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Abstract

Since the beginnings of computer science, computers have been used fruitfully for the
generation of new music. In the last decades, their utilization to create generative systems
moved from the implementation of tools for composition towards the invention of reactive
programs aimed at participating in the much more unpredictable and challenging situation
of musical improvisation. The work presented in this thesis focuses on the conception and
realization of such a software, capable of pertinent interaction with acoustic musicians
in a collective free improvisation, that is an improvisation without any predetermined
knowledge of structures, rules or style. It is extended at the end of our work with
considerations on emerging properties such as pulse or a broad notion of harmony. The
OMax project proposes to approach the problem of non-idiomatic improvisation by learning
and mimicking the style of a musician with an agnostic and incremental knowledge model.
We take this computer system as our work basis and examine carefully three aspects: the
conceptual principles of the system, the software architectures for effective implementations
and the real-life usage of this system in numerous testing and concerts situations.

Besides a thorough study of all the conceptual elements of the system based on
anthropomorphic decomposition of its parts, our main contribution is the design and
realization of several variations of the OMax system. We first propose to use dual structures
to store the literal information extracted from the input stream of a musician and to hold
the knowledge model built on this information. We illustrate this architecture with a
novel real-time visualization of the model. We claim that duplicating all the processes
that lead up to the building of the knowledge model enables the computer system to listen
at once to several aspects of the ongoing music with their own temporal logics captured
in the different model instances. Running this way a multiple descriptions and multiple
inputs modeling of the on going musical content greatly improves the pertinence of the
computers response. The study of the generation mechanisms of the system enables us to
put forward a new database oriented approach to the collection of these models. Our work
has been also strongly coupled with the testing of our prototypes with several leading
musicians. The musical feedback gathered along these numerous musical experiences lead
the work presented in this thesis and opens up many directions for further research on
the system, notably the exploration of automatic decisions based on the pertinence of the
different descriptions at a given moment of the improvisation or a larger use of prepared
material to a “ composed improvisation ” perspective.
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Résumé

Depuis les débuts de l’informatique, les ordinateurs on été utilisés fructueusement pour
générer de nouvelles musiques. Au cours des dernières décennies, l’utilisation de systèmes
génératifs s’est progressivement tournée des outils pour la composition vers l’invention
de programmes réactifs pouvant participer à une improvisation musicale, situation bien
plus imprévisible et stimulante. Le travail présenté dans cette thèse se concentre sur la
conception et la réalisation d’un tel système informatique, capable d’interagir musicalement
et pertinemment avec des musiciens acoustiques dans le cadre de l’improvisation libre
collective, c’est à dire de l’improvisation détachée de toute structures, règles ou style
prédéfinis. Nous étendrons ce cadre à la fin de notre travail en y intégrant l’utilisation
de propriétés émergentes telles que la pulsation ou une notion large d’harmonie. Le
projet OMax propose d’aborder le problème de l’improvisation non-idiomatique par
l’apprentissage et l’imitation à la volée du style d’un musicien à l’aide d’un modèle de
connaissance agnostique. Ce système sert de base à notre travail et nous en examinons
attentivement trois aspects : les principes conceptuels du système, les architectures
logicielles permettant une implémentation efficace, et l’usage réel du système dans de
nombreux tests et concerts.

Outre une étude fouillée de tous les éléments théoriques du système suivant une
décomposition anthropomorphique de ses différentes parties, les contributions principales
du travail présenté dans cette thèse sont la conception et la réalisation de plusieurs
nouvelles versions du système OMax. Nous proposons en premier lieu l’utilisation de
structures duales pour contenir d’une part les informations extraites du flux d’entrée
d’un musicien et d’autre part le modèle de connaissance construit sur ces informations.
Nous illustrons cette architecture avec une nouvelle visualisation en temps-réel du modèle
de connaissance. Nous prétendons que la multiplication de tous les processus menant
à la construction du modèle de connaissance permet au système d’écouter en parallèle
plusieurs aspects de la musique se déroulant. Chacun de ces aspects possédant sa propre
logique temporelle mène à la construction d’une instance différence du modèle. Nous
obtenons ainsi une modélisation du discours musical basée sur plusieurs descriptions de
plusieurs entrées ce qui permet d’augmenter considérablement la pertinence de la réponse
de l’ordinateur. L’étude menée sur le mécanisme de génération du système nous permet de
proposer une nouvelle approche de la collection de modèles de connaissance vue comme une
base de donnée. Notre travail a été fortement associé à des tests réguliers des prototypes
du système avec de nombreux musiciens de premier plan. Les réactions collectées au
cours de ces nombreuses expériences musicales ont fortement orienté le travail présenté
dans cette thèse et ont ouvert de nouvelles directions de recherche autour de ce système,
notamment l’exploration de la prise automatique de décisions éclairée par la pertinence
des différentes descriptions du flux musical au cours de l’improvisation ou une plus grande
utilisation de matériau musical préparé dans le cas d’improvisations composées.
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Chapter 1

Introduction

Since the middle of the twentieth century, computers have been used to generate new
music. From then, computers’ usages have broaden to various music purposes including
sound synthesis, sound processing, composition, improvisation and more. Along the time,
researchers, engineers, musicians, composers have invented numerous systems more and
more interactive to explore the relations between machine and music creation. Based
on various principles, these system may produce sketches, assemble whole pieces, play
unheard sounds or propose tools for real-time performance. Our research focuses on
systems capable of direct interaction on the musical level, and we are especially interested
in systems for musical improvisation. This field has been very active in the last years
and several systems have been built and described to improvise with acoustic musicians.
We base our research on this active background and examine the case of a system for
improvisation with on-the-fly listening, learning and generating capacities. We studied
and developed in our work the concepts and software architectures for the realization of
such a system and took much care to test our research in real-life musical situations.

1.1 Thesis Focus

The starting point of our research is the stylistic reinjection principle extensively studied in
the Musical Representations Team of IRCAM and associated to the OMax improvisation
scheme. In the frame of this research field, we try to explore the global problem of
creating an agnostic system for generative real-time improvisation. More than an in
depth research on one of the numerous elements needed to build such a system, we
adopt here a more distant view over the problem and attempt to follow through the
extension of the conceptual principles needed for this agnostic, interactive improvising
environment. We lead this research through cognitively-inspired conceptual architecture
down to the very design and implementation of fully operational software and its thorough
testing in challenging real-life concert situations involving interaction with world-class
improvising musicians. The main musical objective we pursue in this work is to create a
convincing musical partner for improvisation with rich propositions’ capacities and much
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musical a propos. We explore several conceptual and design approaches along this work.
Some of these explorations have lead to deep renewal in the views and uses of the inner
model for stylistic reinjection as well as considerations and rethinking of all the elements
needed around this core to build up a functional system. Our work thus constitutes a
decisive contribution to the establishment of this reinjection paradigm and to the software
architectures allowing its existence in real-life concert situation.

1.2 Motivations

When discovering stylistic reinjection and the OMax early prototypes at the beginning
of my PhD, I was amazed by its potential to engage a musical dialog with very various
musicians and adapt to different styles. Stylistic reinjection seemed to me as a very
powerful principle to question musical improvisation itself in its intimate balance between
imitation and self-renewal. As I remembered my own experience in free improvisation as a
cellist, I felt that the bending of pre-existing musical material is an important mechanism
of collective free creation which is filled with personal reinterpretation of the others musical
discourse fed into the common music matter. I decided then to give to this principles
a strong conceptual foundation and pursue the achieving of a computer music system
making use of this mechanism and capable of developing a pertinent musical discourse in
a dense collective performance context as well as actively participating to an uncluttered
improvisation in a duet with an acoustic musician. The playing with such a system as
an interactive instrument — an active instrument capable of suggesting and developing
musical directions by itself but also flexible and malleable enough to be conducted and
played — has also been a very strong motivation in my work. The utopian goal of being
capable to improvise in any musical context with this original instrument drove several of
the explorations described in this thesis.

1.3 Thesis Organisation

We start this work with the presentation of three axes as a structure for the review of
several generative systems which constitute the large framework of our research. We
characterize these systems depending on the time-scale of the units they manipulate, their
learning capabilities and their need for human control. Then we place our system in this
landscape and discuss a few behavioral questions raised when trying to build a computer
system dedicated to improvisation. Our goal is to build an interactive improvisation system
with on the fly listening, learning and generative capabilities that makes a controllable
generative instrument to improvise along with acoustic musicians.

Starting from the core principle of stylistic reinjection and the early prototypes of the
OMax scheme, we thoroughly study all the conceptual aspects of such a system. We adopt
a global and anthropomorphic view on the system and detail its perception, knowledge
and performance parts. The perception of our system is based on the listening of melodic,
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timbral, harmonic and rhythmical aspects of the input streams corresponding to the
musical discourse of an acoustic musician. After the extraction of low-level information,
we propose several segmentations to aggregate meaningful units for each description of the
input. The graph we use to model the patterns of those units requires a strict classification
thus we analyze the influence of this alphabet and propose several possibilities for such
symbolic labeling. Then we present the Factor Oracle graph: it is an acyclic automaton
built incrementally to recognize all the repeated patterns of a symbolic sequence. We
detail the structure of this graph which serves as the core of our knowledge model and in
particular the forest of suffix trees connecting all patterns. We propose several enriching of
this knowledge model to gather in the memory of our system a powerful multi-descriptions
representation of the musical material. Finally we explain how we navigate in this rich
representation to generate new variations mimicking the style of the original material
but which introduces novelty, thanks to pertinent recombinations. We also show how we
render and can conduct musically these variations to create a consistent and controllable
musical discourse.

The third part of this thesis focuses on the effective design of the system. We propose
new low-level structures to build and hold this knowledge and illustrate the efficiency of
these structures with a novel visualization of the knowledge model. Then we detail two
software architectures we designed for this improvisation system. The first architecture
places side by side the different descriptions learnt in the system and enables the parallel
usage of these descriptions to develop variations on separated aspects of the original
material. The second architecture adopts a novel view, oriented towards a database
approach of the collection of descriptions and graphs constituting the knowledge of the
system. With this architecture, we benefit from all the descriptions and model instances
at once to enable the generation of hybrid variations, that is variations on several aspects
(melodic, timbral, harmonic) of the original material in the same generated discourse.
Through a filtering and weighting process, this architecture also enables to take advantage
of several complementary information extracted from the original material (pulse, register
etc.) and refine the musical conducting of the computer based generation.

Finally, we present in the last chapter of this thesis various situations in which we
played with the system. We show how these numerous musical contexts help test and
enhance the application of our research. This permanent confrontation with real-life music
improvisation along leading musicians in studio sessions or concerts has been one of the
most important drive of the work presented in this thesis.

3





Part I

Generative Systems
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The huge number of computer systems imagined and used to generate music makes
very long and tedious an exhaustive review of all of them. The system often mentioned as
the first historical example of generative systems is the one which generated or composed
the Illiac Suite in 1956. However, in this review we choose to focus on the (already
numerous) generative systems destined to produce sound material, excluding thus the
softwares composing music scores. In the rest of the thesis, we will refer to them simply as
generative systems without recalling this limitation. We will try in this part to reference
the most notable systems which have been subject of publications and that we encountered
along our research. They mark out an impressive evolution and a great variety from
the first uses of algorithms (like formalized in [Chadabe 84] for example) to the present,
complex and powerful systems that we can find in the various conferences around computer
music. It is important to notice that numerous ad-hoc or confidential systems are developed
almost everyday by sound and computer engineers, composers, musicians. . . who do not
feel the need of writing and publishing anything about them and are happy to use them
with successful results. In these cases, it is very difficult to investigate their approach and
functioning.

The organization of our review is mainly inspired by the pioneer work and reflexion on
this work of R. Rowe in Interactive Music Systems, Machine Listening and Composing
[Rowe 92] and the more recent article of T. Blackwell, O. Bown and M. Young, Live
Algorithms: Towards Autonomous Computer Improvisers in Computer and Creativity
[Blackwell 12]. Important reflexions about the types of generative systems may also be
found in [Cope 05], [Papadopoulos 99] and [Biles 13].

These works present various approaches and propose the characterizations of many
examples of generative music systems. Main criteria are technical or musical, and aim to
discriminate among the abundance of existing systems. However these different criteria
do not inform on the same aspect of the different systems. In particular, when [Rowe 92]
and [Cope 05] detail the learning capabilities of the systems, or the type of generative
algorithm used, they place their classification on the operational aspects. That is, they
discriminate their numerous examples on how they work. Whereas in the beginning of
the article [Blackwell 12] and in [Biles 13], criteria as spontaneity, participation or novelty
denote behavioral aspects of the systems, that is how they interact with their musical
context.

Our work has been mainly focused on the operational approach. Thus we will present
in chapter 2 a new set of three operational criteria over which we propose to place the
notable examples of the literature. Though, we will also consider in the second chapter of
this part (chapter 3) behavioral reflexions around the musical properties and the musical
evaluation criteria of such systems. Both the operational and the behavioral aspects help
conceptualize our own approach and characterize the computer system which constitute
the center of this thesis.
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Chapter 2

Operational Approach

Most of the generative systems which are subject of publication are described through
scientific research papers, conferences or books. This channel of publication focuses de
facto the description of such systems around their functioning and their scientific and/or
technical innovations. Even though this angle may be open to criticism when working on
system intended to produce music, this operational approach is also the one we mainly
take in this work.

Rather than utilizing strict categorization of the different systems of the literature,
we propose in this chapter to use three operational axis. We will place a selection of
systems in this 3-dimensions space depending on their characteristics along the criteria
defining each axis. We figured out these three discriminative axis without going deep
into the classification of the technical aspects of the systems like the algorithms used or
the functional architecture. Our goal is to define continuous and basic aspects usable to
characterize any generative system depending on their general principles. Doing so, we
draw a map of generative systems which will enable to position our work in the large area
covered by all these computer systems. The resulting graph is presented Figure 1.

2.1 The Time-Scale Axis

As the first of these axis, we take the time-scale of the elements manipulated to produce
a musical discourse. Actually, the (temporal) size of the elements hides the real interest
of this axis: the level of abstraction of these elements. In the vast majority of musical
systems, one of the basic processes — after the irreducible sampling due to digital nature
of computer systems — is segmentation to obtain longer elements (in time) and avoid
the problem of manipulating a continuous and high rate flow of data. The main goal
of segmentation of music material is to extract consistent and useful entities that can
be meaningfully exploited and manipulated afterwards. Once coherent segments have
been delimited, their significance — often expressed in a condensed, symbolic form — can
replace the actual content of the unit.

9



Expressed nevertheless in term of size, this axis goes theoretically from the tiniest
element in computer music: the sample of a digital signal, to an almost infinite magnitude
of symbolic structure — we could imagine a system manipulating music pieces to organize
the overall program of a concert, even though we couldn’t find any articles describing such
a system. One of the highest level we encountered is a real-time meta-score, Soliloque by
Fabien Lévy [Lévy 07] which uses fragments of a concert to recompose a piece in form of
a musical mosaic.

In a purely acoustical parallel, this axis would be illustrated at one end by a continuous
instrument like the violin or the clarinet1 in which the tiniest elements of the rendering of
the sound are to be taken into account. At the other end would be a CD2 or any forward
and linear playback technology which allows access only to whole pieces — or sometimes
sections of the piece — and have no other time segmentation.

Along this continuous axis, we can place a few markers to help assemble groups of
systems. No generative systems actually work at the audio sample level (commonly 44100
samples a second) i.e. with no higher level elements than the continuous flow of 16 or
24bits encoded points of the waveform of the sound. Most of the documented systems
gather at least small windows of samples — typically around a few thousand, which
correspond to the usual size of a Fast Fourier Transform (FFT) — which serve as a
starting point to compute some kind of description of the content. These elements have
been sometimes named “grains” and especially studied in [Roads 04]’s Microsound. The
size of these elements also correspond to the shortest event our ear is able to isolate and
fast concatenation of these result in what we call granular synthesis. An example of system
using units of such size is given in [Schwarz 06]’s CataRT system. It computes one or
several descriptions for each unit then builds a powerful organization of these descriptions
in a huge database. To generate a new musical discourse, it navigates knowledgeably
through this database and concatenates a stream of grains.

The second scale marker we can place would be around the duration of a note or a
chord. As our axis is not meant to be graduated in actual durations but is more an axis of
symbolic level, this second marker indicates a very important transition between what can
be called the subsymbolic level and the symbolic level as discussed in [Rowe 09]. A note
or a chord is — in the music notation domain — a unit which has a significant meaning
independently from the reality of its signal-level embodiment, a musical representation. It
belongs therefore clearly to the symbolic domain whereas the grains previously mentioned
are actual sound elements irreplaceable by symbols. System such as the one described
in [Dannenberg 93] makes clear this transition with the direct manipulation of what is
called events in this article and which represents directly the symbolic content of the
musical material used to generate. These events are to be placed right next to our second

1by opposition to the Piano or other keyboard or plucked instruments in which the sound of a note is almost
totally defined by the attack

2which is obviously not purely acoustical as it is a digital format but compact cassette and magnetic tape are
quite old fashionned now and vinyles are not a univocal example because of their use in DJing and other music
creation processes
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marker and a huge collection of generative systems of various principle operate at this
level as [Miranda 01]’s CAMUS cellular automata for example.
An even clearer expression of this transition is given with the massive use of MIDI
protocol thoroughly analyzed in [Loy 85]. Its standardization and extensive use — even
nowadays — in the music industry shifted this protocol to be used as a usual and
acknowledged description of music content for solos, chords, jazz standards for example
and much more applications. Numerous and various generating computer systems work
directly at that level or make use of MIDI-like description, even very recent ones like
[Pachet 13]’s chord grid classification. MIDI events being defined with the succession
of note-ons and note-offs with their pitches and velocity — and channel information,
sometimes complemented with more continuous controls like bend or after-touch — they
do not encode the audio content or realization of it. Thus they denote a symbolic
representation of the musical content often directly convertible to notes of the traditional
notation system.

The third important marker along our time-scale axis may be the phrase level. Typically,
a phrase is defined either between two sizable silences or with a pre-determined number of
beats, chords, bars or measures. Despite the possible variation in the duration of phrases,
this level of segmentation is also commonly used in generation systems. [Biles 94] for
example, uses a genetic algorithm on phrases populations to breed novel phrases. Another
noticeable example is given in [Carey 12] where the author constitutes a database of
phrases described with the mean and standard deviation of various descriptors over each
of them. As a comparison, a looper pedal from a guitarist’s typical gear works also at
this phrase level — in this case, a phrase is defined by the duration of the first loop.

