traces for e.g. exemplar comparison, are organized in the same structured451
laminae as the sensory structures - see also Weinberger (2004).452

Additionally, to process such series data, there was no strong difference between the GMM and453
DP approaches: GMMs yielded marginally superior performance for time- and scale-series and were454
equivalent to DP for frequency- and rate-series. This computational observation suggests that, while455
it is important to group data into categories, there is no strong requirement to process the differe-456
nces/transitions from one category to the next (as done by DP); rather, it is the variability among457
categories (as modeled by GMMs) that seems most important to account for.458
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4 DISCUSSION

Meta-analysis of the precision values in the above case-study revealed that the most effective represen-459
tations to retrieve the categorical structure of the corpus should (1) preserve information about center460
frequency rather than averaging over this dimension, and (2) process the output as a series, e.g. with461
respect to this center-frequency dimension and not necessarily to time. These two computational trends462
are in interesting accordance with the tonotopical organisation of STRFs in A1 as well as recent findings463
on texture discrimination by summary statistics (McDermott et al., 2013; Nelken and de Cheveigné,464
2013). More generally, this suggests that meta-analysis over a space of computational models (possibly465
explored exhaustively) can generate insights that would otherwise be overlooked in a field where cur-466
rent results are scattered, having been developped with different analytical models, fitting methods and467
datasets.468

In particular, this work extends the work of Patil et al. (2012) by testing, on a new dataset, which469
of its design choices are most computationally important. Their approach can be classified as non-series470
(summarize T), with PCA on the 30,976-dimension F-R-S space, then a kernel distance (the top-most path471
in Figure 7). On our dataset, this approach lead to a R-precision of 70%. Among the 105 other models472
tested in the present study, some were found more effective for our specific task: if keeping with non-series473
models, a simple improvement is to apply PCA only on the 22-dimension R-S space while preserving474
the 128 dimensions of the frequency axis (88% R-precision). More systematically, better results were475
achieved when considering data as a series rather than a vector. For instance, modeling the time dimension476
as a GMM rather than a one-point average, otherwise keeping the same feature space and PCA strategy477
yields an improvement of 10% (79.3%, top-most path in Figure 3). The original finding was taken to478
indicate that the modulation features (rates and scales) extracted by STRFs are crucial to the representation479
of sound textures, and that the simpler, and more traditionally used, time-frequency representations are480
insufficient both from a computational and biological point of view. Data from the above case-study,481
based on more than a hundred alternative algorithms, provides more contrasted evidence: processing482
the rate and scale dimensions only benefits algorithms which also process frequency, and is detrimental483
otherwise. Moreover, algorithms which only process frequency were no less effective, for the task and484
corpus of the present case-study, than algorithms which also process rate and scale.485

One should not, however, overestimate the biological relevance of the patterns mined from the case-486
study presented here. It is well-known that pattern recognition methods (both in terms of feature487
representation, classifiers or distance metrics) depend critically on the structure of the data itself, e.g.488
how many exemplars and how much variance in each category, as well as how much overlap between489
categories (see e.g. Lagrange et al. (2014)). The corpus used here results of a compromise between the490
need to reflect the full range of natural sounds (e.g. bird songs and water textures) and the need to include491
overlapping categories (e.g. pouring water and waterways). However, it remains difficult to assess the492
extent conclusions from the present case-study may simply reflect the specific structure of the sounds493
and task used in the analysis. For instance, the importance of preserving center frequency evidenced in494
the present study may suggest that the specific environmental sound categories used in the test corpus495
were simply more easily separable with frequency information than with temporal cues. It is possible that496
other types of stimuli with more elaborate temporal structure than environmental textures, e.g. speech or497
polyphonic music, require more structured time representations. Similarly, the classification task used in498
the present case-study does not reflect the full range of computations performed by biological systems on499
acoustic input. It is possible that other types of computations (e.g. similarity judgements) or other aspects500
of these computations (e.g. processing speed, representation compactness) could benefit from the additi-501
onal representational power of rate and scale dimensions more than the task evaluated here. The trends502
identified here should therefore be confirmed on a larger sound dataset with more exemplars per category503
(Giannoulis et al., 2013) or, better yet, meta-analysed across multiple separate datasets (Misdariis et al.,504
2010).505

