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Abstract
In this paper we present a flexible deterministic plus stochas-
tic model (DSM) approach for parametric speech analysis and
synthesis with high quality. The novelty of the proposed speech
processing system lies in its extended means to estimate the un-
voiced stochastic component and to robustly handle the trans-
formation of the glottal excitation source. It is therefore well
suited as speech system within the context of Voice Transforma-
tion and Voice Conversion. The system is evaluated in the con-
text of a voice quality transformation on natural human speech.
The voice quality of a speech phrase is altered by means of re-
synthesizing the deterministic component with different pulse
shapes of the glottal excitation source. A subjective listening
test suggests that the speech processing system is able to suc-
cessfully synthesize and arise to a listener the perceptual sen-
sation of different voice quality characteristics. Additionally,
improvements of the speech synthesis quality compared to a
baseline method are demonstrated.
Index Terms: Parametric speech analysis / synthesis, Glottal
source, Voice quality, LF model, Rd shape parameter

1. Introduction
In this paper we present a method to transform the determinis-
tic part of the glottal excitation source. The main motivation of
the following paper is the presentation of an improved method
for coherent modification of the glottal pulse shape. The glot-
tal pulse shape is generally accepted to reflect different phona-
tion types of human voice production [1] and one of the im-
portant parameters determining the perceived voice quality that
is strongly related to the vocal effort [2, 3]. The terminology
used in the following is describing the lax-tense dimension of
the voice quality [2, 4] distinguishing tense (pressed), modal
(normal), and relaxed (breathy) voice qualities.
Recent research in the speech community has notably improved
the speech synthesis quality by explicitly modelling the de-
terministic and stochastic component of the glottal excitation
source [5, 6]. Advanced source-filter decomposition strategies
as in [7, 8, 9] address finer details defined by extended voice
production models for human speech. These approaches ana-
lyze an extended voice descriptor set to model their transfor-
mation and synthesis. The extended voice descriptor set con-
sists of: the Vocal Tract Filter (VTF), the glottal pulse positions
and shapes, and energies and a random component described by
spectral and temporal envelopes.
In this paper we present a novel speech analysis and synthe-
sis system based on [9]. The proposed system is a Determin-
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istic plus Stochastic Model (DSM). It extracts the unvoiced
stochastic component from a speech signal by subtracting the
corresponding voiced deterministic component [10]. The pro-
posed system separately models the stochastic and deterministic
components and does therefore not correspond to the classical
source and filter model. The contribution of the following re-
search and the advancements compared to the baseline method
lies in the extended means to estimate the unvoiced stochastic
component, to robustly extract the VTF and to handle the varia-
tions in energy and signal behaviour implied with glottal source
transformations.
The paper is organized as follows. Section 2 presents the novel
speech framework. Section 3 discusses the aspects of voice
quality transformation. Section 4 introduces a state-of-the-art
speech processing system. Section 5 presents a subjective eval-
uation based on a listening test of natural human speech. Sec-
tion 6 concludes with the findings studied in this paper.

2. DSM-based Parametric Re-Synthesis
The proposed speech analysis and synthesis system is designed
for the utilization as a basic component in the context of ad-
vanced voice transformation applications. It is denoted PaReSy
for Parametric speech analysis Re-Synthesis.

2.1. Voice production model
PaReSy operates upon the following generic interpretation of
the human voice production

s(n) = u(n)+v(n) = u(n)+
∑
i

g(n, Pi)∗c(n, Pi)∗δ(n−Pi) (1)

Here s(n) is the speech signal that is represented by means
of a stochastic (unvoiced) component u(n) and a deterministic
(voiced) component v(n). The deterministic component con-
tains the sequence of glottal pulses that are located at the time
positions Pi that each represent a Glottal Closure Instant (GCI)
with index i. Each glottal pulse is represented in terms of the
glottal flow derivative g(n, Pi) and is convolved with the Vocal
Tract Filter (VTF) that is active for the related position c(n, Pi)
and a Dirac impulse at the GCI Pi.
Using this model we make the following assumptions: The VTF
c(n, Pi) is supposed to be minimum phase [11]. The glottal
pulse derivative g(n, Pi) is used to represent the glottal pulse
using the Liljencrants-Fant (LF) model, and the effect of the
lip radiation [12]. The LF model is parameterized by a scalar
shape parameter Rd [13, 14], which is estimated as described
in [15, 16]. Changing Rd continuously from lower to higher
values will allow changing the LF pulse shape on a continuum
from tense to relaxed voice qualities.
For being able to make spectral domain manipulations the
speech signal model given in equ. (1) is processed in the spec-
tral domain using the short time Fourier transform (STFT). An
efficient STFT representation requires further approximations.