Finally, we can continue this axis up to the music piece duration (typically several
minutes). We could add the song’s verse/chorus duration which would be around the
phrase marker and the classical piece’s section or movement which would be in between
the phrase and the piece duration. These last marker are relevant in term of musical
content but far less discriminative in computer systems.

2.2 The Learning Axis

To draw our operational map of generative computer softwares, we use a second axis
representing the learning characteristics of the systems. Learning is defined for the
common sense in The American Heritage Desk Dictionary by the gaining of knowledge,
comprehension, or mastery of, through experience or study ; in the case of computer
software, to learn describes the ability of a system to improve its performances with the
knowledge of some data. This task can be supervised or unsupervised, meaning that there
may or may not be definitions, specifications or documented examples of the properties
to learn. More specifically in the domain of music generation, we mean by learning, the
ability for a generative system to retain and improve from any kind of information from
input data, either coming from training experiments, from externally defined corpus of
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data or from on-the-fly discovery. An notable remark is that retaining implies some kind
of memory in the system either literal (the system records the data as it was presented
to it) or abstracted (the system hold some information extracted from the data it was
presented to). However, recording or keeping track on data in a memory only is not
sufficient for a system to be considered as learning. Learning is also characterized by
some kind of influence or modification of the functioning of the system itself thanks to
the data. For example the training of a neural network as used in [Young 08] modifies its
subsequent behavior thanks to training input data. Even though these data are neither
recorded literally nor reused we do consider that Young’s NN Music system is indeed
learning, at least during the training phase.

The learning axis typically goes from purely rule-based systems — which can be
considered as not learning at all, rules being predetermined — to totally agnostic systems
which have to discover everything from their input. One of the first and almost purely
rule-based example of generation systems is [Holtzman 81] which uses language grammar
or rewrite rules to analyze existing repertoire and generate pieces of composition. Cellular
automata systems such as those of [Miranda 01], already mentioned, expresses the evolution
of a system as a set of predefined transition rules and are pre-determined by the initial
state of the system and the application of these rules. On the other end of this axis, a
system learning absolutely everything from its input without any prior hypothesis certainly
does not strictly exist as there should be, for now in computer systems, some kind of
definition of the information to look for or extract from the input data, or at least a
procedural description of how to handle the input.

In the analogy with classical instruments and effects, any acoustic instrument is
definitely not supposed to learn anything from its player and would be placed at one end
of the axis with rule-based systems. As previously mentioned, no technical system wether
analog or digital is actually capable of learning everything from scratch.

An important remark has to be done on this definition of the learning axis: whether
the learning is done in real-time, along the process of acquiring material for an input
as in [Collins 11]’s LL system, or on a corpus or database of pre-recorded material as
done in [Collins 12]’s Autocousmatic system to generate new acousmatic pieces, is not a
criterion on this axis. Then we can summarize this axis as: how much a priori (either
implicit or explicit) does the system contains before analyzing any material. The more a
priori, the less we consider it as learning, and conversely, the less a priori information
or hypothesis the system needs, the more it has to learn from the material to build a
consistent discourse. For example, the typical bass/chords/melody division of idiomatic
Jazz that we can find in [Thom 00], [Pachet 13] and others, is considered as an a priori
and moves these systems in our map towards rule-based systems. The roles of each
musician is indeed not learnt by system and may not be changed. On the other hand, the
cumulative rehearsal database of [Carey 12]’s _derivation system or the user’s judgement
influencing the evolution of [Biles 94]’s genetic algorithm stress their learning capacities.
This characterization concerns equally the analysis and generative part in generative

12



systems — most of those systems can usually be divided rather clearly in an analysis
sub-system and a generation sub-system.

2.3 The Control Axis

The third axis we propose to analyze how generative systems work, describes their need
for human control. This is mainly inspired from the discussion of [Rowe 92] about the
instrument vs. player paradigm. R. Rowe defines the two directions of our axis like this:

Instrument paradigm systems are concerned with constructing an extended
musical instrument: performance gestures from a human player are analyzed
by the computer and guide an elaborated output exceeding normal instrumental
response. Imagining such a system being played by a single performer, the
musical result would be thought of as a solo.

Systems following a player paradigm try to construct an artificial player, a
musical presence with a personality and behavior of its own, though it may vary
in the degree to which it follows the lead of a human partner. A player paradigm
system played by a single human would produce an output more like a duet.

In the context of a musical group or ensemble, these paradigms characterizes the depen-
dency of the computer system on a human to play and interact musically with the other
musicians. In other words we discriminate along this axis the role of the computer in
the overall setup. Is the computer system played by a human like a new maybe smart or
reactive instrument? Or is the computer a musical companion or partner on its own?

In practical terms, this axis is linked (but not restricted) to the technical manipulations
needed on the computer i.e. the direct interaction — with traditional computer interfaces
like mouse, triggers, knobs etc. or many more paradigms and novel interfaces as discussed
in [Wessel 02] — required between a human performer and the system to generate an
engaging musical discourse. This practical approach of the control is also considered in
[Biles 13]. The same extreme examples as given for the previous axis can help defining
the end of this axis: a CD or a predefined MIDI sequence do not require any control.
Once started, they will unwind their unchangeable content independently from any human
— unless or until a “ stop ” button is pushed, action which can be considered as the simplest
and even minimalistic interaction with a machine. On the other end of this axis, an
acoustic violin is a useless instrument without the violin player, no sound will ever get
out of the instrument if nobody actions continuously its mechanisms (except perhaps in
the case of open string pizzicati). This way, a violin requires permanent control over all
the elements of the performance, from the tiniest bits of sound to the overall form and
musical direction of a piece.

Naturally, several generative systems present a user interface which allows to control
them but it is still up to the supervisor of the computer to decide whether he or she
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wants to intervene or not. And the same system can be played very differently by two
supervisors depending, for example, on how much other things they have to manage
or how much confidence they have on the computer system to react pertinently during
the performance. George Lewis, when playing his Voyager system [Lewis 00] has much
to do already with his acoustic trombone and will not spend too much time tuning
the computer during the performance, even though Voyager ’s interface gives access to
numerous parameters for fine tuning. This interaction can obviously be seen the other
way around: the conception of [Lewis 00]’s or [Thom 00]’s systems is oriented towards a
certain autonomy to allow direct interaction with a musician without the need for a human
dedicated to the computer’s supervision while M. Wright & D. Wessel’s system to improvise
indian Tal is clearly designed to be controlled by a computer musician [Wright 98]. It is
precisely this orientation towards the dependance or the independence from the human
control we characterize on this axis.

System’s like [Lévy 07] or [Holtzman 81] are positioned at one end of this axis, they
are almost totally autonomous systems which require almost no control. They are oriented
towards composition and only need a set of predefined rules to unwind their piece, fixed once
and for all in the case of [Lévy 07]’s Soliloque, adjusted for several generations (including
a musicology example to describing a Schoenberg trio) in the case of [Holtzman 81]’s
grammar. At the other end of the axis, [Schwarz 06]’s CataRT ’s or [Blackwell 02]’s
Swarmusic need for a running target guiding the path in the grain database (in the case
of CataRT ) or the attraction of the particles (in the case of Swarmusic) pushes towards a
continuous control (manual or scripted) of the computer based generation. Naturally, this
continuous control can be replaced by the following of a real-time input or the running of
a pre-defined script.

2.4 Operational Plot

We defined in the three previous sections, three axis to describe operational aspects of
generative systems and help us place our own work in this review map. We gathered in
the following plot (Figure 1) all the references we mentioned earlier in this review and
gave them coordinates on the three operational axis. To the list of these systems, we
added our work around OMax (in red) and the analog examples we gave as illustrations
along our description of the three axis (in blue). When deciding the coordinates, we tried
to respect the specific ideas and functioning of each system but compare it to the others
in the terms of each axis definition to achieve a coherent map. Naturally we may have
under- or overestimated certain aspects of one or several systems. After a 3-dimension
view of this plot, we give the three 2-dimensional projections of this map to enable the
reader to examine more clearly each axis and each system.
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Figure 1: Plot of Generative Systems
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From this graph and its three projections, we can draw a few conclusions and explain
the position of our work. On the Control/Time-Scale projection, we observe that most
systems are naturally placed along a diagonal: the longer (and higher in symbolic level)
the elements are, the less control the system requires. This is especially illustrated by
the position of [Lévy 07], [Carey 12], [Thom 00], [Dannenberg 93] and [Schwarz 06]. This
distribution suggests that a higher view on the structure of music enables a system to
reproduce more autonomously such structured discourse. Though, many systems are
placed below this diagonal and notably towards the systems with less human control which
shows a tendency to invent systems capable of taking on (or trying to take on) the role of
a musician. We discuss this autonomy in the next chapter (section 3.1). In our work, we
propose a system which takes place along the diagonal but takes on the role of what we
could name a generative instrument, that is, a system capable of generating new musical
discourse on its own but enabling a human supervisor to bend and conduct efficiently
the content with high level musical decisions. It implies that our system manipulates
elements long enough to model efficiently the musical structure and generate new coherent
discourse but is versatile and controllable to enable the musical conducting of the human
supervisor. On the Learning/Time-Scale projection, systems are rather well spread and
we can see that the learning ability is not directly related to the level of the musical units.
[Lévy 07] shows a natural example of the predetermined arrangement (composition) of
long units while the concatenation of very small grain in [Schwarz 06] do not exhibit more
learning capacities. In this domain, our work takes the opposite direction of [Carey 12]
by learning the most information possible from the organization of rather small units.
Finally, we expected from the Control/Learning projection to backup the assumption
that the more a system learns, the less control it requires. But apart from [Schwarz 06]
which concatenation mechanism requires important control, learning systems such as
[Biles 94] do not seem to imply less control than [Dannenberg 93]’s interactive composition
system. Again, the overall distribution illustrates the tendency to conceive more and more
autonomous computer systems. We challenge this tendency in our work and pushed our
research towards a controllable agnostic system.
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Chapter 3

Behavioral Reflexions

The operational approach corresponds to many historical analysis of generative systems.
In the previous chapter, we proposed a new set of three continuous characterization of
generative systems which enable us to place several examples in a 3-dimension space
illustrating how these system work. However in more recent work as in [Blackwell 12] or
[Biles 13] the behavioral aspects of the systems are being justly studied. With different
approaches, these discussions and characterizations focus on the interaction of a computer
system with its musical context. While T. Blackwell examines mainly the comportment of
the system itself on a musical level, J. A. Biles also includes in his reflexion the interaction
with the musician “ responsible ” for the system on stage and the appeal for the audience.
In turn, we have to undertake reflexions about the behavior of generative systems. This
approach will give us an appropriate angle to discriminate systems oriented towards
improvisation from the larger group of generative system (section 3.1) and to broach the
sensitive problem of the evaluations of such systems (section 3.2).

3.1 Improvisation Systems

Participation In the previous chapter, we voluntarily reviewed a selection of notable
generative systems which are built with very different musical purposes for historical,
technical or aesthetic reasons. They fit together in the vast domain of computer systems for
music generation as would also several commercial and/or general public tools, softwares,
hardware gear or electronic instruments. What differentiates the former systems studied
in the previous chapter from the latter only mentioned here as a comparison is the
creative role i.e. the active role of the computer which allows us to properly define the
generative systems group. Such systems not only help expressing a musical discourse but
also shape itself the musical matter. With this characterization, we can not differentiate
composition systems for improvisation system but we can discriminate systems which
assist composition or improvisation — which can be expert systems as [OpenMusic ] or
pedagogical softwares — from systems which effectively generate new musical material,
that is systems not only suggesting ideas or directions but also capable of participating
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to the musical result. Running these programs — working with swarms, grammars,
reinjection mechanisms, live coding principles or any other principles — the computer
system exhibits some participation: it does not only execute a succession of rules to get
the result but suggests some new directions. Naturally, depending on the system, it may
suggest these directions to the supervisor interacting with the computer or directly to
the musicians participating. Each system is also biased in its suggestions and directions
by the angle of its core and programing principles. This influence of the system on the
musical interaction and result system has been more thoroughly studied in [Bown 09].
But this participation is a characteristic shared between the generative improvisation
systems and the generative music composition systems that we reviewed.

The three axis we defined to position the generative systems that we reviewed in our
operational approach do not discriminate what musical situation(s) the computer system
is capable of taking a role in. For example, we reviewed generative systems which explain
and build composed music pieces like [Holtzman 81]’s system or idiomatic electroacoustic
pieces like [Collins 12]’s Autocousmatic and systems generating a continuous stream
of sound in a musical improvisation, like [Blackwell 02]’s Swarmusic or [Schwarz 06]’s
CataRT. The musical situations these systems can participate to are obviously not the
same: Collins’ Autocousmatic can not be used to improvise with a musician, at least not
as it is described in the article. Conversely, it requires a compositional work to make
Blackwell’s Swarmusic participate to a composition — for example with a simple script
like it is described in [Blackwell 02] in the case of a “ solo ” improvisation. And in this
latter case, it is not clear which part of the composing process the system is taking on.

Adaptation Among many definitions and discussions about the nature of improvisation,
T. Bachir-Loopuyt, C. Canonne et al. characterize the improvised work this way (in
French) in [Bachir-Loopuyt 10]:

Contrairement aux œuvres de la tradition classique qui sont des types abstraits,
les improvisations sont des événements. Il existe néanmoins une continuité entre
ces deux régimes ontologiques, que fait apparaître le contextualisme de Levinson.
Dans sa théorie, l’identité des œuvres musicales classiques est déjà dépendante
du contexte de leur création. [. . . ] Cette dépendance contextuelle est rendue
manifeste dans le cas de l’œuvre improvisée dont l’identité est exhaustivement
déterminée par le contexte de sa création : c’est le fait d’avoir été exécutée
à telle date par telles personnes qui caractérise in fine l’identité de l’œuvre
improvisée.

We can translate it literally this way:

Unlike the works of classical tradition which are abstract types, improvisations
are events. There exists however a continuity between those two ontological
schemes revealed in the contextualism of Levinson. In his theory, classical
music works’ identity is already dependent from the context of their creation.
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[. . . ] This contextual dependency is manifest in the case of the improvised work
which identity is exhaustively determined by the context of its creation: it is
precisely its execution at a given time by specific persons which caracterizes in
fine the identity of the improvised work.

We find in this description of improvised work a very deep relation with context and time
and more specifically with the context and time of the unwinding of the improvisation.
This point seems to be the essential difference between generative composition systems
and improvisation system. It is particularly obvious in the notable work of D. Borgo, Sync
or Swarm, Improvising Music in a Complex Age [Borgo 05]. This permanent need for
improvisers and improvisation systems to adapt their internal state, directions and choices
to the running context of their musical discourse contrasts with the reflexive and iterative
processes of composition — which are well illustrated in [Collins 12]’s Autocousmatic
system. A fine attempt of modeling these adaptation processes in the context of Collective
Free Improvisation has been done by C. Canonne through a formalism coming from
dynamic systems’ mechanics with very eloquent results [Canonne 11]. In this article,
from a purely theoretical signal x, C. Cannone and N. Garnier model some higher level
information like intention, objective thanks to equations of the dynamic systems’ mechanics.
Then they resolve this set of equations to observe the dynamic behavior of each musician
in the group depending on their number, virtuosity and other musical qualities. When
pushing this characterization of improvisation, we could say that composition is a process
which allows back and forth examinations and changes of the result while improvisation
is an inflexible unrolling of the result without any possibilities to change what has been
played. Naturally, several musical processes — perhaps almost all the actual musical
processes — take place with many subtle balances in between these two extreme views.
But this characterization has strong consequences on the design of computer generative
systems oriented towards one or the other musical situation. In particular, the real-time
consideration of the system for its context and the adaptation to this context is a strong
requirement for an improvisation system as also claimed in [Young 08]. In the extreme
case of Live Coding for example even though we have to consider the team including the
computer and its supervisor as the system, this need for adaptation has strong consequences
on the design of the computer system otherwise any programing language or environment
would be suitable for musical Live Coding — which is very far for reality! Blackwell’s
other “ basic set of capacities in order to participate appropriately ” [to a collaborative
improvisational context] in particular novelty, and participation [Blackwell 12] seems to
be consequences or ensuing characterizations of the assumed adaptation capacity of the
system.

Autonomy Finally, we could try to differentiate improvisation systems from improvising
systems. We used indiscriminately both terms up to this point of the thesis — and we
will continue doing so in the rest of our work. But as with the extreme opposition of
composition and improvisation it seems to us that this difference in the usage of the system
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does not rely only on the question of control or autonomy addressed through our third
axis. The control can indeed be eluded for example through the usage of a real-time input
to define a target — as done in the Audio-Controlled Synthesis scenario of [Schwarz 06]
or the capture algorithm of [Blackwell 02] — or with the usage of pre-defined scenarios
implemented in scripts or presets of parameters. Moreover, the control, or the autonomy
of the computer system is only relevant if we consider the sole machine. This view of
an autonomous machine pursues the dream of a computer system which would generate
pertinent material without any direct human supervision. Our view on the contrary
includes the supervisor of the computer and considers rather the behavior of a (sometimes
virtual) entity composed by the generative system and its supervisor. This view is partly
inspired by the feedback of our experiences with acoustic musicians. In most of the
real-life musical situations, the acoustic musicians feel perfectly well that our system is
not strictly autonomous — and will probably never be — and they are sensitive to the
role of the supervisor or of the automatic behavior pre-define by scripts. This view also
allows us to include in our behavioral reflexions Live Coding situations for example, as the
one described in [Brown 09]. In this situation, the role of the supervisor is tremendously
amplified but the influence of the coding framework (or language) is not to be neglected
nevertheless.

From a generative computer improvisation system, we expect at least to suggest or
produce some innovative musical material. But the choices, evaluation and decisions
concerning the usage of this material may belong to a computer musician — the supervisor
of the computer. He or she is effectively responsible for most of the musical choices even
though his or her system slants drastically these choices. On the other hand, some hope
to be able to implement in a not so distant future a completely autonomous improvising
system capable of playing on its own and interacting musically with other human or
computer musicians. The reality of todays computer systems is widely spread in between
those two illustrative cases. And the (philosophical) question we may ask for most real
cases is: who is improvising most? Is it the computer system or its supervisor? In practice,
the answer is not trivial and we leave it open for the moment.