Finally, one should also note that the STRF model used in this study is linear, while auditory cortical506
neurons have known non-linear characteristics. In particular, neurophysiological studies have suggested507
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that a non-linear spike threshold can impact neural coding properties (Escabı́ et al., 2005). Further work508
should incorporate such non-linearities in the representations explored here, both to increase the bio-509
logical relevance of the meta-analysis and to better understand the added computational value of these510
mechanisms compared to simpler linear representations.511

DISCLOSURE/CONFLICT-OF-INTEREST STATEMENT

The authors declare that the research was conducted in the absence of any commercial or financial512
relationships that could be construed as a potential conflict of interest.513

AUTHOR CONTRIBUTIONS

EH and JJA contributed equally to designing and implementing the experiments, analysing data and514
drafting the present article. Author order was determined by seniority.515

ACKNOWLEDGEMENT

The authors thank Mounya El Hilali and Shihab Shamma for kindly providing additional information on516
the work of Patil et al. (2012). The authors also thank Frédéric Theunissen and Konrad Kording for their517
comments on earlier versions of the manuscript.518

REFERENCES
Asari, H. and Zador, A. M. (2009), Long-lasting context dependence constrains neural encoding models519

in rodent auditory cortex, Journal of neurophysiology, 102, 5, 2638–2656520
Atencio, C. and Schreiner, C. (2010), Columnar connectivity and laminar processing in cat primary521

auditory cortex, PLoS One522
Aucouturier, J. and Pachet, F. (2004), Improving timbre similarity: How high’s the sky?, Journal of523

Negative Results in Speech and Audio Sciences, 1(1)524
Aucouturier, J.-J. and Pachet, F. (2007a), The bag-of-frame approach to audio pattern recognition: a525

sufficient model for urban soundscapes but not for polyphonic music, Journal of the Acoustical Society526
of America, 122(2), 881–891527

Aucouturier, J.-J. and Pachet, F. (2007b), The influence of polyphony on the dynamical modelling of528
musical timbre, Pattern Recognition Letters, 28, 5, 654–661529

Baumann, S., Griffiths, T., Sun, L., Petkov, C., Thiele, A., and Rees, A. (2011), Orthogonal representation530
of sound dimensions in the primate midbrain, Nature Neuroscience, 14531

Bishop, C. M. and Nasrabadi, N. M. (2006), Pattern recognition and machine learning (New York:532
springer)533

Chi, T., Ru, P., and Shamma, S. (2005), Multiresolution spectrotemporal analysis of complex sounds,534
Journal of the Acoustical Society of America, 118, 887–906535

Christianson, G., Sahani, M., and Linden, J. (2008), The consequences of response non-linearities for536
interpretation of spectrotemporal receptive fields, Journal of Neuroscience, 28, 446–455537

David, S. V. and Shamma, S. A. (2013), Integration over multiple timescales in primary auditory cortex,538
The Journal of Neuroscience, 33, 49, 19154–19166539

Eggermont, J. J. (2010), The auditory cortex: the final frontier, in R. Meddis, E. Lopez-Poveda, A. popper,540
and R. Fay, eds., Computational Models of the Auditory System. Springer Handbook of Auditory541
Research 35 (New York: Springer), 97–127542

Frontiers in Computational Neuroscience 13



Hemery & Aucouturier One hundred ways

Escabı́, M. A., Nassiri, R., Miller, L. M., Schreiner, C. E., and Read, H. L. (2005), The contribution of543
spike threshold to acoustic feature selectivity, spike information content, and information throughput,544
The Journal of neuroscience, 25, 41, 9524–9534545

Fishbach, A., Yeshurun, Y., and Nelken, I. (2003), Neural model for physiological responses to frequency546
and amplitude transitions uncovers topographical order in the auditory cortex, J. Neurophysiology, 90,547
2303–2323548

Flexer, A., Pampalk, E., and Widmer, G. (2005), Hidden markov models for spectral similarity of songs,549
in Proc. of the 8th Int. Conference on Digital Audio Effects (DAFx), Madrid, Spain550