The sliding (Hanning) window wh(n) that is used to calculate
the STFT selects a signal segment covering a few consecutive
glottal pulses g(n, Pi) each related to a slightly different VTF.
Here we will assume that both the glottal pulse shape and the
VTF do not change within the window and are given approxi-
mately by the corresponding parameters in the window center.
We further assume that the filtering processes implied by each
convolutional operation between the signal components of equ.
(1) is involving impulse responses that are shorter than the win-
dow length. The STFT of the speech signal is then given by

S(ω,m) = U(ω,m) + V (ω,m) (2)
= (U(ω,m) +G(ω,m)C(ω,m)H(ω,m)) (3)

Herem is the position of the window center and ω the frequency
variable of the discrete time Fourier transform (FT). For brevity
the dependency of all signal spectra with respect to m will be
dropped in the follwoing. U(ω) and V (ω) are the FT of the
windowed voiced and unvoiced signals from equ. (1) under the
assumption that g and c and the corresponding FT spectraG(ω)
andC(ω) are quasi stationary within the window. The radiation
filter at lips and nostrils level R(ω) is not explicitly present in
the PaReSy model, but implicitly represented in the glottal flow
derivative G(ω) and the unvoiced component U(ω).

2.2. Glottal source synthesis and VTF extraction

The glottal shape parameter Rd is estimated using the best
phase minimization variant proposed in [15]. It constructs the
error lattice for the Viterbi smoothing proposed in [16]. The re-
sulting Rd estimation is calculated on the STFT time grid but
assigned to the closest GCI which are derived using the method
described in [17]. The spectral envelope sequence Tsig is esti-
mated on the input signal s(n) using the True Envelope estima-
tor described in [18]. Another spectral envelope sequence Tg is
estimated on the synthesized glottal pulse derivative sequence∑
i g(n, Pi) ∗ δ(n−Pi). The extraction of the vocal tract filter

C(ω) is obtained by means of the full-band division of Tsig by
Tg . The utilization of Tg in the division is required to suppress
the spectral ripples occurring for higher Rd values [14, 19].

2.3. Estimation of the unvoiced stochastic component

The separation of a speech signal into the contributions of the
voiced deterministic V (ω) and the unvoiced stochastic compo-
nent U(ω) is based on the calculation of a residual of a sinu-
soidal model. Using the sinusoidal model has the advantage
that pulse shape errors that are due to the rather limited cover-
age of the Rd parameterization of the LF model will not lead
to an increase in the unvoiced component. The following two
algorithmic steps a) and b) below present a means to robustly
extract the unvoiced component Ures(n) of the signal s(n).
a) Remix with demodulation: This approach aims to simplify
the sinusoidal detection by de-modulating the F0 contour and
the Hilbert amplitude envelopeH from the signal s(n). First the
original F0 contour of s(n) is warped to become flat by means
of time varying re-sampling using as target F0 the mean of the
original fundamental frequency contour. The resampling opera-
tion will locally and globally change the time duration of all sig-
nal features, which however is not a problem because the effect
can be inverted after the extraction of the residual. The varying
amplitude contour of s(n) is demodulated by means of dividing
the signal by its smoothed Hilbert transform H (s(n)) similar
as in [22, 5]. Here however, the smoothing kernel is simply the
Hanning window of duration exactly equal to 4/FT which will
optimally remove all envelope fluctuations that are related to
the deterministic components. The resulting signal sflat(n) is
flat in amplitude envelope and fundamental frequency facilitat-

ing the detection of sinusoids following [20] even for relatively
high harmonic numbers avoiding energy shift between voiced
and unvoiced components [21]. The sinusoidal content is sub-
tracted from sflat(n) and the demodulation steps are inverted
so that the the original AM-FM modulation is recreated. This
generates the unvoiced residual signal ures(n).
b) Scale to Tsig level and noise excitation: The sinusoidal
detection of step a) may be erroneous for some signal seg-
ments such as fast transients. The scaling described in equ. 4
minimizes the difference between the unvoiced stochastic sig-
nal spectrum Ures(ω) and the observed signal spectrum S(ω)
above the Voiced / Unvoiced Frequency boundary ωV U [23] up
to the Nyquist frequency ωnyq:

η =
1

ωnyq − ωV U

∫ ωnyq

ωV U

(
T dBsig (ω)-T dBunv(ω)

)
dω

Tunv(ω) = Tunv(ω)(1-ωV U/ωnyq) · 10
η/20

.