3.2 Evaluation

The general evaluation of computer systems aimed to generate music is a very thorny
problem. The main bias comes from aesthetic considerations inherent the musical aspects
of such systems especially in the situation of improvisation. When we distinguished at the
beginning of the previous section (3.1) systems to assist improvisation from generative
systems for improvisation, we implied that the first goal of the latter systems is to directly
make music. Many computer systems from software instruments to improvising softwares
embrace this goal. As such, this goal is impossible to evaluate — or always fulfilled as
soon as some sound is output by the system — without going into subjective perspectives
as developed in [Ariza 09], one of the rare references on the subject. However this may not
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be the only intention when designing such a system. Indeed, musical and improvisational
constrains imply a strong software architecture research. Designing the proper architecture
to implement efficient and pertinent interaction between the different parts of the system
and the outside musical world is a goal per se. And it constitutes the main issue of the
work presented in this thesis. The comparison of musical output of different versions of a
music generation system is the approach of [Hsu 09]. W. Hsu and M. Sosnick make use
in this work of questionnaires filled by both the musicians playing with the system and
the audience and tries through the answers to these questionnaires to compare different
versions of the computer system in terms of the musical behavior and result. Doing so,
they explicitly try to avoid the subjectivity denounced in [Ariza 09] by this comparison of
two versions of the same system. However C. Ariza’s article thoroughly deciphers several
tests imagined and used in the music field and show that none evacuates the easthetical
bias of the listener(s). Our own view on the versatility of improvisation explained later in
this section reinforce this point. C. Ariza concludes with:

Until machines acheive autonomy, it is likely that humans will continue to form,
shape, and manipulate machine output to satisfy their own aesthetic demands,
taking personal, human responsability for machine output

Improvisation Mechanisms However, besides music and software concerns, there are
some human interest in developing system aimed at improvising. Whatever core mechanism
they rely on, the testing of generative softwares naturally includes multiple (musical)
confrontation with human musicians. The human improvisator takes here the role of both
a judge and a enlightener of the systems qualities or drawbacks. In this mirroring, it seems
to us that there is not only evaluation pointers about the system but also some knowledge
to gain about the human musician engaging a dialog with the system. Even if the human
cognition — studies in several other aspects and with very different methods — is certainly
not the model for all the generative system, we feel that being capable of designing a
credible improvising computer systems also informs us on how humans improvise. In other
words, the usage of techniques in form here of computer programs reveals and may give
important clues on mechanisms of human behaviors.

Versatility Musicians though have themselves very various ways of engaging a musical
dialog. Especially in the case of improvisation, the result is of almost infinite variety even
with the same musicians in the same place and conditions, depending on their feeling, their
mood and hundreds of slight differences. The same variety will appear in the testing of one
setup involving the computer system with various musicians. In this conditions of extreme
versatility, how would the examination of improvisations’ results be of any information
about the computer system participating to the improvisation? [Hsu 09]’s work seems to
circumvent this problem with the statistical significance of a big number of questionnaires
filled in by four musicians and a consistent number of persons of the audience. In this
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case, the variety in result and the inevitable risk of improvisation is replace by the number
of subjective opinions on one result1. We did not adopt this approach coming form the
Human-computer Interaction field mainly oriented towards the research of new interfaces,
devices or tools as intermediaries to control computer systems.

Getting back to the music objective of an improvisation system, in the work presented
in this thesis, we choose to estimate the value of the system presented and its different
versions through the diversity of musical situations it could take place in. We enjoyed very
much playing with the system and putting it at risk with fresh prototypes and/or newly
met musicians in several situations. These situations were diverse as impromptu public
improvisation in a barn during a summer festival; formal, rehearsed and well organized
concert in front of an audience used to contemporary written music; participation with
a formed jazz band to straight-ahead Jazz festivals; construction of a vocal tale in a
theater piece. The numerous experiences lived with the system along this four year
research enabled us to gather several type of feedback. We had the opportunity of playing
with numerous and very various musicians in open workshops gathering this way several
different opinions of the same version of the system. We participated as well in long
term construction of regular musical productions with the same musicians but with the
successive versions of the system. All these experiences are succinctly gathered in the List
of Musical Experiences at the end of this thesis and we detail some of them in chapter 11.
This recurring but always renewed interest of musicians to our system gave us confidence
if not directly in its constructional or technical value, at least in the musical pertinence
its design enables.

1Hsu’s approach is actually more precise than depicted here and includes rehearsals and differential questionnaire
for a comparison of two systems.
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Part II

Principles of an Improvisation System
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Chapter 4

General Principles

In this chapter, we introduce the background principles for a system dedicated to musical
improvisation. We based our research on the concept of stylistic reinjection and on the
earlier experimentations on the OMax environment that we have completely reconsidered
conceptually (Part II of this thesis), redesigned and provided with a concert-ready im-
plementation in C and in Max (Part III of this thesis). We first present in this chapter
these background foundations of our work through a short history of style simulation and
reinjection (section 4.1) leading to a short description of OMax principles and objectives,
both on phenomenological and operational aspects (section 4.2). A very brief overview
of the functional organization of the system is also given section 4.2.3 in order to give
to the reader a general notion of the different elements which will be referred to and
detailed further in this thesis. Then, as an introduction to the thorough work achieved on
the conceptualization of such an improvisation system and detailed chapter 5, 6 and 7,
we explain the cognitive insights which helped organize our research (section 4.3). A
musical counterpart of these cognitive insights will be presented in chapter 11 where we
will develop the musical experiences and accumulated along this work.

4.1 History

The work presented in this thesis finds its roots in style simulation i.e. in the capturing of
specificities of a musician or a composer which define his style. One of the first example
of a style simulation can be found in the software M by J. Chadabe and D. Zicarelli
[Zicarelli 87] where a Markov model of an incoming MIDI sequence is built and walked
to later output a modified version of this sequence. By this functioning: the direct
modification of an input on the symbolic level (thanks to the MIDI protocol), this
system already acts as a capture and remodeling of the style of its input even though
the style was not the center of this work. From 1998 thorougher style modeling studies
have been undertaken [Dubnov 98, Assayag 99] relying previous research on universal
compression and statistical algorithms like Lempel-Ziv compression [Williams 91] or
Incremental Parsing [Ziv 78]. These algorithms which usually encode arbitrary sequences
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through Markovian principles are used in the case of music to exhibit properties of the
sequence(s) they encode. Then, most of the time, thanks to the prediction aspects
of Markovian theories, they enable to generate new sequences showing the same (or
close) musical properties. One of the main interest in such modeling technics is their
agnostic characteristic: no musical a priori either with rules or implicit with music theory
frameworks is needed except the assumption of the sequential nature of the input.

The stylistic study of already existing music material have always been coupled
in this project (and most of others) with the generation of new material both as a
proof of correctness and reproducibility of the processes developed and, as discussed
in [Conklin 01], as an important characteristic of any music theory, either explicit or
underlying statistical models. Along the years, the study on style modeling and the
investigation of new material generation lead to the definition and thorougher exploration
of stylistic reinjection [Assayag 06a, Assayag 10, Surges 13] as a ground principle for
musical interaction and improvisation.

Alongside, the OMax software has been developed [Assayag 05, Assayag 06c] to illus-
trate the theoretical explorations and to try out these new musical interactions with acous-
tic musicians both in the frame of improvisation and composition [Bloch 08, Robin 09].

4.2 OMax Principles

As previously explained, the work presented in this thesis took as starting point, the
state of the research around stylistic reinjection and the OMax software as of 2009. To
understand the formalizations, descriptions and advances described along this thesis, a
brief sketch of OMax principles is needed. We will therefore outline here in a few words
the global musical behavior, the rough functioning and the basic architecture of this
stylistic reinjection system.

4.2.1 Phenomenological Description

Reinjection as presented in [Assayag 06a] relies on the hypothesis that new musical
discourse can be formed from inference and recombination of existing material. Provided
that the learnt material is vast enough, the new material generated by recombination of it
constitute a real source of novelty exactly as human improvisator draw their innovation
capacity in the recombination of material they have heard, trained on and/or memorized.
And if the material learnt is consistent in style, then the generation of new material from
this memory constitute a credible stylistic simulation.

To apply stylistic reinjection to music, the Musical Representation team of IRCAM
with other researchers implemented a system capable of listening to a musician, learning
his or her musical discourse using a knowledge model and generating new variations of this
discourse thanks to the model. The system acts on the sound as a distorting mirror. It
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records the raw data of the musician — its natural sound output in the case of an acoustic
instrument or its MIDI output in the case of digital instrument — and replays small
parts (patterns) of this sound chained one to another in a very different order than the
original discourse. Naturally, many parameters influence the recombination of the musical
portions such that numerous musical results can be obtained: from a close replication
with very few variations from the original music, to a superabundance of recombinations
making the link with the original material difficult to hear or apprehend.

One notable specificity of such a system applying strictly the stylistic reinjection
principle is the conspicuous mimicking nature of the result. The recorded material is used
to render the output of the system so that the musician feeding the system and listening
to the output is confronted to a disturbing mixture of his or her own sound with his or
her personal articulations, style or mannerisms recombined with the abstract computer’s
grasp on this musical discourse. This situation creates at the same time a very intimate
relation between the input and the output of the system and a confusing distance between
what the musician is feeding to the system and how the system uses and replays parts of
it.

4.2.2 Operational Hypothesis

To concisely describe how a stylistic reinjection system works, we can use the three axis
developed chapter 2 to analyse generative and improvisation systems. Here are the three
operational hypothesis on which the OMax system is based:

• time-scale: the modeling in this system is done at the symbolic level. An abstract
memory model is used which is based on a graph. This graph uses univocal “ letters ”
(symbols) and recognizes repeated patterns (sub-sequences) of these letters. This
knowledge is then used to generate new musical discourse mimicking the style of the
material learnt.

• learning : even though the knowledge model can be prepared with pre-analyzed
material (see 6.1.3.1 and 6.3.2), the typical usage of this system starts with an empty
memory, which means that the system has to learn everything on-the-fly from the
acoustic musician playing along. As a consequence, we have to avoid any hypothesis
regarding the style and the content of the input material. That is: the system needs
to be as agnostic as possible to handle the most various musical situations and learn
the most information possible from its input.

• control : the system is supposed to be driven and supervised by a human. In the
typical improvisation situation, he or she can be either the acoustic musician which
also provides the input material or a computer musician playing with the system (as
the only software instrument or as part of a larger setup). However, we intend to
provide musical parameters to control the computer system. This goes along with
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high level control which can also be pre-determined, composed or automated to give
more autonomy and/or behavioral instructions to the computer.

4.2.3 Functional Overview

To describe in a nutshell the computer structure of such an improvisation system based
on stylistic reinjection, we can organize its functions into six distinct elements illustrated
Figure 2. The input is used in two ways: it is recorded to be replayed (by rather small
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Input

Output

Segmentation

Generation

Recording

Figure 2: General Principles of the OMax System

portions) later on and in parallel, it is processed to extract information. In order to
construct the statistical modeling which assumes only the sequential nature of the input,
consistent and consecutive elements have to be precisely defined on the information flow
i.e. a segmentation of the continuous flow of information is needed to constitute the
elements of the sequence. These elements are then learnt in the model. Concurrently to
this learning part, the improvising part of the system uses the model to generate new paths
corresponding to new organization of the musical patterns and render these variations by
chaining the corresponding portions of the recording as the output of the system.

An important remark follows this brief functional description of the system: there
exist in this system a decorrelation between the learning process and the improvising
process. They refer to the same knowledge model but are not coupled neither in time,
nor in causality. The only requisite is for the improvising process to have a none-empty
knowledge model. In other words, as soon as the system has learnt one element, it can
improvise a new discourse with this element. But no direct connection is done between
the learning and the improvising processes. This observation frees the system from strict
real-time constraints. Because of the independence of the two processes, the learning part
is not required to work faster than the commonly admitted barrier of a few milliseconds
(20 at most) which characterizes a hard real-time environment. On the contrary, latency
is not an issue in the learning process provided that it is capable of supplying an efficient
model on the fly (by opposition to batch processing) which excludes however non-causal
processing commonly used on music analysis, data base indexing or information retrieval.
We can name this constraint soft real-time.
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4.3 Cognitive Views

Improvisation among the larger field of human creative activities have been an important
research subject in many domaines of sciences. From philosophy to computer science
and particularly in cognitive science. Very various situations of human improvisation are
studied as can be seen from the numerous articles published on the subject in management,
team work or decision making for example. The musical improvisation as a typical and
easily isolable example of creativity in arts is a real attractive center of the studies
especially — but not only — around Jazz (choruses and harmonic grid). To study musical
improvisation in general, philosophical point of view as in [Bachir-Loopuyt 10] for example
have been adopted along with complex modeling of interactions as in [Canonne 11] or
attempts have been made to simulate neurons and networks of those in actual music
producing systems like [Young 08].

The main underground motivation for studying and trying to realize a computer system
capable of musical improvisation is arguably the clues, information or models it suggests
about the human realization of this same task. In a certain extend (only), the underlying
hypothesis is that if a computer system is indeed capable of improvising naturally with
one or several musician(s) ie if this system captures and reproduces enough intimate
characteristics to be credible in the interaction with humans, then, when creating this
system, we have understood (at least partially and in a computer oriented form) what is,
and how human do musical improvisation. This understanding of the human capacity of
improvisation may be a good motive for an anthropomorphic view of computer systems for
musical improvisation. Other mimetisms are naturally possible for example with animal
flocks or swarms as in [Blackwell 02] and the research on computer systems for musical
improvisation could simply ignore or refuse any external models. In our research we take
on a certain proportion of anthropomorphic conception of the system and even use this
view to structure the formal presentation of the principle of this system in this first part
of this thesis. In contrast, the second part of the thesis (Part III) will be dedicated to the
software architecture of the system, i.e. pure computer oriented views.

We base our anthropomorphic model on classical cognitive physiology or neuropsy-
chology models of human behavior in the situation of improvisation. As summarized
in [Pressing 88] it includes three main components:

• input (sense organs),

• processing and decision-making (central nervous system)

• and motor output (muscle systems and glands)

This model is easily transposable to computer systems and paradoxically, this transposition
is done in a rather simple and fruitful manner in the P Q f architecture of [Blackwell 12]:

The modules are: P (listening/analysis), Q (performing/synthesis) and f

(patterning, reasoning or even intuiting). [...]
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Naively speaking, P is to ears as f is to brains as Q is to voice, but in humans,
these compartments are themselves conceptually ambiguous.

We carry on with this anthropomorphic model and its computer application and we detail
the internal elements of these three parts. This is summarized Figure 3 and serves as the
structure of the rest of this first part of the thesis studying the principle of our computer
system for improvisation. We named Perception the P module of [Blackwell 12], ie the
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input of [Pressing 88] and argue that it contains both the listening and the analysis of the
input(s). We explain chapter 5 how it can be achieved. In the case of our system based on
a memory model for sequences, we denote the function f with the term knowledge and we
divide it into the alphabetization — which correspond to the transition from the concrete
elements describing the signal to symbols encoding those elements —, the memory which
is the location for abstract structure to hold the knowledge, and the enrichment of this
memory through various mechanisms. This module is presented chapter 6. The Q module
ie the motor output in [Pressing 88] is translated into the Performance part of our model
and includes both the effective production of the sound and the processes to musically
conduct this realization based both on the knowledge and on external musical choices
(either automatically or with a human supervisor). This formalization based on actual
cognitive reflexions gives us a strong conceptual framework to present our research on the
global conception — that is the study of every elements — of a computer system dedicated
to musical improvisation. The perception part of the system is presented chapter 5, the
alphabetization and knowledge model are explained chapter 6 while the performance part
is described chapter 7.
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Chapter 5

Perception

We adopt in this thesis an anthropomorphic view of a music improvisation software. This
view helps us define the first stage of the system as the perception entity. By perception
we mean every process which has to take place before putting any information in any kind
of memory, i.e. before organizing in time or in any kind of structure what the system
perceives. Indeed organizing elements usually implies that the elements are already, if not
meaningful, at least consistent and well defined and delimited — except in very specific
domains as information geometry as in [Cont 11] for example which try to define elements
through their meaning. To build such elements, we have first to examine what the system
listens to, then how it listens to it and form coherent elements from it.

The what is presented in section 5.1, we call it listening . It deals with the streams
that the computer will get. We will explain what we intend by streams, what are their
nature and types. We will discuss situations with one or several streams and different use
of them as well as cases of synchronized or correlated streams and how we group them
to define a musical input. We also present the low level extractions of information we
can execute on these streams and the adequacy of the extraction to the kind of stream.
The how will be explained section 5.2, analysis, which explains how from low level
descriptions of the incoming streams, we form consistent units that will be passed on to
higher level models.

5.1 Listening

As we have seen in the first chapter, creating a computer-based improvisation system
which is able to react and interact with other acoustic musicians certainly implies listening
to what these latter play. Before studying the analysis of information in section 5.2, we
first have to decide what the system is able to listen to and how we make the computer
listen. For our system we will take the sound output(s) of (a) musician(s) as input
stream(s) of the computer.

Some researches as in [Gillian 11] use gesture or motion capture input to learn from
a musician. These inputs can be very informative and give relevant clues about the
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interactions between several musicians, in particular in the case of collective improvisation.
However it implies studying deeply the links between the gestural and the sound realms
in musician’s performances which is largely beyond the scope of our research. We focused
our research on the usage of the output of what a musician consider as its instrument.
In the case of a purely acoustic instrument, that will be the sound result. In the case of
a digital instrument, we may have access to already digitalized and possibly structured
information as we will see in this chapter.

We first examine in section 5.1.1, Inputs Anatomy, what are the different streams we
have access to. Then we discuss what can be their different roles in an improvising system
before presenting section 5.1.2 the types of low level information extraction we achieve
on these streams.

5.1.1 Inputs Anatomy

The scope of our research around music improvisation is not to use secondary or external
information as would be the usage of gestural capture of the musician’s movement or
the usage of specific modified instrument. We rather attach importance to the seamless
integration of the computer system to the usual setup of the musician(s). That means
that we want also to limit the intrusion of sensors or other accessories on the acoustic
instrument and prefer utilizing a conventional microphone which is nowadays very much
customary in concerts. This background choice does not however limit the number of audio
streams we can feed to the computer, especially in the case of collective improvisation.