Gehr, D., Komiya, H., and Eggermont, J. (2000), Neuronal responses in cat primary auditory cortex to551
natural and altered species-specific calls, Hearing Research, 150, 27–42552

Giannoulis, D., Benetos, E., Stowell, D., Rossignol, M., Lagrange, M., and Plumbley, M. (2013), Dete-553
ction and classification of acoustic scenes and events: An ieee aasp challenge, in Proceedings of the554
2013 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA 2013)555

Gourévitch, B., Noreña, A., Shaw, G., and Eggermont, J. (2009), Spectro-temporal receptive fields in556
anesthetized cat primary auditory cortex are context dependent, Cerebral Cortex, 19(6), 1448–1461557

Halko, N., Martinsson, P.-G., and Tropp, J. A. (2011), Finding structure with randomness: Probabilistic558
algorithms for constructing approximate matrix decompositions, SIAM review, 53, 2, 217–288559

Hamel, P., Lemieux, S., Bengio, Y., and Eck, D. (2011), Temporal pooling and multiscale learning560
for automatic annotation and ranking of music audio., in Proc. International Conference on Music561
Information Retrieval, 729–734562

Kim, G. and Doupe, A. (2011), Organized representation of spectrotemporal features in songbird auditory563
forebrain, The Journal of Neuroscience, 31(47)564

Klein, D., Konig, P., and Kording, K. (2003), Sparse spectrotemporal coding of sounds, EURASIP J.565
Applied Signal Processing, 7566

Lagrange, M. (2010), Explicit modeling of temporal dynamics within musical signals for acoustical unit567
formation and similarity, Pattern Recognition Letters568

Lagrange, M., Aucouturier, J., and Defreville, B. (2014), The bag-of-frame approach: a not-so sufficient569
model for urban soundscapes after all, submitted570

Logan, B. and Salomon, A. (2001), A music-similarity function based on signal analysis, International571
Conference on Multimedia and Expo572

Lu, T., Liang, L., and Wang, X. (2001), Temporal and rate representations of time-varying signals in the573
auditory cortex of awake primates, Nature Neuroscience, 4(11)574

McDermott, J., Schemistch, M., and Simoncelli, E. (2013), Summary statistics in auditory perception,575
Nature Neuroscience, 16(4)576

Misdariis, N., Minard, A., Susini, P., Lemaitre, G., McAdams, S., and Parizet, E. (2010), Environmental577
sound perception: Metadescription and modeling based on independent primary studies, EURASIP578
Journal on Audio, Speech, and Music Processing579

Müller, M., Ellis, D. P. W., Klapuri, A., and Richard, G. (2011), Signal processing for music analysis,580
IEEE Journal of Selected Topics in Signal Processing, 5(6), 1088–1110581

Nelken, I. and de Cheveigné, A. (2013), An ear for statistics, Nature Neuroscience, 16, 381–382582
Orio, N. (2006), Music retrieval: a tutorial and review, Found. Trends Information Retrieval, 1(1)583
Pampalk, E. (2006), Audio-based music similarity and retrieval:combining a spectral similarity model584

with information extracted from fluctuation patterns, in Proceedings of the ISMIR International585
Conference on Music Information Retrieval (ISMIR’06), Vienna, Austria586

Patil, K., Pressnitzer, D., Shamma, S., and Elhilali, M. (2012), Music in our ears: The biological bases of587
musical timbre perception, PLOS Computational Biology, 8(11)588

Peeters, G., La Burthe, A., and Rodet, X. (2002), Toward automatic music audio summary generation589
from signal analysis, in In Proc. International Conference on Music Information Retrieval, 94–100590

Schirmer, A. and Kotz, S. (2006), Beyond the right hemisphere: Brain mechanisms mediating vocal591
emotional processing, Trends in Cognitive Sciences, 10, 24–30592

Schreiner, C., Read, H., and Sutter, M. (2000), Modular organization of frequency integration in primary593
auditory cortex, Annual Review of Neuroscience, 23594

This is a provisional file, not the final typeset article 14



Hemery & Aucouturier One hundred ways

Serre, T., Wolf, L., Bileschi, S., Riesenhuber, M., and Poggio, T. (2007), Object recognition with cortex-595
like mechanisms, IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(3), 411–426596