(4)

Here the dependency with m has been neglected. η equals the
mean difference in dB between Tsig and the spectral envelope
Tunv estimated on U(ω). The scaling of Tunv is additionally
weighted by the time-varying ratio of FV U versus Fnyq . The
multiplication of the STFT of a white noise signal with the en-
velope Tunv(ω) generates the unvoiced signal STFT U(ω).

2.4. Energy modelling
A simple Root-Mean-Square (RMS) measure FRMS evaluates
the effective energy value E on the linear amplitude spectrum
Alin=|Y (ω)| of any arbitrary signal spectrum Y (ω). The RMS
energy measures are estimated in PaReSy as defined in equ. (5):

FRMS(Alin, k) =
√

1/K · ΣK (Alin(k)2)

Esig = FRMS(|S(ω)(t)|)
Eunv = FRMS(|U(ω)(t)|)
Evoi = Esig − Eunv

(5)

Esig and Eunv measure the RMS energy of signal S(ω) and
the unvoiced component U(ω). The energy Evoi of the voiced
component V (ω) is expressed as their difference. A trans-
formed R

′
d contour causes an altered energy value E′

voi mea-
sured on the transformed voiced component V ′(ω), with the
operator ′ indicating a transformation. The high (low) pass fil-
tering applied to U(ω) (V (ω)) explained in section 2.6 gener-
ates as well an energy change. A re-scaling of the energy to the
original energy measures ensures their maintenance.

2.5. GMM-based FV U prediction
The spectral fading synthesis presented in the following section
2.6 requires a transformed F ′

V U frequency value. F ′
V U is pre-

dicted using a modified GMM approach detailed in [24, 25, 16].
The GMM model M is trained on the voice descriptor set
d=[Rd,F0, H1-H2,Evoi, Eunv] and the FV U reference value
r. The descriptors of d are chosen due to their high correlation
with r. H1-H2 refers to the amplitude difference in dB of the
first two harmonic sinusoidal partials. The prediction function

F (d) =

Q∑
q=1

p
d
q(d) · [µrq + Σ

rd
q Σ

dd−1

q (d− µdq)] (6)

is derived fromM by the definition of equ. 6, withQ=15 being
the number of utilized Gaussian mixture components. An initial
F pV U value prediction is computed from F (d). An error GMM
modelMerr is trained on the modelling error

εM = 2
√

(FV U − FpV U )2 (7)

serving as reference value rε=εM , and on the voice descriptor
set d. The transformed descriptor counterpart d′ contains the
original F0 contour but transformed values for the remaining
voice descriptors: d′=[R′

d, F0, H ′1-H ′2, E′
voi, E

′
unv]. The



GMM-based modelling to predict aF ′
V U contour from the voice

descriptor sets d and d′ is defined by the following equations:

F
p
V Uµ

=M (F (d)) (8)

F
′p
V Uµ

=M
(
F (d
′
)
)

(9)

F
p
V Uσ

=Merr (Ferr(d)) (10)

F
′p
V Uσ

=Merr

(
Ferr(d

′
)
)

(11)

F
′
V U = F

′p
V Uµ

+ (FV U − FpV Uµ ) · F
′p
V Uσ

/F
p
V Uσ

(12)

Each trained model pair M and Merr is utilized to predict
via their derived prediction functions F and Ferr the mean pre-
diction value F pV Uµ and the predicted standard deviation F pV Uσ
from descriptor set d, and likewise for the transformed set d′.
The "true" prediction value would equalF pV Uµ if no model error
occurs: εM=0. The calculation of F ′

V U from the transformed d′

and the original voice descriptor set d is defined by equ. 12. It
evaluates the difference between the original FV U and the pre-
dicted F pV Uµ value. The difference result is normalized by the

ratio of the original and transformed standard deviations F
′p
V Uσ

and F pV Uσ of the modelled data distribution, and corrected by

the transformed predicted mean value F
′p
V Uµ

.