5.1.1.1 Streams

A group of musicians improvising in a perfectly dark room could be a purely theoretical
acoustic analogy for our listening situation: each musician can refer to and interact
with the others only in the sound realm. In real situations we make use of two kinds of
input streams : we use mainly audio streams captured from acoustic instruments through
microphones of different types. In the computer domain, that means an analogical signal
usually converted to a flow of digital samples of 16 or 24 bits at a sampling rate of 44.1
kHz in an audio interface. When available we can also benefit from musicians playing on
digital instruments like keyboards and receive the MIDI output of their instruments as a
digital stream fed to the computer. These two kinds of input streams: Audio and MIDI
will also be the types of the output of our system.

MIDI Stream In the case of musician playing digital instruments which output a MIDI
stream, we can run a purely MIDI version of the system. Digital instruments like MIDI
keyboard output a clean and unambiguous digital signal what ever the practical conditions
of the playing are (in studio, on stage, solo or with a band. . . ). We will see in the next
chapter that in this case, the extraction of information is already done by nature of the
MIDI protocol. But the MIDI case will serve as an excellent enlightener for segmentation
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issues. Since the beginning of the OMax project, numerous prototypes and ideas have
been tested with this purely MIDI setup with Bernard Lubat1 who mostly plays keyboard
and synthesizers.

Audio Streams On the other hand, the audio capture of any instrument may vary
very much in quality depending on the microphone, the distance to the instrument, the
background, the acoustic of the room. . . The typical improvisation situation does not
allow the use of artificial conditions like sound-proofed rooms or isolation cabins to obtain
an optimal capture of the acoustic instrument. Worse, we intend to study and design a
computer system enabling to play also on stage which may be the worse acoustic situation
but a very likely one for a system oriented toward live improvisation. As explained the
brief description of our computer system in the previous part, we extract from the audio
stream, information on the musician’s playing and musical meaning of these. To do so,
we need a focused capture and to avoid getting the sound of other instrumentalists in
the same audio stream. Otherwise, we may extract inaccurate information. It typically
implies, whatever the acoustic instrument is, that a distant aerial capturing would get too
much sound from the background to be able to properly isolate the desired information.
Conversely, as we record the sound of the musician, not only to analyze it but also to
recombine several parts of it, very close capture may be of poor quality when replayed
through the speakers. We explored to main ways to deal with this problem:

• splitting the capturing of the acoustic instrument into two separated audio streams,
using two different microphones: in most cases a contact microphone will be a very
good device to get an extremely focused stream and its quality may be enough to
extract relevant information. We will use in this cases a second aerial and farther
microphone to record the sound stream that we will use for playback. This solution
is illustrated Figure 4b

• using a focused aerial microphone (hypercardioid for example) as a compromise and
put it close to the acoustic instrument. With this solution we have to accept the
irreducible background capturing and a lesser recording quality especially in low
frequencies but we the analysis results are still good and it is a much more adaptable
setup.

From these reflexion on input streams, we can sketch the simpler and most typical
situation for our improvisation system: a duet between a musician and a (supervised)
computer. This is the situation we have mainly tested along our research, in particular with
several saxophonists for testing sessions, demos, presentations and concerts (see chapter 11).
This setup is the easiest possible with our system — one microphone, a computer, an
audio interface and one or two speakers. Naturally we tried with various instruments:
clarinet, flute, voice, bassoon, percussions.

1famous French pianist (and drummist) especially fond of free improvisation with the system for several years
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Figure 4: Example of Different Streams Configurations for an Input

Hybrid Input Usually, audio and MIDI streams are used separately because they
correspond to different instruments. Either we can capture the sound of an acoustic
instrument or we get the MIDI flow of a digital one. One exception is however to mention:
we make often use of the PianoBar system developed 2003 by [Moog ] when we work
with the Piano. This device which can be put on the keyboard of any 88 keys acoustic
piano places an optical sensor over each key and detects its moving. It then converts the
information to a MIDI format. This way, it creates, as Yamaha MIDIPiano, an hybrid
instruments with the full sound possibilities and MIDI data output. In this situation we
get two synchronous audio and MIDI streams which both correspond to the same musical
discourse as illustrated Figure 4a.

5.1.1.2 Medium

As shown in the previous section about streams, two streams whether audio or MIDI can
correspond to the same instrument and captured in parallel. We then have handle them
together and the correlation of them may enrich the information that we can extract.
They do not constitute two separated musical inputs even though they may have different
natures in the case of hybrid inputs. To characterize what constitutes a musical input in
the system, we consider its medium i.e. the unique, incompressible material that we record,
independently from the analysis or extractions being made. In the case of the hybrid input
with the PianoBar device, the audio stream of the piano’s sound is recorded. This audio
recording will be our medium and the MIDI information from the PianoBar extension will
be considered as a description on this medium. A similar situation arises in the case of
two audio streams captured with two microphones, one is used as the medium ie for the
recording and the other will be exploited to extract musical information describing the
recording. Beyond a vocabulary distinction, it has a practical and important consequence:
the common and ground reference of an input, especially constituted with the conjunction
of several streams, is constituted by the unambiguous time stamping of the recording.

We can considerably broaden this vision of a musical input constituted by several
and distinct streams in the case of collective improvisation. When enabling our system
to listen at once to several musicians playing together we reache the sensitive question
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of what playing together means. When defining freely improvised music, [Blackwell 02]
states that it relies on:

1. a distinctive musical language for each improviser, and
2. an ability to couple this with the other contributions arising from the
ensemble.

We can see in this definition the duality between the individual musical discourses and
the correlation of those to shape the collective result. For our listening computer system,
we can reformulate this question into: if we want the system to listen to two musicians
playing together, do we consider them as two separated inputs or are they two stream
participating in one global musical discourse that we can consider as global input ? This
question emphasizes again the importance of the distinction between our inputs, streams
and mediums. While the streams correspond to actual flow of raw data arriving to the
computer, their correlation depends on wether they share a common medium or if they
correspond to two distinct inputs. We will relate in chapter 11 musical situations in
which this question has been a crucial concern to enable the machine to participate to the
collective improvisation and we will detail the practical solutions we adopted. Figure 5
summarizes our anatomy of an input up to here. One real and usual implementation of
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Figure 5: Diagram Summarizing the Anatomy of an Input

this anatomy has been already presented in Figure 4b. In this case, there are two streams
coming from an aerial and a contact microphones and the mapping of the streams is direct:
the aerial microphone’s stream is used for the recording while the contact microphone
stream is used for a pitch extraction for example. An even simpler implementation
is commonly achieved with only one microphone used both for the medium and the
descriptions.

5.1.1.3 Context

The question we reached in the last paragraph can also be expressed in terms of context.
What is the context of a particular musical discourse? Or in other words, what was going
on at the same time. In our anatomy of an input, we showed that correlated streams
may be considered together and share a common medium and time and concurrently will
be described and used as the material for a new computer generated discourse. There
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are however streams that will not serve as the material for a computer generation. It is
the case of the rhythmic section of a Jazz band for example. We do not need to extract
the same kind of information from these streams. Neither do we need to record their
whole sound. However, they give very useful information about the musical context of a
solo for example. The use of this kind of complementary information will be described in
chapter 6. Instead of recording in parallel all the instruments in a massively multitrack
input, we take on the hierarchy and roles of each stream and divide them into two kinds:
the main streams we described earlier, constituting inputs and which will provide the
main musical material to analyze and generate and additional streams which are not
mandatory but provide complementary information.

Additional streams are mainly secondary audio streams of various quality, specifically
adapted to extract definite information. They may or may not be present in the setup, their
absence will not stop OMax to function normally however, their presence will importantly
improve the aptness of the computer based improvisation to its context. And their
information may be fruitfully shared by several inputs. For example, contact microphones
on the cymbals of the drum kit will allow to gather information about the current pulse
(see subsection 5.1.2). Voicings and harmonizations done on the piano during a Jazz
chorus enable the same way to extract harmonic context of a chorus. Figure 6 completes
the previous anatomy of an input with this context considerations. In our nomenclature,
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Figure 6: Anatomy of an Input with Context Consideration

we do not consider these streams as part of any input, they may be fruitfully shared
by several inputs and the information extracted from them are used both to enrich the
knowledge built in inputs and the generation as we will explain in chapter 6 and 7.

5.1.2 Extraction

Once we have decided (see 5.1.1) what sound we listen to, we need to decided what aspect
of this sound we focus on. The human listening can be global and is certainly able to
switch very quickly from on aspect to another depending on several parameters that
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we cannot model. However, we can mimic that behavior by extracting several types of
information in parallel and relying on the power of the computer to examine all of these
angles alongside.

As we explained in section 4.2.3, because the output of our system is not temporally
correlated to the modeling part of our system, we have weaker constraints on the time
and latency than critical real time applications. Indeed, from the inputs, we extract
information to build units (section 5.2) then construct a knowledge model (chapter 6) that
we use to improvise in a parallel process. We can thus tolerate latency in the low level
extraction of information since we will have to wait, at least, for the end of the current high
level unit before being able to add it to our knowledge model. Extraction of information
from the additional streams is more critical because we use some of this information to
adapt our computer based generation to the current musical context (see chapter 7). If
we want the generation part of the system to be a reactive system, this adaptation has
to take place as fast as possible. In both cases we have nevertheless a causal constraint
that we cannot violate; we have to extract information along the playing of the acoustic
musician and do not have access to the future of the sound. Because a revision of the low
level information would also mean a revision of all the higher level analysis and modeling
build on top, we try to avoid multiple-pass techniques.

We present in this chapter four types of extraction for our system. The first two types,
Pitch and Spectra are base extractions fed to a higher level analysis (see section 5.2) while
the last, Pulse, is used as contextual information extracted from additional streams (see
section 5.1.1.3). The third type, Chromagrams serves as a low level extraction for both
higher level description and contextual information.

5.1.2.1 Pitch

The first type of low level extraction of our system is pitch analysis. We enable this
way our system to have a melodic listening. The polyphonic extraction of pitch in music
has been a very active field of research especially in the Music Information Retrieval
community [Bay 09]. However this community being oriented towards off-line analysis of
huge databases of songs and pieces, very few algorithms proposed in this field are causal
and implementable in real-time with low latency (medium latency would be enough in
our case, see the discussion section 4.2.3) and are versatile enough to work on any kind
of instrument without prior training. Although a few papers as [Dessein 10] suggests
efficient methods for both off-line and on-line polyphonic transcription, these methods
have not lead yet to the publication of an effective and ready-to-use real-time algorithm
which prevents us unfortunately to benefit from these research. On the other hand, several
techniques are long available for real-time (i.e. low latency) monophonic pitch estimation.
In the case of our system, we will firstly listen to musicians separately so can suppose our
input is mainly monophonic and work with these kind of algorithms. We make intensive
use of the Yin algorithm proposed in [De Cheveigné 02] which is very robust and have
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successfully been implemented and used in many applications. This implementation has
convenient features for our use. In particular, it outputs a quality factor which can be seen
as a confidence indicator we use (with a threshold) to indicate non-harmonic portions of
the material which are not relevant for the pitch description. A parameter of the algorithm
also enables to specify the minimal frequency (in Hz) acceptable for the detection, which
is a very practical way to quickly adapt to the instrument.

The third parameter of Yin’s implementation by Norbert Schnell is the output period
in millisecond. It means that we have control over the rate of the output of this low
level description. We typically choose to get a vector of three floating point values every
millisecond or every other millisecond, representing the estimated pitch (in Hz), the
signal amplitude (between 0. and 1.) and the quality factor of the estimation. We will
see section 5.2 how we handle this flow of raw pitches information.

5.1.2.2 Spectra

The second type of audio analysis in OMax uses spectral descriptors to focus the listening on
the timbre aspect of the sound. They allow the system to listen and play with wider types of
sound including noises, percussions or to discriminate several instrumental playing modes.
There have been several studies comparing different types of descriptors for various tasks
and in particular for instrument recognition as in [Eronen 01] or [Essid 04]. Numerous work
on speech recognition make also use of Mel Frequency Cepstral Coefficients [Zolnay 05]
and thanks to significant improvements and studies about their implementation [Feig 92,
Jensen 06], they have been proven (for example in [Brown 01]) to be easily computable,
very compact and reliable for recognition tasks both for speech and instruments. As our
main focus is not the feature extraction itself, we decided to use these relatively simple
but readily available MFCC descriptors. A first attempt of including these along with
linear predictive coding in OMax had been made in [Bloch 08] but the rather complicated
implementation used and moreover their very rough quantization made this attempt rather
inefficient to foster our knowledge model (explained section 6.2). Our main contribution
around spectral description is developed in section 5.2: Analysis and has been published
briefly in [? ].

MFCCs are vectors of floating-point, multi-scale coefficients describing the spectrum
— or timbre in musical terms — of small windows of the audio stream. For each vector,
the first of these coefficients is a relevant estimation of the overall energy of the slice of
audio and the successive coefficients give more details about the shape of its spectrum.
We use M. Malt and E. Jourdan’s implementation of MFCCs in the zsa.descriptors library
for Max/MSP [Malt 08, Jourdan ]. In this implementation, the size (in samples) of each
window is settable as well as the outputting rate of these. We typically choose a window
of 4096 sample and an overlap of 4 which means a vector every 1024 samples (our global
sampling frequency is classically 44100 samples per second). Converted into milliseconds,
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we get vectors calculated over windows around 93ms long every 23ms which is a much
slower rate than the pitch extraction.

The number of coefficients for each vector is the number of perceptive bands (mel
scale) dividing the spectrum. Speech applications typically use 20 to 30 bands to obtain a
very precise description of the spectral content. More bands, and thus more coefficients,
allows also to make sound synthesis from this description. We do not synthesize any sound
in our processing chain and favor a much lower number of coefficients — usually 10 — to
simplify the computational complexity of our next stage analysis (see section 5.2).

5.1.2.3 Chromagrams

We have recently added the extraction of chromagrams as one of the first stage extraction
of OMax. Chromagrams are useful to efficiently approximate a harmonic signature such
as in L. Bonnasse-Gahot work to obtain a versatile adaptation of the harmonic context
of a melodic event [unpublished]. In our case, instead of using chromagrams only as
annotation, we first looked at chromagrams the same way we treated MFCCs for spectra
description: as a low level description that may lead to a higher level model (chapter 6).

Chromagrams, also named Pitch Class Profiles [Fujishima 99] or Harmonic Pitch Class
Profiles [Gómez 04], depending of their implementation, have been extensively used to
automatically extract chords for labeling and classification — examples are found in
[Harte 05] or [Gómez 06] among several others, see [Papadopoulos 07] for a thorougher
study — or to extract other various tonal information as in [Peeters 06]. As MFCCs, it has
been implemented for real time extraction in a Max/MSP external of the ircam.descriptors
library, allowing us to use it very easily.

Our chromagrams extraction module outputs vectors of 12 coefficients taking floating
point values between 0. and 1. which represent the contribution of each semi-tone of the
tempered western occidental scale in the audio signal. They are voluntarily computed over
a rather large window — typically of 8384 samples, that is 190 milliseconds at 44100Hz —
compared to the spectral description, to avoid the (harmonically) undesirable effects of
transients and attacks. As MFCC vectors, Chromagram vectors are overlapping and
typically output every 46 milliseconds (every 2048 samples). More precise chromagram
vectors of 24 or 36 coefficients exist to consider quarter tones or finer tunings. But as
with MFCC vectors we prefer a smaller number of coefficients to reduce the complexity of
the next stage (Analysis).

5.1.2.4 Pulse

Pulse extraction is a whole field of research on its own, far beyond our scope, especially in
the context of improvised music which implies causality and real-time discovery. It has
been studied for years with various approach either directly from the audio signal [Goto 01]
of with MIDI-like events as in [Nouno 08]. Thanks to the work of E. W. Large [Large 95,
Large 94] and implementations of it, done by L. Bonnasse-Gahot [Bonnasse-Gahot 10]

45



and J. Chao [Chao 11], we favor an easy and straight forward approach to include pulse
in OMax.

In Large’s work, pulse is represented through an oscillator which is characterized by a
period — the tempo in musical terms expressed in time or in beat per minute (bpm) —
and a running phase — which correspond to the musical synchronization. We use a
simple attack detector [Puckette 98] and feed the onsets detected into the entertained
oscillator which is then able to adapt its period and phase. At the rate of its refreshing
— typically every 5 or 10 milliseconds — the pulse extraction module outputs its running
phase (periodic between 0. and 1.) and its current tempo.

Our setup for pulse extraction is not robust enough yet to handle correctly non-
percussive or very irregular audio streams. But we tested its usage in easy situations,
as a Jazz band for example, extracting pulse on the sole ride cymbal captured through
contact microphones. This way we could focus our research more on the usage of such
kind of additional information in the knowledge model and generation and did not try to
improve pulse extraction techniques for themselves. Pulse extraction is a typical case of
contextual information extracted from a additional stream and enriching the information
on an input (see section 5.1.1.3 for the formalization of these cases).

In this chapter we gave a definition of an input in OMax, attached to a medium and
timeline and we examine the different kinds of streams we can handle with the system
and which may be associated to form an input or be analyzed separately to from an
additional source of contextual information. Then we explained the four kinds of low level
information we extract from audio streams: notes, MFCCs, Chromagrams and Pulse. As
our first main task in OMax is to model the musical discourse of a musician, we need now
to assemble these low level informations to form meaningful units, that is the topic of the
next chapter.

5.2 Analysis

We have presented section 5.1 the different kind of low level information extraction we use
in our system. To complete these different listenings and model a musician’s improvisation,
we need to gather the micro-units coming from the different extractions and group them
to build consistent macro-units. Deeply tight with temporal succession, these macro-units
are contiguous chunks of information which raises meaning when correctly delimited. This
is the role of segmentation presented as the first part of this chapter (subsection 5.2.1).
We will see how we delimit such units depending on the type of stream and extraction.
Then we expose a few important timing considerations necessary in a real-time system
such as ours (subsection 5.2.2).
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5.2.1 Segmentation

Segmentation of audio signal, either on-line (i.e. with real-time causal algorithms) or
off-line is again a whole subject of research on its own and has several communities
attached to it depending on the main material (multimedia files or purely audio) and
the main goal which can be classification (of instruments or speaker) for example or
building of summaries of files. In particular, a rather large section of the MIR community
explores several level of segmentation based on various isolated or combined descriptions
of the sound as in [Lu 02] for example. Research as [Foote 00] or [Cont 11], mostly based
on change detection also developed methods to combine segmentation and classification
in one process. However, to our knowledge, none of these methods lead to a causal
implementation without training or prior internal model such as a priori templates of
the elements or a score in the case of written music which in our case of improvisation
would be irrelevant. Therefore, in our research we kept working on simpler formalism and
well-tried segmentation principles. We first segment and timestamp the information flow
before considering (in the next part) the symbolic labeling and modeling.