Sethares, W. A. and Staley, T. (1999), The periodicity transform, IEEE Trans. Signal Processing, 47(11)597
Ulanovsky, N., Las, L., and Nelken, I. (2003), Processing of low-probability sounds by cortical neurons,598

Nature neuroscience, 6, 4, 391–398599
Weinberger, N. M. (2004), Specific long-term memory traces in primary auditory cortex, Nature Reviews600

Neuroscience, 5(4), 279–290601

FIGURES

Frontiers in Computational Neuroscience 15



Hemery & Aucouturier One hundred ways

	

−6 −4 −2 0 2 4 6
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 500 1000 1500
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

rate (Hz)

200 400 600 800 1000 1200 1400 1600

10

20

30

40

50

60

200 400 600 800 1000 1200 1400 1600

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

−6 −4 −2 0 2 4 6
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 500 1000 1500
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 500 1000 1500
0

10

20

30

40

50

60

fr
e

q
u

e
n

cy
 (

ch
a

n
n

e
ls

)

t (frames)

t (frames)

sc
a

le
 (

c
/o

)

sp
ec

tr
um

ce
p

st
ru

m

!t w.r.t

frequency axis

sc
a

le
 (

c
/o

)

rate (Hz)

rate (hertz)

inverse !t w.r.t time axis

inverse !t w.r.t

frequency axis

fr
eq

ue
nc

y 
(c

ha
nn

el
s)

t (frames)

t (frames)

sc
a

le
 (

c
/o

)

ce
p

st
ru

m
ce

p
st

ru
m

sp
ec

tr
um

t (frames)

sc
a

le
 (

c
/o

)

positive ratesnegative rates
+SR/2-SR/2

!t w.r.t time axis

-40

*

multiply with rate "lter transfer function

sc
a

le
s 

(c
/o

)

*

multiply with scale  "lter transfer function

1

−6 −4 −2 0 2 4 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

sc
a

le
 (

c
/o

)

0
0
.2

0
.4

0
.6

0
.8

1
1
.2

1
.4

1
.6

1
.8

2
0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9 1

0
0
.
2

0
.
4

0
.
6

0
.
8

1
1
.
2

1
.
4

1
.
6

1
.
8

2
0

0
.
1

0
.
2

0
.
3

0
.
4

0
.
5

0
.
6

0
.
7

0
.
8

0
.
9 1

orange: output time series of a single 

cochlear sensory cell, centered on a 

given frequency channel. 

orange: output time series of a given 

cortical neuron, centered on a  given 

frequency in the tonotopic axis, and 

having a given STRF. 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Hs

Hr
Hr

Hs

2

3 4

5

6

7

8

Figure 1. Signal processing workflow of the STRF model, as implemented by Patil et al. (2012). The
STRF model simulates the cortical processing occurring in the auditory thalamus and cortex. It processes
the output of the cochlea - represented here by an auditory spectrogram in log frequency (SR= 24 channels
per octave) vs time (SR=125Hz), using a multitude of cortical neuron each tuned on a frequency (in Hz),
a modulation w.r.t time (a rate, in Hz) and w.r.t. frequency (a scale, in cycles/octave). We take here the
example of a 12-second series of 12 Shepards tones, i.e. a periodicity of 1Hz in time and 1 harmonic
partial/octave in frequency, processed by a STRF centered on rate = 1Hz and scale = 1 c/o (1). In the input
representation (2), each frequency slice (orange) corresponds to the output time series of a single cochlear
sensory cell, centered on a given frequency channel. In the output representation (8) , each frequency
slice (orange) corresponds to the output of a single cortical neuron, centered on a given frequency on the
tonotopic axis, and having a given STRF. The full model (not shown here) has hundreds of STRFs (e.g.
22 rates * 11 scales = 242), thus thousands of neurons (e.g. 128 freqs * 242 STRFs = 30,976).
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Figure 2.Pattern recognition workflow of the distance calculation based on the STRF model. The STRF
model provides a high-dimensional representation upon which we construct more than a hundred algorith-
mic ways to compute acoustic dissimilarities between pairs of audio signals. All these algorithms obey to
a general pattern recognition workflow consisting of a dimensionality reduction stage, followed by a dista-
nce calculation stage. The dimensionality reduction stage aims to reduce the dimension (d=30,976×time)
of the STRF representation to make it more computationally suitable to the algorithms operating in the
distance calculation stage - we use here summary statistics and/or principal component analysis (PCA).
The distance computation stage differs on whether it treats a signal’s STRF data as a single multidimen-
sional point in a vector space, or as a series of points. In the former case, we use either the euclidean
distance or the gaussian kernel distance. In the latter case, we use either Kullback-Leibler divergence
between gaussian mixture models of the series, or dynamic programming/dynamic time warping.
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Table 1.All possible combinations of reduced representations derived from the STRF model. Some of
these reduced representations are conceptually similar to signal representations that are used in the audio