2.6. Spectral fading synthesis

The PaReSy synthesis variant "Spectral fading" is designed to
handle voice quality transformations by suppressing possibly
occurring artefacts. Here a short summary discusses the impact
of Rd on the spectral slope required to understand the motiva-
tion for the spectral fading synthesis presented in this section.
The glottal source shape parameter Rd is strongly correlated
with the spectral slope. Rd changes lead to changes of the spec-
tral slope. References to an extensive analysis of the spectral
correlates of Rd can be found in [13, 14, 26, 27, 19]. A more
relaxed voice quality is reflected by higher Rd values and is re-
lated to a sinusoidal-like glottal flow derivative which generates
higher spectral slopes. A more tense voice quality is parameter-
ized by lower Rd values and related to an impulse-like glottal
flow derivative which produces lower spectral slopes. A lower
(higher) spectral slope indicates that more (less) sinusoidal con-
tent can be observed in higher frequency regions. The voice
quality transformation to change an original speech recording
having a modal voice quality to a more tense voice character has
to extend the quasi-harmonic sequence of sinusoidals above the
FV U . Contrariwise, a transformation to a more relaxed voice
quality needs to reduce the sinusoidal content. A modification
of the glottal excitation source required for voice quality trans-
formations implies thus a FV U modification. The altered F ′

V U

frequency has to be naturally represented by properly joining
the voiced V (ω) and unvoiced U(ω) signal components. The
transformation of the original Rd contour used to extract C(ω)
introduces an energy variation in the re-synthesis of a trans-
formed V ′(ω). However, even with the energy maintenance of
section 2.4 the alteration of a modal to a very tense voice quality
may result into sinusoidal content being of higher energy than
the noise part at Fnyq . This sets F ′

V U = Fnyq and causes audi-
ble artefacts. Therefore F ′

V U is predicted using the method de-
scribed in section 2.5. Additionally, the spectral fading method
employs two spectral filters to cross fade V (ω) and U(ω) at the
F ′
V U frequency. The spectral band around FV U is comprised of

a mix of both voiced deterministic V (ω) and unvoiced stochas-
tic U(ω) components. A low pass filter PL fades out the voiced
component V (ω) and a high pass filterPH fades in the unvoiced
component U(ω) with increasing frequency. The linear ramps

with a slope of mLP=-96 dB and mHP=-48 dB per octave de-
fine the steepness of the low pass PL and respectively the high
pass PH filter. A higher value is chosen for mLP since the
F ′
V U prediction may be very high for very tense voice quali-

ties. A less steep fade out filter would not be effective enough
to suppress artefacts.

3. Voice quality transformation
The study of [28] on the Just Noticable Differences (JND) of hu-
man auditory perception reports that changes in higher (lower)
value regions of Open Quotient OQ (asymmetry coefficient
αm) require longer distances of ∆OQ (∆αm) to arise the sen-
sation of a voice quality change in the perception of a listener.
We spread according to that hypothesis the original Rd con-
tour into several Rd contours with positive and negative offsets
covering the complete Rd range such that lower ∆Rd steps are
placed in lower and higher ∆Rd steps in higher Rd value re-
gions. One example is illustrated in fig. (1) on the phrase em-

Figure 1: Generated Rd contour examples
ployed for the evaluation in section 5. Table (1) shows the mean
Rµd values of the original Rd contour with index 0, and respec-
tively 3 positive and 3 negative µ values for each voice quality
change. Rσ

2

d lists their variance σ2. It increases with increas-
ing Rd to reflect the hypothesis of having to apply higher ∆Rd
steps with higher Rd values. The Rµd (diff) column reflects the
mean ∆Rd steps measured between each row index on the Rµd
values. As well the µ difference increases with increasing Rµd .

Table 1: Rd value example for voice quality transformation
Voice quality (index) Rµd Rσ

2

d Rµd (diff)
Very relaxed (+3) 3.5109 0.9031 -0.8397

Relaxed (+2) 2.6711 0.7825 -0.6597
Modal to relaxed (+1) 2.0114 0.3631 -0.4442

Modal (original) (0) 1.5673 0.1937
Tense to modal (-1) 1.1936 0.0941 -0.3737

Tense (-2) 0.8601 0.0341 -0.3335
Very tense (-3) 0.5704 0.0154 -0.2898

4. Baseline method SVLN
The method called ”Separation of the Vocal tract with the
Liljencrants-Fant model plus Noise” detailed in [29, 30, 9] rep-
resents the baseline method on whose means the proposed sys-
tem PaReSy is build upon. The main difference lies in the
VTF representation, the energy model and the estimation of
the stochastic noise component. SVLN constructs the latter by
high pass filtering white noise, applying an amplitude modu-
lation parameterized by the glottal pulse sequence, and cross
fading between consecutive synthesized noise segments. The
gain σg measures the energy level at FV U at analysis to control
the stochastic energy at the synthesis step. SVLN synthesizes
glottal pulses with the LF model in the spectral domain to ex-
tract C(ω) below FV U . The VTF above FV U is taken from the



signals spectral envelope. SVLN facilitates voice quality trans-
formations while maintaining a high synthesis quality [31, 9].