Depending on the type of stream and the type of low level extraction performed on
these stream, the segmentation stage is necessarily very different. It may consist of a slicing
(5.2.1.1) in the case of MIDI streams, which was already implemented for a long time
in OMax (and has been ported in our work) but also a more subtle statistical grouping
(5.2.1.2) in the case of a monophonic pitch extraction (see 5.1.2.1) which required a new
implementation or the setting up of a very new clustering (5.2.1.3) system for the case of
vector data as provided by the spectral and harmonic extractions (described 5.1.2.2 &
5.1.2.3).

5.2.1.1 MIDI Slicing

Segmenting monophonic non overlapping MIDI notes is obvious: each note is a unit already
described and properly delimited by the MIDI note-on and note-offs. But segmenting
Polyphonic MIDI stream requires more work. Indeed, even the very simple case of a
legato melody, where one note overlaps with the following, asks the question of where to
place the boundary to obtain consistent segments. Is the overlap an interesting segment
per se? Do we only consider the onsets as limits of segments and discard the legato?
These questions are much amplified in the case of a very polyphonic MIDI stream like the
output of a MIDI keyboard. In this case, numerous notes overlap to form the multiple
layers of the musical discourse and articulations like legato or grace notes may entangle
the musical texture.

In our research we tried to unify the monophonic and non overlapping MIDI case and
the polyphonic general MIDI case with one consistent vertical slicing. The question of
the legato is actually present in both cases and will be examined section 6.1.2.1. We kept
the original representation with slices roughly exposed in [Dubnov 03]. Each MIDI onset
is a point for vertical segmentation defining the beginning of a slice and the end of the
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previous one. To make this mechanism compatible with monophonic MIDI representation,
we have to add an exception for silences. Note-offs from the last note sounding have to
trigger the closing of the current slice ensuring that if the musician stops playing, his/her
last not does not hang in an unclosed slice. However, it is not sufficient to do so and
close every slice the moment the last note is released; that poses a problem in the case of
a musician playing staccato: by definition of staccato, each note will be followed by an
empty slice which has no rest meaning. In other words, the silence following a staccato
note does not have the same musical meaning as the (longer) silence following the end of
a phrase or of a piece. Therefore we need refinement again.
Thanks to a time threshold, we will only consider the case of a very long silence (usually
above 2.5 seconds), significative of the end of the musician’s playing. In this case only, the
slice is artificially closed. For all other cases, we will associate a possible rest following a
slice with this slice. This doing presents two advantages for our system: firstly, it allows us
to identify two musical patterns in our model even if the playing mode (legato/staccato)
is different (this will become clearer with section 6.1 and chapter 6 when we describe
our model). Secondly, as we will replay small pieces of our recorded input to create new
variations (chapter 7), we will also replay the silence following any musical element when
this was the case in the recording. It is a musically desirable behavior to enable the
computer based generation to respect the different playing modes and phrasing of the
original material. For example, reinjecting a staccato section when generating, will be
also rendered as a staccato passage. We also apply this functioning to the monophonic
MIDI and pitch extraction.

We need to take care of another “detail” when slicing specifically a polyphonic MIDI
stream: bad pianists and actually even good pianist never attack all the notes of a chord
at once precisely at the same instant. On the contrary, micro timing of attacks in the
keyboard technique is used by very good musicians to reveal or stress particular notes
in the chord for musical reasons. To be able to model the different musical elements
of the discourse later on, we do not want clusters of micro slices at the beginning of
every chord. Therefore, we need a tolerance parameter (in milliseconds) to consider all
the note-ons of a chord as one attack only (the first note attacked will then serve as
the precise opening time of the slice). We usually set this parameter to 50 milliseconds.
Figure 7 summarizes the different cases we described with an illustration using the classical
“MIDI roll” representation. Once delimited, these slices will constitute the longest and
unbreakable unit that we will consider in our knowledge model (chapter 6).

5.2.1.2 Pitch Grouping

The second type of extraction introduced in OMax in [Assayag 06b] and presented subsub-
section 5.1.2.1 it pitch extraction based on the low-level Yin algorithm [De Cheveigné 02].
It outputs a flow of triplets [pitch, amplitude, quality] usually at a rate of 500 or 1000 Hz.
We need to gather these rapidly changing numbers into contiguous overall stable section
that we will be able to call notes and later integrate to our high level model chapter 6.
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Figure 7: Slicing of Polyphonic MIDI Stream

Our system, based on the C optimization of a patch originally designed by G. Bloch
achieves this with two stages. The main idea of the first stage is to compute statistics of
incoming pitches over small overlapping time windows and have a minimal appearance
ratio (between 0. and 1.) as criterion for what we consider as a stable pitch as explained
in [Assayag 06b]. Along our work, we had to reprogram in a low level language (C) this
mechanism to make it more efficient and enable a handy integration in our modules.

In more details, this first stage works as follows: triplets [pitch, amplitude, quality]
are first selected depending on their quality. Below a certain quality threshold, the
pitch information is considered as inconsistent — musically, it denotes the lack of pitch
information in the stream or a transient or attack part — this characterization replaces
the pitch information by a 0. value to still be considered in the following statistics. Each
new pitch value arriving opens a small statistical window around 55ms long (adjustable
parameter) which will gather every following pitch and amplitude pairs. For every pair
gathered in this time window, if the pitch is the same as the one which opened the window,
it is added to the participation ratio of this pitch over the window and the amplitude is
summed to the other amplitudes. If the pitch is different, then the vector is just added to
the overall counter of pairs arrived during the window and its content is discarded. At the
end of the window, the ratio of pairs of pitch equal to the first one divided by the total
number of pairs arrived is output (between 0. and 1.) as a pitch probability if it is above a
confidence threshold, and the mean amplitude is also output, naturally. If the probability
is below the threshold, nothing is output. This mechanism has two major consequences:
firstly, as triplets with low quality values are replaced with pairs of pitch 0., even a
relatively small succession of low quality information will output a statistically meaningful
pair [0., irrelevant amplitude] and thus denote an off-set information — musically, either
the pitch is not stable enough to be considered as a note or we arrived at the end of the
previous note. Secondly, as every new pitch value opens a new statistical window, we have
parallel and concurrent windows gathering the same [pitch, amplitude] pairs but which
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participation to each window’s internal statistics is different. Musically, it means that
during the attack — the short period during which the note is not stable yet — we have
several hypothesis on which note will actually be played and whenever one of them is
starting to be statistically prominent, the system outputs it. The time reference for the
new note will be the beginning of the window which won the statistics. Figure 8 illustrate
this mechanism:

Quality 
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Statistical
Windows
Statistical
Windows
Statistical
Windows
Statistical
Windows

Pitch Amplitude Quality

Pitch Amplitude
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Stable
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Mean 
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Windows 
Length
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(a) Diagram of the Pitch Statistics System (b) Example of Output

Figure 8: First Stage of Pitch Grouping: Statistical Analysis

The second stage of pitch analysis is done simply by gathering all the successive
windows of the same stable pitch to form a consistent note. The first statistical window
output (thus meeting the probability threshold) triggers an onset of the corresponding
pitch and the first statistical window with a different pitch or the first offset occurred
triggers the offset of the this note. Naturally, consecutive offsets are discarded. As a
result, the output of this whole pitch analysis is a MIDI-like sequence of non-overlapping
onsets with pitches and amplitudes and offsets.

5.2.1.3 Vector Clustering

Vector describing timbral aspect of an audio stream have been tried in our system
since [Bloch 08]. At the time, attempts were made with MFCCs and LPC vectors.
However raw extraction outputs floating point value vectors from which we need to
assemble bigger and meaningful units. In [Bloch 08]’s work, it is achieved with very severe
quantification of the coefficients. This raises important problems for both kinds of vectors:
MFCCs are multiscale representation of spectra and inside one vector coefficients have
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neither the same variation range nor the same importance. Quantizing all them at once
(with the same quantization step) as it was done do not create a spectrally meaningful
classification. The quantization step is either adapted to the first coefficients (which have
a much larger variation range) and too big for the latter coefficients or too small to obtain
an efficient quantization of the first coefficient. On the other hand, even if LPC coefficients
are of similar importance and range inside one vector, their calculation rely on source/filter
model which is suitable for voice but may not be as accurate for instruments. More
importantly, LPC coefficients, without any other transformation, encode filter coefficients
which are very sensitive to variation. Any small modification of one of them may lead to a
very different or even unstable filter. Therefore we revised the entire spectral analysis and
based it on distance and incremental clustering. Chromagrams which were introduced
later along our work also outputs 12-dimensional vectors describing the harmonic content
as explained 5.1.2.3. We applied the same analysis principles to classify them.

Distances To aggregate descriptors, instead of quantifying their values, we decided
to consider them as real multidimensional vector representation of the timbre and use
distance measure between them and clustering algorithm to classify them. For MFCCs
vector, we use Euclidean distance while for chromagrams we preferred Cosine similarity.
As previously mentioned, MFCCs vectors are a multiscale representation in which the first
coefficients represent the overall shape of the spectrum and have a larger variation range
than the last coefficients which represent the tiniest details of the spectrum and have
much smaller range of variation. Euclidean distance can discriminate between spectra in
most cases thanks to this natural property.
However some instruments or some musician’s style sometimes require refined differen-
tiation than the one already imbedded in the MFCC algorithm. For example Michel
Doneda’s playing of the saxophone is almost exclusively based on breathing and con-
tinuous noise colored through the instrument. There are almost no articulated notes.
Therefore the overall spectral shape of his sound is roughly always the same, rich of all
frequencies and only subtle differences in narrow bands give his art to hear. We had thus
to enhance our distance with weights to discriminate pertinently among incoming vectors.
Multiplicative weighting are applied to the vectors before computing their euclidean
distance: if x = [x1, x2, · · · , xM

] and y = [y1, y2, · · · , yM ] are the vectors to compare and
w = [w1, w1, · · · , wM

] the weights, the weighted Euclidean distance is given by:
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Preset weighting profiles have been adjusted along our experience with several musi-
cians and instruments. We present a few examples Figure 9. Profile 9a is the de-
fault, flat profile which is equivalent to no weighting (w = [1, 1, · · · , 1]). Profile 9b
(w = [1, 2, 3, 2, 1, 1, 0.5, 0.33, 0.2]) has been design especially for Michel Doneda’s playing
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i.e. variations of noises and breath sound as mentioned earlier. It enhances the second,
third and fourth MFCC coefficients to discriminate among very large band spectra. We
also decreased the importance of the last coefficients to eliminate the influence of too tiny
fluctuations and thus concentrate our classification on the musical “color” of the large
band noise. Profile 9c has been adjusted for low register instruments as Double Bass, Bass

(a) Flat (no weighting) Profile (b) Michel Doneda’s Profile (c) Bass Instruments Profile

Figure 9: Examples of Euclidean Distance Weighting Profiles for MFCCs

Clarinet or Bassoon which have naturally very distinct spectra switch between playing
modes which let sound their low frequencies (normal bowing or blowing for example) and
other playing modes which emphasize the higher harmonic frequencies (sul ponticello for
the Double Bass for example). Therefore we can decrease the influence of the first coeffi-
cients which already have large variations and let the higher order coefficients discriminate
smaller differences in between close playing modes or timbres.

For chromagram vector, we use Cosine distance given by:
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Because of the denominator, Cosine distance includes normalization which is why we use
it for harmonic content: the same chord should be correctly identified whether played
forte or piano. Cosine distance also identifies better chords or clusters of notes than
Euclidean distance. Here is a example in which we simplify by considering only binary
coefficients: a note is either present (value = 1) or not (value 0): if we have the following
incoming vector [1 0 0 0 1 0 0 0 0 0 0 0] which can represent a major third up from C or a
C major chord without the fifth and we compare it to each of the vectors representing
isolated notes (ie [1 0 0 0 0 0 0 0 0 0 0 0], [0 1 0 0 0 0 0 0 0 0 0 0] etc) and to the C major chord
vector: [1 0 0 0 1 0 0 1 0 0 0 0]. Euclidean distance will declare our input vector equidistant
from C, E note and major C vectors (distance = 1.) while the cosine similarity will
measure it closer to the C major chord (distance = 1p

2
⇡ 0.707106 from C and E notes,

distance = 1p
2
p
3
⇡ 0.816496 form C major chord. Higher is closer). This latter result is a

better neighboring than the euclidean outcome, the interval being more prominent than
individual notes when dealing with harmonic content.

Clustering Once we have decided which distance we use with our descriptors, we have
to define how to build our clusters which will in term serve as classification of our spectra.
As reviewed in [Jain 99] or [Xu 05], there are many types of clustering with advantages
and weakness. In our system we have very strong constraints for the clustering:
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1. naturally, we do not know a priori what the musician will play.

2. we do not know (or fix a priori) the number of clusters. And a fortiori we do not
have any predefine dictionary of timbres.

3. we need an on-line classification to incrementally build our model i.e. we cannot
wait until all the vectors have arrived.

4. each vector has to be classified in one and only one cluster.

5. because of the sequential nature of our model we cannot modify the classification of
previous vectors. We can only add points to an existing cluster or add new clusters.
Otherwise, as we will see section 6.2, we need to rebuild the whole model.

Point 4. excludes hierarchical clustering as well as fuzzy clustering techniques and point
3. necessitate an incremental clustering. Point 1. and the improvisatory and ready-
to-use nature of our system does not allow the artificial neural network approach for
clustering (like self-organizing feature map or adaptive resonance theory) because of the
importance of their training phase. Finally, point 2. keeps us away from most k-means
clustering algorithms which require the a priori definition of k and point 5. forbids
existing adaptations of k-means with splitting or merging of clusters determining k along
the process. Rather than researching in the vast domain of clustering for a rare variation
of a complex technique which would suit our needs, we favored a much simpler and
older approach: nearest neighbor clustering which has been used successfully for many
applications as in [Fu 77] for example.
The nearest neighbor clustering algorithm is expressed in our case by the following
algorithm. Naming v
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Threshold T is a settable parameter which changes drastically the number, size and
consistency of our clusters. In our system, this parameter is left undefined until the
very last moments before starting the listening because it may depend on the style of
the musician playing or on several aspect of the setup as the background present while

2This initialization depends on the distance used. v0 = [0., 0., . . . , 0.] is the easiest and correct initialization
for Euclidean distance. For harmonic vectors and Cosine similarity, we initialize with 12 predefined clusters
corresponding to the 12 binary vectors [1 0 0 0 0 0 0 0 0 0 0 0], [0 1 0 0 0 0 0 0 0 0 0 0] etc. representing the 12 isolated
notes.
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capturing. It is also very much affected by the distance weights profiles presented Figure 9
for MFCCs. The proper value of T for a given situation is usually found empirically. An
interesting mechanism to set automatically such threshold in a similar system has been
developed in G. Surges & S. Dubnov’s PyOracle [Surges 13].

Finally, once the vectors are classified in clusters, we adopt the same second stage
grouping as for pitches (5.2.1.2): contiguous vectors classified in the same cluster are
accumulated to build a longer unit considered as one stable spectra or harmonic content.
Figure 10 summarize the processing of floating point vectors in our system. MFCCs
processing is presented Figure 10a. Chromgrams vectors processing presented Figure 10b
differs by the lack of weighting and the use of Cosine similarity instead of Euclidean
distance. This last differences also inverts the comparison with the threshold T as
proximity is maximal when Cosine similarity is higher (closer to 1.).

MFCCs 
vectors

Euclidian 
Distance Clusters

Treshold
Weights

Accumulation

(a) MFCCs Processing

Chroma-
grams

Cosine 
Measure Clusters

Treshold

Accumulation

(b) Chromagrams Processing

Figure 10: Clustering Process for Vector Descriptors

For each type of stream and extraction, we described our method to build consistent,
stable macro-units that we will be able to feed to our system. Before doing so we have to
consider the link of these units with time.

Mutations Another behavior of the mechanism for on-the-fly clustering and labeling of
vector description is the possibility of of mutations according to the past of the learning.
Depending on the musical material already encountered and known to the system — which
means in our processes, depending on the clusters and labels already defined — the same
(or close) vectors can be identified differently. An example of such a mutation is given
Figure 11 in 2D with the Euclidean distance representation. Vectors framed in red,
although very close, are recognize differently depending on the moment they appear. The
vector appearing in Figure 11a (circled in red) is associated with the “blue” cluster �1

because it’s center v1 is the closest and their distance is under the threshold T . The second
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Figure 11: Example of Mutation in Vector Clustering

vector, appearing later on Figure 11b (circled in red) is closer to the centre v5 of a more
recently defined “yellow” cluster �5. The appearance of the “yellow” cluster �5 did not
change the class (label) of any of the previously encountered vectors (as specified as one of
our very strong constraint on the clustering presented 5.2.1.3) but it modifies the labeling
of forthcoming material. This mutation mechanism is possible because the measures
(Euclidean distance and Cosine similarity) and subsequent clusters and labels we use do
not define a univocal partition of the vector space along the time (this space usually has
10 dimensions for spectral/MFCCs and 12 dimensions for harmony/Chromagram). The
combination of a maximal size for each cluster defined by the threshold T and the nearest
neighbor computation allows the “volume” of existing clusters to be reduced (without
unlabeling previous elements) by the apparition of new ones bordering them. As the
number of vectors extracted for the audio and considered in the system grows, so does the
number of clusters and their associated center/label.The overall partitioning of the space
thus changes over time with the filling of empty regions or interstices. In other words,
because the theoretical clusters defined by the “radius” T may overlap, the increasing
number of neighboring clusters refines the definition of each of them. This effect has a
musical meaning: a specific playing mode can be considered as an accident and identified
as an already heard mode (cluster) if encountered only once along the learning. But
the same playing mode, if developed more thoroughly by the musician may be rightfully
creating one or more new cluster(s) — and letter(s) in our vector alphabet — to describe
(and classify) the finer musical differences.