pattern recognition community. We name here some which we could identify; the other unnamed
constructs listed here are germane to the present study to the best of our knowledge. The choice of which
distance calculation algorithm to apply on each representation depends on whether it can be as a single
vector (V) or as a series in time (T), frequency (F), rate (R) or scale (S). For instance, representations in

which the time dimension is preserved can only be considered as a time-series. Similarly, the
combinations of dimensions that can be reduced with PCA depends on each representation. The table

lists which processing is possible for each representation.

Processing as:
Dimensions Summarize in state-of-art as: PCA possible on: T F R S V

F

R

S

T

∅ STRF (Chi et al., 2005) FRS
√

F

R

S T Average STRF maps (Patil et al., 2012) FR,FS,FRS
√ √ √ √

R

S

T

F ? RS
√

F

T

S R ? FS
√

F

T

R

S ? FR
√

R

S T,F ? R,S,RS
√ √ √

S
F T,R ? F,S,FS

√ √ √

R

F

T,S Fluctuation patterns (Pampalk, 2006) F,R,FR
√ √ √

S
T

F,R MFCCs (Logan and Salomon, 2001) S
√

T

R

F,S Modulation spectrum (Peeters et al., 2002) R
√

F

T

R,S Fourier spectrogram F
√

S T,F,R Average Cepstrum S
√ √

R T,F,S Periodicity transform (Sethares and Staley, 1999) R
√ √

F T,R,S Fourier spectrum F
√ √

T
F,R,S Waveform ∅

√
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Figure 3.Precision values for all computational models based on temporal series. These models treat
signals as a trajectory of features grouped by time window, taking values in a feature space consisting of
frequency, rate and scale (or any subset thereof). Precisions are color-coded from blue (low, < 70%) to
red (high, > 85%)
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Figure 4.Precision values for all computational models based on frequency series. These models treat
signals as a trajectory of values grouped by frequency, taking values in a feature space consisting of
rates and scales (or any subset thereof). Precisions are color-coded from blue (low, < 70%) to red (high,
> 85%)
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Figure 5.Precision values for all computational models based on rate series. These models treat signals
as a trajectory of values grouped by rate, taking values in a feature space consisting of frequencies and
scales (or any subset thereof). Precisions are color-coded from blue (low, < 70%) to red (high, > 85%)
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Figure 6.Precision values for all computational models based on scale series. These models treat signals
as a trajectory of values grouped by scale, taking values in a feature space consisting of frequencies and
rates (or any subset thereof). Precisions are color-coded from blue (low, < 70%) to red (high, > 85%)
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Figure 7.Precision values for all computational models based on vector data. These models do not treat
any particular dimension as a series, but rather applied dimension reduction (namely, PCA) on various
combinations of time, frequency, rate and scale, to yield a single high-dimensional vector representation
for each signal. Vectors are compared to one another using euclidean or kernel distances. Precisions are
color-coded from blue (low, < 70%) to red (high, > 85%)
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Figure 8.Model performance depending on the dimensions embedded in its feature space. For series
data (regardless of the time,frequency, rate or scale basis for the series), feature spaces consisting of
frequency, frequency+rate and frequency+scale were the most effective. Feature spaces consisting of only
rates or scales (not in combination with frequency) were significantly less effective. For non-series data,
differences were in the same trend but non-significant.

This is a provisional file, not the final typeset article 24