5. Evaluation
This sections presents the results of a listening test conducted
on natural human speech of French speaker "Fernando" hav-
ing an Hispanic accent. The baseline method SVLN of section
4 and the proposed method PaReSy of section 2 received the
same voice descriptors Rd, F0 and FV U as pre-estimated input
to analyze C(ω). Please note that SVLN requires to smooth the
voice descriptor contours. Due to the energy measure at FV U it
cannot handle value changes varying too quickly in short-time
segments [29]. For this test a median smoothing filter cover-
ing 100 ms was applied. The PaReSy spectral fading synthesis
variant presented in 2.6 requires the FV U prediction of section
2.5. An example is depicted in fig. (2). The transformed R

′
d

Figure 2: PaReSy FV U prediction excerpt

contours and the original Rd contour were employed by both
systems for synthesis. Following the voice production model of
equ. (3), a transformed glottal pulse G

′
Rd

(ω) leads to a trans-
formed reconstructed signal S′(ω). The unvoiced component
U(ω) remains unmodified. 11 participants rated each speech
phrase according to the voice quality characteristics given in
the first column of table (1). The voice quality assessment ex-
amines how well both synthesis systems are able to produce
different voice quality characteristics. A second evaluation met-
ric examines the synthesis quality on the Mean Opinion Score
(MOS) scale. Fig. (3) depicts the voice quality ratings for the

Figure 3: Voice quality rating results for PaReSy

proposed method PaReSy. The small horizontal grey lines at
both ends (whiskers) are set to show the minimum and max-
imum value for each evaluation. The horizontal red (violet)
lines reflect the mean (median) voice quality ratings of all par-
ticipants per test phrase with the same indices as in table (1).
The diagonal grey dashed line exemplifies their ideal placement
if each test participant would have been able to associate per-
ceptually each synthesized voice quality example to its corre-
sponding voice quality characteristic. The mean deviation value
δµ = 0.83 expresses the disagreement of the listeners, being
ideally δµ = 0.0. A higher mean deviation value δµ=0.97 as
compared to PaReSy indicates for the baseline method SVLN
shown in fig. (4) that the listeners could less well capture the
different synthesized voice qualities. Clear voice quality as-
sociations can be concluded for both systems. Both follow

Figure 4: Voice quality rating results for SVLN

roughly the ideal dashed grey line with the deviations increas-
ing with higher changes. The MOS synthesis quality evaluation

Figure 5: MOS synthesis quality rating results for PaReSy

for PaReSy shown in fig. (5) exhibits partially highest ratings
up to an excellent synthesis quality of 5 for all but the "relaxed"
and "very relaxed" voice quality characteristics with index +2
and +3. The evaluated mean synthesis quality MOSµ=2.82 of

Figure 6: MOS synthesis quality rating results for SVLN

SVLN shown in fig. (6) is comparably lower than MOSµ=3.38
for PaReSy. Stronger voice quality changes are assessed with
less good MOS synthesis qualities for both systems. In general,
PaReSy received a lower deviation from the true voice quality
rating and a higher MOS synthesis quality compared to SVLN,
shown in table (2).

Table 2: Voice quality (VQ) and MOS sound quality ratings
Method ∆ VQµ ∆ VQ2

σ MOSµ MOSσ
PaReSy 0.8312 0.6858 3.3766 0.9880

SVLN 0.9740 0.5967 2.8182 0.7462

6. Conclusions
The findings presented with the subjective listening test of sec-
tion 5 suggest that the proposed novel speech analysis and syn-
thesis system is able to analyze an input speech phrase such that
different re-synthesized versions carry the perception of differ-
ent voice quality characteristics. Its assessed synthesis qual-
ity received partially very good judgements for minor changes
in voice quality. Major voice quality changes are appraised of
moderate quality for both the baseline and the proposed method.
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