5.2.2 Timing Considerations

In this section, we gather two main considerations which are very different in cause but
concern both time handling. The first one, Time Stamping is inherent to the nature
of music which is very tight with time implying that we date our macro-units. The

55



second remark comes from implementation considerations and finds its cause in computer
scheduling and memory usage.

5.2.2.1 Time Stamping

The macro-unit we built from subsection 5.1.2 and subsection 5.2.1 are linked with a
timed medium (see subsubsection 5.1.1.2), most of the time an on-going audio recording.
Therefore they encode dated elements along the timeline of medium and we have to include
this time reference into the information describing these units. This time stamping or time
tagging will also serve, as previously explained, as a common absolute reference. Some of
the process described to form the units can be considered as instantaneous as the vector
clustering for example while others do necessitate time as the low level extraction or the
statistical pitch analysis. The former can be ignored when considering the time-stamping
but the latter have to be included in the computation of time references. The date we want
to imbed in our macro-units is always the date of the beginning of this unit. Consequently,
to compute the proper date, we have to include the different latencies induced by the
time-consuming steps. Low level extraction always induce irreducible latency. Pitch,
MFCCs and Chromagram extractions are all based on time-frequencies representation
processing which requires an observation window, often expressed in samples. The bigger
the window is, the more precise the information will be but the more latency we get.
To set the pitch extraction window, the lower pitch we need to extract will be the main
criterion. For MFCCs extraction, we will favor smaller Fourier Transform (FFT) windows
to have faster information. For Chromagrams extraction, we will choose much longer
windows to avoid the interference of transients and attacks as explained 5.1.2.

In the case of the pitch processing, the statistical analysis described 5.2.1.2 gathers
information over small time windows, which adds also the windows duration latency to the
initial extraction latency. And for all the different extractions, we always group successive
micro-units at the end of the processing chain when their content description is stable
to get the longest possible macro-units. This grouping has to be also considered in the
computation of the beginning date of each unit. All these delays add up to an inherent
overall late from the real-time medium unwinding.

5.2.2.2 Recording Management

For obvious memory reason, we do not want to record silence parts i.e. long periods during
which the musician we are listening to is not playing. We have therefore a very straight
forward silence detector: whenever no data from any of the extraction’s processing arrives
during a long enough time — typically around 3 or more seconds — we consider that the
musician stropped playing and it worth stopping the recording and the learning. We save
this way memory and CPU consumption.

However, starting the recording with the output of the analysis raises a major problem:
because the processing implies latency — as would any processing chain do — triggering
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the real-time recording with the output of the analysis will start the recording after the
arrival of the first event detected and the recorded medium will be missing the audio of the
very beginning of the musician’s playing. To avoid this problem and make the detection of
activity arrive early enough to trigger the recording without any loss, we artificially delay
all incoming audio streams on the recording chain — but not on the analysis chain — so
that even with the overall latency, the first element analyzed comes out of the processing
at least 100ms before it arrives to the late recording. The delayed timeline serves as the
common absolute reference of the input. Consequently, when computing the date of a
unit for time-stamping we have to subtract the latency of the analysis chain from the
artificial delay of the recording, the result being an overall advance on the timeline of the
artificially late medium. This computation is illustrated Figure 12.
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Artificially Late Medium Time

Macro-Units Time

Micro-Units Time
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Latency

Medium Real-Time

Artificial Medium Latency

Late Detection
From Real-Time
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Real-time
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Detected
Event
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Figure 12: Illustration of the Timing Considerations and Date Computation
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For each type of stream and extraction we have presented our process to build consistent
macro-units describing the content of the input. Monophonic MIDI stream is constituted
of a sequence of self described MIDI notes while the slicing of MIDI stream outputs
vertical segment containing multiple MIDI pitches. Pitch extraction is analyzed to form
a monophonic MIDI-like sequence of notes and MFCCs and Chromagrams vectors are
gathered into coherent multidimensional clusters through a simple on-line closest neighbor
algorithm based on Euclidean or Cosine proximity. All of these units arrive properly
delimited and dated with reference to the input’s artificially delayed timeline. This overall
and fixed delay is no obstacle to our “real-time” objective as the sound output of our
system is not directly connected to this learning thread as explained in chapter 4.
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Chapter 6

Knowledge

In the brief cognitive considerations of section 4.3, we considered a processing and decision
making entity named f in [Blackwell 12]’s anatomy of Live Algorithms. In our system,
this entity is mainly constituted of the graph we use to model music sequences. We present
this model in section 6.2 of this chapter. However, this graph, coming from text analysis,
requires a strict and unambiguous classification of the elements to model named alphabet.
We have thus to build this alphabet before building the model. We explain this process in
the first section of this chapter (section 6.1). Finally, in the last section of this chapter
(section 6.3) we propose new ways to enrich the information contained in the sole graph
and thus enhance the whole knowledge of our system.

6.1 Alphabets

Our knowledge model, presented in the next section (6.2) has been invented in the
text community and requires an alphabet, usually noted ⌃, over which the sequence of
symbols is taken. That implies a univocal classification and labeling of our units before
learning them in this model. Considering our units, extracted from audio content and
even clustered on-the-fly in the case of vector data, this labeling is not trivial and has
important consequences on the pertinence and usability of our knowledge model which
recognizes repeated patterns of symbols.

Nevertheless our knowledge model do not require defining a priori all our symbols, so
we could use and test along our work two very different types of alphabets: predefined
and evolutive alphabets. Predefined alphabets are a kind of labeling in which we can list
all the possible symbols before getting any incoming unit. On the other hand, evolutive
alphabets are built incrementally along the apparition of segmented units coming from
the analysis chain described in the previous chapter. In this case, we discover the labels
on-the-fly as well and constitute our alphabet along the learning.
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6.1.1 Predefined Alphabet

Two main descriptions let us use predefined alphabets: monophonic MIDI stream and
pitch extraction from monophonic audio stream. In both case, even though we do not
know which symbol will indeed appear in the sequence, the “ letters ” (symbols) of the
alphabet are univocally defined beforehand. However, as we will see, this does not mean
that there is only one possible alphabet. On the contrary several predefined alphabets are
possible to label these two kinds of units.

6.1.1.1 MIDI Pitch

In the case of a monophonic MIDI stream, high level units are directly described by their
pitch and velocity, as specified by the MIDI protocol. Therefore, in this particular case,
we use the pitch information as pre-defined symbols, close to the classical music score
notation. The MIDI note number (encoded through integers) will be our main alphabet.
The relation with the frequency (f) of the note is given in the MIDI standard by

d = 69 + 12 log2(
f

440

)

and goes theoretically from 0 to 127 . However, it is possible to fold this multiple octave
alphabet onto one octave only in this case, we have only 12 pitch classes in our alphabet.
We will discuss in subsubsection 6.1.2.3 how the size of the alphabet influences our model.

6.1.1.2 Notes

The case of monophonic pitch extraction give us more opportunity to refine and use
different labeling. The first and natural alphabet we used is the same as the monophonic
MIDI alphabet: semi-tones encoded for example by the same integers (note number) as
in the MIDI standard. We will see in the last part (Performance) that the usage of this
alphabet in the case of monophonic pitch extraction adds the possibility of generating
a MIDI output even when our input was an audio stream. As with monophonic MIDI,
we can also fold this MIDI note number alphabet on one octave and obtain a 12 pitches
classification.

More interestingly, as developed thanks to Steve Lehman, saxophonist from the
contemporary New-York Jazz scene who came to work with us during the summer 2011,
we can refine our audio notes alphabet by dividing it into quarter-tones which are very
much used in contemporary music composition and improvisation. This multiplies our
number of pitch classes by two and allows very precisely tuned patterns appreciated by
several musicians. Again, this alphabet can be folded onto one octave and reduced to 24
pitch classes. Steve Lehman, along our collaboration, even refined this alphabet to fit
very accurately his saxophone fingerings which do not actually allow exact quarter-tones.

We defined this way four different labeling for pitch extraction on monophonic audio
stream: semi-tones, semi-tones on one octave, quarter-tones, quarter-tones on one octave.
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6.1.1.3 Silences

As explained in 5.2.1.1 about the slicing of polyphonic MIDI streams, we do not want to
consider very short silences as autonomous macro-units because they may be part of the
instrument’s playing mode and may avoid symbolic patterns to be properly recognized.
However, longer silences which can correspond to the end of a musical phrase may be
considered as notable musical elements that should be learnt in the sequence model. To
do so, we need to define at least one silence symbol which will encode each resting period
long enough to be considered as a musical entity but short enough not to trigger the
stoping mechanism described 5.2.2. This way we can add one symbol to our predefined
alphabets and enable the recognition of phrase endings and beginnings.

However using only one common silence symbol may cause false or unwanted iden-
tifications of patterns. For example — using the anglo-saxon alphabetical notation of
pitches and adding an ‘S’ letter for silences — sequences like A-B-C-S-A which denotes
a phrase ending by A-B-C, then the beginning of a new phrase by A, will be identified
with sequences like C-S-A-B-C denoting a phrase finishing by C and the starting a new
phrase by A-B-C. This identification is musically arguable because the end a phrase is a
strong musical element which disconnects two parts of the musical discourse. The duration
of the silence is not taken into account and the phrase beginning A-B-C of the second
sequence may have almost nothing in common with the beginning of the phrase in the
first sequence (we only know it starts with an A). Therefore, following a reflexion with
L. Bonnasse-Gahot, we implemented a second refined representation of silences: to be
able to consider the strong caesura role of rests in our model which is strongly related to
succession, we encode each silence with a unique symbol. Thus sequences like B-C-S-A-B
and B-C-S’-A-B are not represented identically (S 6= S

0) and we preserve the separation
role of silences in the sequence model.

The unforeseeable number of silences, each represented with a unique symbol leads us
towards our second type of alphabet: evolutive alphabets in which the labels are defined
along the segmentation of macro-units.

6.1.2 Evolutive Labelling

As our knowledge model does not need the a priori definition of the equivalence classes,
instead of predetermining them, we can label our units along their discovery in the audio.
The first example of such evolutive alphabet is given by the polyphonic MIDI slices
labeling. Then we use extensively this on-line labeling for the vector clusters.

6.1.2.1 Virtual Fundamental

As previously explained 5.2.1.1, the segmentation of polyphonic MIDI stream outputs
vertical slices as macro-units which contains a collection of MIDI pitches. To classify
(strictly) these slices, we need to reduce these collections of pitches to a single label.
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Several chord classifications are in use in different domains: classical harmony treaty
with tonal functions, Jazz chords classifications with additional bass note, mathematical
music analysis with full unambiguous classification. They are often incompatible with
one another and sometimes ambiguous. But more importantly they suppose the a priori
knowledge of rules and information about the context (main tonality, tonal role of the
chord etc.). As we discussed in the Introduction, we do not want such an a priori in our
system because we assume nothing about the musician’s style. Therefore we oriented our
research towards purely content-based algorithms to classify the MIDI polyphonic slices.
We first ported a recursive algorithm from OpenMusic [OpenMusic ] which computes
the approximate greatest common divisor of all the present frequencies of the slice. We
assumes this frequency is the bass note or fundamental of the chord — possibly missing
in the chord — and we use this frequency value (rounded to the nearest multiple of an
adjustable step parameter) as ad-hoc symbol for our alphabet.

Later on, thanks to G. Bloch’s inspiration on MIDI slices description [unpublished], we
adopted a more refined 3-steps algorithm. Coming from a classical background, G. Bloch
postulates the following: if there is a fifth interval in a chord, then the fundamental
note of the chord is most certainly the lower note of the fifth, conversely, if there is a
fourth interval in the chord, then it probably correspond to an upside down fifth, and
the fundamental note of the chord is supposed to be the higher note of the fourth. We
implemented in our system his mechanism to find fifth, then fourth interval (if no fifth is
found) and default to the virtual fundamental algorithm previously describe if there are
no fifth or fourth.

In this second variation, we reduce polyphonic MIDI slices either to one of the note
supposed to be prominent in the chord or to a virtual note which may not be present in
the chord but is related to all other notes of the chords thanks to the greatest common
divisor algorithm. As the notes of the chord are already encoded through MIDI pitches
(see 6.1.1.1), we also round the output of our virtual fundamental algorithm to the
nearest MIDI pitch. Thus instead of having a real evolutive alphabet, we fall back on
the predefined MIDI notes alphabet to encode the description of each slice. And we also
have the same possibility to reduce our alphabet to one octave and get a 12 semi-tones
alphabet.

6.1.2.2 Cluster Centers

As presented 5.2.1.3 the two vector descriptions — spectral description with MFCCs
and harmonic description with Chromagrams — are aggregated with a nearest neighbor
clustering algorithm to form macro-units. While doing this incremental clustering, new
clusters �

l

are always associated to the first vector v

l

which distance to all the other
clusters is above (or below, depending on the type of distance used) the threshold T .
As our clustering algorithm does not use mobile centers opposite to k-means algorithms
for example (by definition of k-means), this first vector v

l

will always remain the center
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of the cluster �

l

. Therefore we can use the index l as abstract symbol for our labeling.
Each forthcoming vector classified in the cluster �

l

will be labeled by l in the alphabet.
As a consequence and for very practical reasons, what we actually store and grow as
symbolic alphabet of vector is a dictionary of all the coordinates of the centers v

l

associated
with their index l (for easy retrieval). This center’s dictionary is also used for distance
computation and we output at once, the distance to the nearest neighbor and the label
(index l) of the corresponding cluster. Figure 13 illustrates in two dimensions the vector
clustering and labeling, with centers and classified vectors for both Euclidean distance,
best represented with discs in the plan (13a) and Cosine similarity best visualized with
circular sectors (13b).
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Figure 13: Representation of Clusters in 2 Dimension with their Center and Label

NB.: for Cosine similarity, the “center” of the cluster is the central axis of the circular
sector (in 2D or cone in 3D).

6.1.2.3 Alphabet Size

We have just exposed several ways to label our macro units and get a sequence of symbols
or “ letters ” to feed to the knowledge model. For each type of streams and descriptions, we
show that there are several possible labeling, either predefined or incrementally discovered.
When choosing what labeling we are about to use and the parameters of this labeling
(possibly related to the parameters of the clustering as well), like the octave folding or the
threshold T for example, we directly or indirectly but strongly influence the number of
symbols in the alphabet used in the model. The knowledge model we use (Factor Oracle)
is based on repeated pattern recognition in a sequence of symbols. Therefore, there is a
very important trade-off between the number of symbols in the alphabet and the number
and length of identical patterns potentially appearing in the sequence and recognized by
the model. Indeed, the more “ letters ” we have in the alphabet, the more precise the
symbolic description is, but the less likely patterns are to appear more than one time
identically in the whole sequence. The extreme situation in this direction is an overly
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large alphabet in which each symbol describes very precisely and uniquely each musical
element appearing this way only once in the whole musical material. In this case, no
pattern is ever repeated — each pattern appear only once — and our memory model is
useless. Conversely, if our labeling do not discriminate musical elements enough — that
is, if very different musical elements are labeled with the same symbol — we will get very
recurrent patterns recognized in our model which actually correspond to very distinct
musical content and our model will be too general to enable smooth and sensible musical
variations.

This balance between the size of the alphabet and the richness and pertinence of the
patterns recognized in the knowledge model is our main empirical criterion to adjust the
spectral profiles and the threshold T of the vector clustering presented 5.2.1.3. Along
our numerous musical experiences with the system (see chapter 11), we determined that
keeping the size of the vector description’s alphabet between 300 and 600 “ letters ” is a
good compromise to get both fine description and musically meaningful repetitions of
patterns in the model.

6.1.3 Summary

Before describing in more detail our knowledge model, let’s summarize the whole chain
from the input stream to the sequence of labels. Figure 14 recapitulates for each type of
streams and each step the different characteristics and parameters.
The listening part of our system described 5.1 includes the framing and extraction of
micro-units which is relevant only in the case of audio stream. On the streams, we have
three types of extraction: pitch extraction, spectral description and harmonic content
characterization. These three types of listening start with a Fast Fourier Transform (FFT)
defining the smallest observable element. Then known algorithms are applied: Yin for pitch
extraction [De Cheveigné 02], Mel-Frequency Cepstrum Coefficients for timbre descrip-
tion [Fang 01] and Chromagrams for harmonic content characterization [Fujishima 99].
The micro-units containing these descriptions are aggregated into bigger segments consid-
ered as stable thanks to statistical analysis processing: straightforward statistics for pitch
information, nearest neighbor clustering for vector (spectral and harmonic) descriptions.
For MIDI streams which are event based, note-ons and note-offs events serve as boundaries
to delimit the stable segments. Then symbols are computed to label the content of the
macro-units. MIDI note numbers are primarily used to label monophonic MIDI and pitch
extraction. It can be refined by using a quarter-tone scale in the case of note extraction
but also reduced to one octave only to decrease the number of “ letters ” in the symbolic
alphabet. The consideration of the most harmonically prominent note in polyphonic MIDI
slices is complemented, if needed, by a recursive greatest common divisor algorithm to
reduce each polyphonic MIDI slice to its virtual fundamental. The centre of each vector
cluster is used as label in the case of vector (spectral and harmonic) descriptions. Finally,
considering the different latency of each step of the chain (in particular, statistical window
and frame sizes), macro-units are time stamped to unambiguously link them to a musical
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Figure 14: Description Chains up to the Labeling per Streams and Descriptions

element of the input. The sequence of those symbolic elements, linked with their musical
content and description is ready to be learnt in our knowledge model.

6.1.3.1 External Analysis

In addition to the five types of description included in our system that we presented
in the previous sections and summarized Figure 14, we can also make use of external
analysis processing provided that this processing segments and labels univocally a MIDI
or an audio stream. In particular, thanks to the work of N. Obin [Obin 11] we used non
real-time prosody analysis made on speech recordings. N. Obin’s process to analyze speech
material is done in two steps close to the extraction and analysis elements of our system.
First, a segmentation is achieved to obtain proper syllables boundaries [Obin 13b], then
a modeling of the syllables prosodic contour is done to classify them [Obin 13a]. This
process outputs a text file containing, in a tabular form, the beginning and ending date
of syllables and encodes with very condensed and univocal labels the prosodic contour
of each syllables. It also includes silence labeling. Thus we can use this information

65



describing precisely speech material exactly as one of the description included in our
system and previously described. We substitute this result of the prosodic analysis to
the online analysis chain of our system and feed offline to the memory model with the
syllables contours as labels. Our system is then capable of generating a new speech stream
with respect to the prosodic characteristics of the original material.

6.2 Memory Model

As briefly introduced in section 4.1 and thoroughly explained in [Assayag 04], G. Assayag
and S. Dubnov founded their research around knowledge models for music on statistical
modeling [Conklin 03] and tried several kinds of models from classical Markov Chains to
Variable Markov Chains implemented in the form of Incremental Parsing (IP, derived from
[Ziv 78]) and Probabilistic Suffix Tree (PST, suggested in [Ron 96]). They eventually
began to show the optimality and efficiency of a formal model called Factor Oracle
[Allauzen 99a] for sequence modeling in music. Extensively using this structure in our
work as well as new formal developments added to Factor Oracle afterwards, we present
in details this model in this Section.

6.2.1 Factor Oracle

Factor Oracle has been invented 1999 by C. Allauzen, M. Crochemore and M. Raffinot as
a pattern matching structure competing with suffix trees , Directed Acyclic Word Graph
(DAWGs), factor automata and other known structure [Allauzen 99a, Allauzen 99b]. They
provided from the first article a very efficient incremental algorithm to build this graph
and carefully demonstrated its correctness and usage for string matching (with what they
called Backward Oracle Matching or BOM). Naturally, this structure has been used in
the text community for example in [Kato 03] and algorithms based on Factor Oracle have
been improved and extended over the years (in [Cleophas 03] or [Faro 08] for example). In
particular, a very recent and music oriented extension of Factor Oracle has been proposed
in [Maniatakos 12]. Interestingly, the algorithm has been used very efficiently also in
the genetic community, especially for DNA sequencing and finding specific meaningful
subsequences in proteins or other sequences. An example of such use named FORRepeats
can be found in [Lefebvre 03].

Thorough explanations of the building algorithms and explicit examples of Factor Oracle
construction can be found in several articles starting with [Allauzen 99a, Allauzen 99b]
but also in [Assayag 04], [Assayag 07], [Dubnov 07]. . . so we will not recall these here.
We will rather detail the structure and properties of the Factor Oracle graph itself (once
built) along the following sections with specific focuses on properties that are important
for our use in a music improvisation system. We will illustrate these properties on the
classical letters sequence : abaabacba.
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6.2.2 Linear Skeleton

The first two instructions of the main function presented in the incremental algorithm
of [Allauzen 99a] to add a letter � to the Oracle of p = (p1p2 . . . pm) to get the Oracle of
(p�) are the following:

1. Create a new state m+1

2. Create a new transition from m to m+ 1 labeled by �

This construction means two important properties:

1. for a word (or input sequence) p of total lenght m, there are m + 1 states in the
graph

2. the skeleton of the graph is made by m transitions from state i� 1 to i (i 2 J1,mK)
labeled by the actual letters of the sequence

In other words, the skeleton of the graph (states and basic transitions) exactly represents
the original input sequence. The illustration of this skeleton is given Figure 15 for the
letters sequence abaabacba. This is an important property when modeling musical

� �� �� �� �� �� 	� 
� �� �

Figure 15: Skeleton of the Factor Oracle Graph of the Sequence abaabacba

improvisation sequences and learning the style from them because we do not destroy the
time development of the musical material learnt opposite to several model like Markov
Chains for example which does not enable to (re)generate surely the original sequence once
the model is built. Our knowledge model includes as foundation the original discourse
and we can choose to reproduce it literally if needed. This remark is also pertinent in
regards with our principles (exposed section 4.2) in which we assume that the musical
input is our ground truth, i.e. the choices of the musicians and his or her discourse is
supposed to be always right so that the system has to learn from it and to analyze the
implicit rules justifying it.

6.2.3 Suffix Links

In their article [Allauzen 99a] defining Factor Oracle, the authors define repet
p

(i) as the
longest suffix of pref

p

(i) that appear twice in pref
p

(i). pref
p

(i) is defined earlier in the
article as the prefix of length i of p for 0  i  |p|. Then along the on-line construction
algorithm of Factor Oracle, they make use of a supply function [S

p

(i)], that maps each
state i > 0 of Oracle(p) to state j in which the reading of repet

p

(i) ends. They note about
this function that:
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S

p

(i) is well defined for every state i of Oracle(p).
For any state i of Oracle(p), i > S

p

(i).

After that, Lemma 7 of the article states the following property:

Lemma 7 Let k > 0 be a state of Oracle(p) such that s = S

p

(k) is strictly
positive. We denote w

k

= repet

p

(k) and w

s

= repet

p

(s). Then w

s

is a suffix of
w

k

.

In a more natural language, this construction and properties means the following: each
state i of Factor Oracle of the word p has a backward link S

p

(i) starting from state i and
pointing to the first occurrence of the longest repeated suffix present at state i. This
link is named suffix link and connects this way every pattern (sub-sequence) of the input
sequence to the first occurrence of the longest suffix of this pattern previously encountered
in the sequence.

In a second article by A. Lefebvre and T. Lecroq published a year later [Lefebvre 00]
a novel information is studied and added to the Factor Oracle algorithm. With a smart
backtracking of suffix paths (successions of suffix links), the authors show how to find
with Factor Oracle the lowest common suffix “ ancestor ” of two arbitrary patterns (sub-
sequences) of the initial word p and define the length of repeated suffix abbreviated in lrs.
This new elements gives explicitly for each suffix link the length of the common suffix
between i and S

p

(i) with two simple and incremental functions added to the original
construction algorithm. It means that for each pattern of the original sequence, Factor
Oracle graph with lrs improvement, gives both the places and the length of the first
occurrence of the longest suffix of this pattern already encountered in the past of the
sequence.

Two years later, A. Lefebvre and T. Lecroq with J. Alexandre improved their heuristic
to compute the lrs and published the new algorithms in [Lefebvre 02]. We took care in
our work to add this improvement to the version of the algorithms that we extensively use
to build Factor Oracle on music data. On Figure 16 we added these suffix links labeled
with their lrs to the skeleton of the same letter sequence as before: abaabacba.
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Figure 16: Suffix Links of the Factor Oracle Graph of the Sequence abaabacba
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Even though there were thought at first as construction links, on the musical level
(as well as in genetics as applied in [Lefebvre 00] and [Lefebvre 02]), the suffix links are
very informative. Indeed they connect two repeated chunks of the material and the lrs
gives the maximal length of the repeated portion. The ensemble of all the suffix links
constitute thus an extended map of every repeated pattern in the musical discourse and
allows us to model the succession and use of new or already heard material and let us
study the way these patterns are connected one to another.

6.2.4 Forward Links

As a properly defined automaton (in which all the states are terminal), Factor Oracle
of word p = p1p2 . . . pm on top of its skeleton and suffix links also consists of forward
transitions labeled by letters of the original word. These transitions allows to generate
all the factors of the input word p (patterns or sub-sequences of word, see [Allauzen 99a]
for a rigorous definition). For our use, we differentiate the forward transitions from the
skeleton with the fact that they do not connect two consecutive states. However it is to
be noted (as done in [Allauzen 99a]) that every transition arriving to a state i, including
the one from the skeleton is labeled by p

i

i.e. the letter of the original word. Illustration
of these forward links (added to the other links of the graph) is given Figure 17 for the
same letter sequence as before: abaabacba.
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Figure 17: Complete Factor Oracle Graph of the Sequence abaabacba

As an automaton — thus characterized by the language it recognizes —, Factor Oracle
is known to recognize at least all the factors of the input word. But it recognizes more
patterns than only the factors existing in the input word. Examples are given in all the
articles which explain its construction. Attempts have been made to analyze the language
Factor Oracle recognizes as in [Mancheron 04] but no simple characterization has yet
emerged.
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Even though it could be used for music generation on the symbolic level, forward
transitions (excluding the skeleton), on the contrary to suffix links which ensure a common
pattern, do not embed any actual realization of patterns of the input sequence. In other
words, navigating the Factor Oracle with usage of forward transitions allows to generate
symbolic factors of the original sequence (and more) but do not correspond to actual
chainings of the musical material learnt. They permit to find efficiently certain patterns
though as originally and extensively developed in [Allauzen 99a]. Because our concern
is the realization of smooth and pertinent variations on the musical level thanks to the
underlying Factor Oracle model, we do not use forward transitions in our system. This has
been however discussed in other musical contexts as in [Cont 07], [Dubnov 07], [Cont 08],
[Assayag 09] and [Assayag 10] for example.

6.3 Enriching Memory

6.3.1 Annotations

The goal of our knowledge model is to provide consistent and smooth variations possibilities
on a learnt material. The Factor Oracle graph provides a powerful structure for such
variations, however the choice of the musically pertinent variations at a given time in the
improvisation can not solely rely on the graph properties. Indeed once we have gathered a
collection of acceptable variations with equivalent smoothness — thanks to the suffix links
of the graph and their lrs (see 6.2.1) —, we still have to pick one of these connections to
effectively play. For that we need additional information complementing the data already
included in the Factor Oracle graph. These annotations can be extracted from the input
stream(s) or from additional streams as explained 5.1.1.1. Instead of trying to extract
more or different information from these stream — which would automatically increase
the CPU consumption and the amount of information to handle and store, we can use the
primary extractions we already described in Section 5.1.2 i.e. pitch, spectra, chromagrams
or pulse. However to efficiently enrich the information about the possible variations, we
need either to cross information types, that is to use as annotation an extraction type
which has not been used to built the Factor Oracle on which we are currently improvising.
This is explain in the next section, 6.3.1.1. Or we can derived from the same primary
extraction, additional descriptors which did not serve in the analysis process leading to
the Factor Oracle building. This mechanism is described section 6.3.1.2.

6.3.1.1 Information Crossing

Considering the information we already extract from the incoming streams, we have
real-time descriptions of the melodic, timbral, harmonic and rhythmic aspects of the
musical content. On each of these descriptions (except for pulse information) we can
assemble raw information into macro-units labeled with a symbolic alphabet to build the
knowledge model that allows us to make variations. This has already been describe in
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the previous chapters. However, because of alphabet size considerations (see 6.1.2.3) and
important segmentation issues, we do not want to combine these descriptions into one
multiple viewpoint model (such as in [Conklin 01] for example). The alphabet of such
a multiple viewpoint system — for example achieved with the cartesian product of the
alphabet of the primary descriptions — would be too large to allow recurrent patterns to
emerge in the graph structure depriving us from variation possibilities. The segmentation
issues are discussed at the end of this section.

However, we can still use the raw information of these four types of descriptions
complementary one to another. The principle is the following: the knowledge model is
built from the symbols provided by one of the descriptions, concurrently the extraction for
the other description are also computed and raw data from these — that is data before the
segmentation — are recorded alongside the main description as automatic annotations.
The main description gives the segmentation, analysis, labeling and modeling of the stream
and the annotations complement the information for each unit of this sequence. The
knowledge model being based on suffixes (see subsection 6.2.1), we use for the annotations,
raw descriptors value at the end of each macro-units of the main description. These
annotations are fruitfully used when generating variations as we will see with more details
chapter 7. The pulse description which does not lead to the building of a knowledge model
is used indiscriminately to annotate the data from the other descriptions. Finally for the
three audio extractions, we obtain three possible representation of our input:

• A melody oriented representation using a knowledge model of notes. For each note,
the harmonic context is given by the current chromagrams, the timbral context by
the current MFCCs vector and the phase and tempo information is included as
rhythmic information.

• A timbre oriented representation using a knowledge model built on MFCCs clusters.
For each element of the sequence, considered as spectrally stable, a pitch information
is added and an harmonic context is given by the chromagrams analysis. Phase and
tempo values informs about the rhythmic context.

• An harmonic oriented representation which knowledge model is built on a sequence of
stable chromagrams. The pitch information is added to inform about the prominent
note in the harmony and the timbral aspects are given by the current MFCC analysis.
The phase and tempo values from the pulse extraction allow rhythmic considerations.

It is important to note that these three representations are not equivalent to a unique
multiple descriptors representation because of the segmentation. For each of these
representations, the segmentation, ie the size of each element in the sequence is given by
the main description — except for the pulse extraction which is considered as continuous.
For example, melodic representation manipulates longer elements (notes) than harmonic
representation which macro-units durations are between 50 and 250 milliseconds. The
complementary information added to the main description follows the segmentation of
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the main description. That is, for example in the melody oriented representation, one
note will have one fixed information of its harmonic context. We illustrate this remark in
Figure 18 with timbre description as main description (macro-units denoted with tbr#).
Figure 18a presents all the possible main descriptions with their respective segmentation.
Figure 18b shows what happens if we applied, for example, the timbral segmentation to all
the other descriptions. Because our knowledge model is based on suffixes (see section 6.2),
we take the values for the pitch and chromagrams descriptions at the end of each timbral
element. Finally Figure 18c illustrates what we do in our system: for each unit of the
timbral description we take the current value of the other description’s raw extraction.

note1 note2 note3
tbr1 tbr2 tbr3 tbr4 tbr5 tbr6 tbr7 tbr8 tbr9 tbr10
chr1 chr2 chr3 chr4 chr5 chr6 chr7

pulse

(a) The Four Descriptions with Respective Segmentation

tbr1 tbr2 tbr3 tbr4 tbr5 tbr6 tbr7 tbr8 tbr9 tbr10

pulse

note1 note1 note2 note2 note3 note3 note3 note3 note3 note3

chr1 chr2 chr3 chr3 chr4 chr5 chr5 chr6 chr6 chr7

(b) One Segmentation for All the Descriptions

pulse

tbr1 tbr2 tbr3 tbr4 tbr5 tbr6 tbr7 tbr8 tbr9 tbr10
raw chromagrams

raw pitches

(c) Segmentation of the Main Description with Raw Annotations

Figure 18: Crossing Primary Extractions Information to Enrich Memory

This way, we take advantage of all the data extracted from the input stream(s) in all the
representations whether leading to the building of knowledge model or to complement, in
form of annotations another instance of the model.

6.3.1.2 Information Deriving

A second way to take advantage of already implemented processes, is to use partial data
coming from the extractions that have not been used to form the macro-units as annotation.
For example as described 5.1.2.1, the pitch algorithm also extracts a mean amplitude
information corresponding roughly to the MIDI velocity i.e. to the musical dynamic of
the note. This information is not used to aggregate units or produce labels. However it is
a very important musical information thus considering it helps smoother variations and
enables to adapt our generation to the present context (as we will see in chapter 7). In the
case of the timbral description with MFCCs vectors, the first coefficient is systematically
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dropped before the clustering because it corresponds to the overall energy of the slice
which is not relevant to classify playing modes. We use this first coefficient as annotation
as well, informing also on the musical dynamic of the slice.

Another and more subtle example of annotation have been imagined in the case of pitch
description with a 12 semi-tones labeling (see 6.1.1.2). In this case the octave information
is not used in the labeling since all the pitches are reduced to a one-octave classification.
Considering the octave information as annotation indeed adds musical information in the
generation process and allows to drastically avoid octave jumps when chaining patterns.

6.3.2 Virtual Pasts

A very strong research direction we have not thoroughly undertaken in this work is the
possibility to apply the same processes (extraction, analysis, labeling, modeling, generating)
to fixed recorded audio or MIDI material. Our choice on this research direction follows our
strong orientation towards the study of an improvisation system with real-time learning
capabilities. However, we still investigated the use of external musical material in the
very specific case where this material would be complemented with real-time analysis of
improvisations.

As our knowledge model is strongly sequential and incremental, it essentially depends
on the order of the symbols of the sequence. Thus, complementing an already learnt
material with a real-time improvisation fundamentally means prolonging the sequence
built on the recorded material by adding symbols extracted from the real-time input
at the (right) end of the model. That is, for music material, adding elements after the
previously analyzed material. In other words, the pre-analyzed musical material is loaded
into the model exactly as if it were a virtual past of the improvised sequence. And the
improvised complement is added as a musical following of the recored material. Naturally,
this mechanism can be used to utilize material from rehearsal sessions for example.

But more interestingly, we used this technique to create for example hybrid improvisa-
tions between great recorded solos of the Jazz heritage and live improvisation. Our typical
example has been, along these years, the use of a coda from I want to talk about you by
John Coltrane (saxophone) complemented with an always renewed live improvisation of
the saxophonist of the Nine Spirit Company, Raphaël Imbert, on the same theme. To do
so, we analyzed the coda by John Coltrane with the exact same process as if it were a live
audio stream and save both the audio, the analysis results and the knowledge model in
computer files (respectively in aiff, json and dot file formats). The complementing of
pitch is straight forward as the alphabet is fixed and thus the same for Coltrane’s coda
and Imbert’s playing. However, for vector description, due to very different qualities of
recording caused by the disparate date, conditions and technical equipment used, the
MFCCs vector for example gave at first almost non-overlapping and separate clusters.
This resulted in the knowledge model in almost unconnected portions of the graph with
no, or very few, possibilities of hybridizations. Then we started to block the definition
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of new clusters in the process of labeling (see 5.2.1.3) to force the live improvisation to
be analyzed with the existing symbols defined on Coltrane’s coda. This method gave so
much successful results that Raphaël Imbert integrated since this new “ piece ” around I
want to talk about you in almost every concert he gave with our system.

6.3.3 Higher Structure Clustering

The Factor Oracle graph used as our knowledge model and described Section 6.2.1 is a
powerful graph structure. However, because of its linear structure, it lacks direct access
to hierarchical information, notably about the overall structure of the sequence which is a
very important musical information. This problem of high level structure with usage of the
Factor Oracle graph has been address with interesting results in [Schankler 11]. However,
Schankler et al. have a global approach which includes the role of the computer-based
improvisation in their study. On the other hand we are looking for higher level structure
primarily in the input of our system without considering the role of the computer. Thanks
to the visual observation of the Factor Oracle graph (see section 8.2) we noticed that
Factor Oracle contains nevertheless some consistent high level information through the
repartition of links along the sequence and especially the accumulation of suffix links
in certain portions of the graph. From this observation we searched for an extraction
algorithm. The extraction of such information can be summarized as a problem of graph
partitioning or clustering. However one of the main interest of Factor Oracle is its
incremental construction. Therefore we wanted to keep this advantage even for higher
level information matter. This excludes usual clustering methods using similarity matrices,
eigenvalues or expectation-maximization algorithms as those presented in [Azran 06] for
example.

In the Factor Oracle construction algorithm we can observe a very strong reinforcement
mechanism since links with high lrs (long patterns) can appear long after the first
occurrence of the pattern and make connected portions of the graph emerge at once. An
extraction algorithm needs to take advantage of this mechanism. Furthermore another
very notable observation is the difference between “ small ” or local links i.e. links pointing
to recently appeared patterns and wide or global links which represent the replaying of
material presented long before. Both types of links, if they appear numerously permits to
define consistent portions of the graph that we can call regions.

We proposed an algorithm (fully given section A.3) based on a weighting system which
allows a reinforcement mechanism and gives, thanks to a threshold, the boundaries of
consistent regions. It uses a list of weights (integers) associated with every state (and
initialized to 0). It is linear in time and space. Three control parameters are required:

• a minimal context length, minCtxt: suffix links with a lrs above this threshold are
to be considered (usually around 6).

• a value (named local) to decide the local/global character of a link. This value is
a criterion on the span of the link (number of graph state between both ends). It
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is expressed as a multiplicative coefficient on the lrs and is superior to 1 (a value
inferior to 1 would declare as local only a pattern overlapped with its own repetition,
that is an exact loop. Usual values are from 2 to 15).

• a weight w to define a zone of “ influence ” of a link. This value is also a multiplicative
coefficient applied on lrs and superior to 1 since the whole pattern must be included
in the influence zone (usually between 1.5 and 2).

The output of the incremental clustering algorithm we propose (illustrated Figure 19)
gives consistent portions of the graph based on the span and density of links in the graph.
Their boundaries are given by contiguous states with a weight superior or equal to 1.
However, to keep only strongly consistent regions we use a threshold (W

min

). Changing
the local parameters changes mainly the number of regions. With high values of local
a rough clustering is done and we find the main large sections of the sequence. Lower
values of the local parameter reveals a refined analysis with smaller and more numerous
portions.

Considering the nature of a suffix link — a connection between identical patterns —,
it is rather easy to add to our algorithm an identification mechanism for the portions
delimited in the graph and thus be able to link a portion with another when they have the
same musical content i.e. common patterns. Nevertheless, some situation are, even on a
musicology point of view, difficult to determine. For instance, if we consider a piece with
a first theme A and later on a second theme B at first clearly separated from A. In the
development of the piece, A and B may be chained one to the other with a subtle musical
overlap as we can find in many pieces. How can we define in these conditions a precise
border between the second occurrence of A and the second occurrence of B ? Even though
we are able to identify A and B both times, we can not draw a precise border between
theme in the development section and two different musicology analysis will probably
place it differently. Our identification mechanism encounter the same kind of problems.
To decide nevertheless and simplify the algorithm we chose to take as reference the more
prominent theme, that is the portion in the graph which has the highest weight in the
algorithm.

This identification mechanism associating portions similar in content, allows to obtain
a new definition of region. A region does not need to be contiguous and can gather several
parts spread along the sequence. With this system the clustering goes beyond the time
proximity and local consistency to recognize even fragmented regions. We can use the
musically meaningful analysis given by the output of this clustering algorithm (both the
boundaries and the identification of musical content) and add some hierarchical and form
information to our knowledge model. An example of this clustering algorithm is given
Figure 19. The different fragmented regions appear as colored rectangles above the Factor
Oracle representation. Colors are given by the identification mechanism described in the
previous paragraph. Thus all the rectangles of the same color represent one fragmented
region.
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Figure 19: An Example of Higher Level Clustering
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Chapter 7

Performance

In the P Q f cognitive architecture of [Blackwell 12]’s Live Algorithms, the Q entity
corresponds to the Performing part of the system. This part benefit from the listening
and the modeling to generate a new musical discourse. We present in the chapter the
part of our system corresponding to this effectuation. The knowledge model described in
chapter 6 enable us to generate new paths in the memory to propose variations on the
original material learnt. The principle to build such paths is describe in the first section
of this chapter (section 7.1). Then, from these potential paths, we generate one or several
musical output that we need to conduct — automatically or manually — to make a proper
musical realization. We present the means we invented in our work for this conducting in
the second section (7.2) of this chapter.

7.1 Production

In the previous chapters, we described how, from the listening of a musician’s playing, we
build and enrich a knowledge model destined to analyze mainly the pattern repetitions
in various aspects of the musical discourse. From this model we generate new variations
mimicking the style of the material learnt i.e. style reinjections. We will see in the first
section 7.1.1 of this chapter how our core principle for generation is tightly linked with the
structure of our knowledge model and how we exploit this structure presented section 6.2.1
to generate new variations from the original material. Then we will present how we
render an actual musical discourse to participate in the musical interaction (section 7.1.2).
Doing so, we will finally present two features of this rendering, namely time-stretching
and transposition and explain how these features need to be coupled with the generation
mechanism.

7.1.1 Generation Principles

To generate new musical discourse thanks to our knowledge model, Factor Oracle, we rely
on the alternation between two behaviors: continuity i.e. forward reading of portions of the
model detailed Section 7.1.1.1 and jumps in the graph as will be explained Section 7.1.1.2.
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These jumps rupture the continuity and chain patterns which were not consecutive in the
original material and thus bring novelty. These behavior correspond to the combination
of the principles (explained chapter 4) of style reinjection which relies on the reuse of
learnt material to generate new discourse and statistical modeling which works mainly on
probability drawing to generate symbolic progression as with Markov Chains for example.
We name improvisation logic this fragmented walking of the graph of our knowledge model

7.1.1.1 Continuity

Thanks to the linear skeleton of Factor Oracle, the first and easiest principle to start
generating new sequences from the musical material learnt in the system is the forward
reading of portions of the original material. To do so, we navigate through consecutive
state of the graph generating factors (sub-sequences) of the original sequence. They are
incontrovertible patterns respecting the style of the original sequence but naturally call
for another mechanism to add novelty.

Though, even this simple mechanism raises practical problems because of the very
different types of symbols on which we can build our knowledge model (see section 6.1). The
musical temporality underlying the different types of symbols questions the management
of the size of the linear portions of the skeleton to read. Indeed, notes being (in average)
much longer musical elements than MFCCs or Chromagrams, recalling the same number
of successive states in the graph indiscriminately for all the symbolic descriptions will
create very different durations when rendered in sound realm (see 7.1.2). Keeping the link
with the symbolic description and expressing the duration of these contiguous portions of
the model in number of consecutive states has been a temporary solution. Depending on
the description we had then a much higher continuity parameter for spectral description
(typical value of 30 states, corresponding to 30 consecutive MFCC slices) than for notes
(typical value of 7 consecutive states/notes). But as we did for inputs and streams (see 5.1),
we came back to the time anchorage of music when trying to unify our approach into a
global system functioning indistinctly on several descriptions.

The continuity parameter, that is, the average size of the portions of the original
material left unchanged when generating has acted from the very first versions of the system
as a variation ratio. The shorter these portions are, the more the system uses the jumping
mechanism which is the mechanism adding novelty to the generated discourse (see 7.1.1.2)
and the more the computer based generation is moved away, modified, recombined,
compared to the original material. This parameter, expressed in later prototypes of the
system directly in time (seconds or milliseconds), remains one of the main parameters left
to the supervisor of the system to musically shape the musical result of the system. It
can go from a few dozens of milliseconds to several seconds. The longer the consecutive
portions are, the more the system will sound like a simple echo or delay machine. The
shorter the portions are, the more the system will seem to dismantle the structure of the
original material.
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7.1.1.2 Jump Trees

The second and most important mechanism which enables the system to add novelty
in the generation is what we call jumps. As we have seen in the presentation of our
knowledge model (section 6.2), the Factor Oracle graph includes suffix links which connect
repeated patterns of the original sequence. We illustrate this map on an abstract example
Figure 20. The structure implicitly built by the collection of all these suffix links (when
discarding the rest of the graph) is a tree connecting all the patterns from any length and
presenting them (when traveling along the height of the tree) with respect to their longest
common suffix. In other words, all the patterns of the sequence are connected in this tree
thanks to their last symbols. Patterns with a long suffix in common are placed closely
towards the leaves of the tree.

Figure 20: Map of Patterns Constituted by the Suffix Links of an Abstract Sequence

Naturally, taking the whole tree i.e. all the patterns implies that, at least at the root
of the tree, patterns may have nothing in common (lrs = 0, see 6.2.3). But pruning this
tree depending on the lrs which labels the edges of the tree i.e. the number of symbols in
common between the ending of two different patterns, with a threshold named minCtxt,
creates a forest of disconnected trees in which all the patterns have a common suffix of
length minCtxt at least. In context model environments for generation such as Factor
Oracle, this common suffix is also named common context which has not to be confused
with the musical context that we mentioned earlier in this thesis. Figure 21 illustrates
this forest of trees built from the abstract sequence presented in Figure 20.

These trees of suffix links named Suffix Links Trees or SLT gives us the possibilities
for new musical chaining of patterns. If, instead of continuing the sequential reading of a
specific pattern, we examine the tree containing this pattern; once pruned, we are sure
that all the pattern present in the tree have a common suffix of length minCtxt with the
pattern we have just finished reading, that is, they all finish by the same succession of
minCtxt symbols. If now we jump in the original sequence from were we arrived with
the consecutive reading, following any path in the tree, we arrive in a new position in the
sequence which finishes by the exact same linear succession (skeleton of Factor Oracle) of
minCtxt symbols that the one we have already read and we can continue by reading the
next symbol (along the skeleton) at the destination of the jump. Doing so, we chained a
pattern of the original sequence (the origin of the jump) with a new continuation (the
next symbol of the skeleton at the destination of the jump) thanks to a path in the tree.
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Figure 21: Trees of Patterns Constituted by the Suffix Links of an Abstract Sequence

This mechanism has been firstly implemented in [Poirson 02] with consideration of
forward transitions (see 6.2.4) — links that we do not use anymore in our system —
and the method of alternation between continuity and jump has be presented from a
probabilistic point of view in [Assayag 04]. However, as noted in this last article, there
are no available probability model of Factor Oracle graph. This mechanism can thus not
be implemented effectively as a probabilistic drawing such as those used with Markov
Chain. This point has been a serious problem when trying to parametrize statistically
this alternation but it has been a very successful asset when examining the coherence of
the generated discourse on the musical level because of the musical strength of continuity.
This generation principles and the reasons for not using forward transitions are thoroughly
explained in [Assayag 07] —in this article, forward transitions are named factor links
and the jump mechanism is accurately named context-switching. This last article also
illustrates and formalizes thoroughly the use of suffix trees and present the practical
method (relying on what they call reverse suffix links) to compute them efficiently. Except
the programing environment and language, our implementation of this search for solutions
in the trees barely differs from the one described in [Assayag 07]. The gathering, selection
and use of the rhythmic coefficient though have been importantly revised and generalized
as we will present in section 7.2 and in the third part of this thesis.

7.1.2 Rendering

Once we have generated new symbolic path in the model built on the original material, we
need to come back to the sound realm and effectively render this variation. The rendering
of new variations in our system relies on the principle of concatenative synthesis that is
the chaining of fragments of music material — the duration of these fragement must be
longer than 20-30ms to be considered as separated elements and are usually between 50ms
and 1 to 3 seconds. In the case of an audio medium (see 5.1.1.2), the use of unchanged
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portions of the original sequence in the model enables our system to playback directly
chunks of the audio recored from the input. In the case of purely MIDI input, our system
naturally outputs one (or several) MIDI stream(s) which realization on the sound level has
to be done by an external synthesizer. The rendering entity is called player in our general
anatomy of the system. The recombination of unaltered pieces of the original material
creates at the same time a very close proximity of the computer base generation to the
learnt material and a definite capacity of engendering musical proposals and novelty.

7.1.2.1 Output

Wether MIDI or audio, the output of the system is constituted of small portions of the
original material concatenated one to another to form a continuous musical discourse. As
we have previously seen (7.1.1), our knowledge model and the usage of it ensure that the
beginning and ending of the portions of material we recombine have the same content (at
least for a few symbols) so they can smoothly be chained one to the other.

When dealing with audio streams, a simple crossfade (typically during 30ms) is then
sufficient to concatenate the two pieces together and most of the time the editing point is
really inaudible without any specific adjusting. In the case of recombinations of MIDI
pieces, the editing is more complicated especially in the case of polyphonic MIDI. Indeed
because of the reduction of the MIDI slices to unique symbols, two slices different in content
may be labeled by the same symbol and considered as “ equivalent ” in our model. In this
case, when editing the MIDI stream to concatenate such slices (and their continuations)
and because we concatenate MIDI (i.e. symbolic) information, we have to take care of
existing and continued or disappearing notes. The tiny details of this process are non
trivial and a list of all possible cases had to be considered to render properly a polyphonic
MIDI stream.

7.1.2.2 Features

Very early in its design, our system benefited from the research around analysis and
processing on-going at IRCAM which lead to efficient tools for accurate and good quality
transposition and time-stretching [Bogaards 04]. These tools have been integrated in our
working environment and even though it could appear as a simple feature or effect on our
improvisation system, their integration can not be done afterwards as would be any audio
effect added to the system. We will see why and how we have to link these two feature to
the generation mechanism of our system.

Time-Stretching Time-stretching consists essentially in our case of the slowing down
or speeding up of the improvisation output of the system. In the case of audio streams,
we rely for this task on superVP, a powerful phase vocoder capable of on-line analysis
and re-synthesis of sound. This sound analysis and re-synthesis of the musical output is
done downstream from the generation processes already described but the speed of the
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discourse output by the system naturally conditions the speed of its upstream generation.
Indeed, if the the system has to output an audio stream twice as fast as the original
material, the generation algorithms (navigation in the knowledge) has to take place twice
as fast as well to feed editing point information on time. On the contrary, if the audio
speed is slowed down, then we do not need to generate the informations of unchanged
portions and jumps (see 7.1.1) as urgently. Because of this speed synchronization, the
time-stretching has to be linked to the generation algorithm, or at least, the generation
algorithm needs the speed information to send the correct information in time. We will
see in the second part of this thesis the possible architecture for such a coupling.

We could argue that the generation of musical phrases could be done out of time ie a
priori then sent to be rendered. And this has been the case in a number of prototypes
of the systems but the will of being more reactive to the environment of the generation
necessitate to adopt an on-line architecture for the generation as we will thoroughly
develop in the third part of this thesis.

Transposition SuperVP enables good quality transposition up (or down) to one octave
or more. In the case of constant audio transposition, this process can be done totally
downstream from the generation and without any consequence on the generation mech-
anism. However, when using the knowledge model built on the note extraction of the
input, we can add smarter transposition “ effects ” with the usage of this knowledge. For
example, we can do compositional transpositions as symmetry around a central note or
pedal (constant) note. In this case, the knowledge contained in our pitch model informs
the transposition system to get a adequate result. This has been implemented thanks to
the work of G. Bloch.

7.2 Conducting

We explained in the first chapter of this part, section 4.2, OMax Principles that our
system is meant to be at least guided by a human operator that we name supervisor.
This commitment does not exclude composition (or other) situations where the supervisor
may be replaced by computer scripts or other automatic artefacts executing actions or
decisions on the system. In both case, we need high level controls over the system to
musically conduct or drive the system.

7.2.1 Voices

At first, the system was developed as monophonic, that is, capable of generating only
one improvisation at a time. Actually, in [Assayag 06b] the possibility to replay planned
MIDI sequences has been included to obtain a emulation of multiple generations. But it
is appealing when working on computer systems with several listening possibilities to also
reflect this multiplicity in the generative part of the system and multiply the voices to
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propose polyphony. In our case, several multiplications are possible on several levels and
the examination of those raises important questions and has strong consequences on the
architecture of the system as we will develop in the third part of this thesis.

7.2.1.1 “ Clones ”

One possibility to give polyphonic capacity to our system is to multiply the number of
instances of the algorithm navigating in the knowledge model to generate new discourses
(7.1.1). Doing so, and if this algorithm is purely deterministic as it has been presented
and was initially the case, we create several agents capable of jumping and recombining
the original material but which would actually generate the same improvisation as soon as
they start from the same initial position in the original material. This does not add real
polyphony as it just generates delayed version of the same improvisation. Therefore we
introduced in the jumping mechanism a random pick of the actual jump among the best
solutions. This pick ensures that two generations on the same knowledge model i.e. paths
in the same graph will diverge at some point and produce two different musical discourses.
This way, we enable a polyphony of “ clones ” by replicating the generation and rendering
part of the systems and we generate new variations from the same knowledge model.

7.2.1.2 Descriptions

But as described in section 5.1 several types of information and thus several symbolic
models can be built on one input. These parallel models gives us different variation
possibilities and we can benefit from these different analysis. Several scenarios can be
imagined from one “ clone ” capable of using several descriptions at once or successively
to several “ clones ” each one exploiting one of the descriptions. This latter scenario was
the first scenario initially implemented in our system because, mainly, of the coherence
it brings to the musical discourse. Indeed, the strong symbolic model justifies by itself
the coherence of the recombinations: paths generated on the model built on notes will
be intrinsically consistent melodic variations on the original material — thanks to the
suffix properties explained 6.2.3. We explain an architecture of our system to apply this
principle in section 9.2.

However, the usage of several descriptions to supply the variations of one “ clone ” only
has been a recurring musical request. Two typical and musical situations have been mainly
requiring this possibility. In group improvisations and especially in free improvisations,
the coherence of the musical superposition of each individual discourses can be achieve
on several level. For example, one of the musician can develop its melodic line while two
other are realizing a textural background. Each musician is freely deciding and switching
his role and more specifically the aspect of the overall content he or she is focusing on.
A computer based “ clone ”, when taking part in such situation would greatly benefit
from the same possibility that is, being able to exploit one or the other description when
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needed and furthermore switch from one description to the other without any rupture in
its musical discourse.

A second situation imagined and discussed with Steve Coleman (saxophone) when he
had the occasion of testing the system is the concurrent usage of all the descriptions for
one “ clone ”. As we were trying to get a unity in the practical usage of all the descriptions,
the idea emerged that the decision to use one or the other description for one “ clone ”
could forge its musical characteristics. Exactly as some musicians are improvising with
very strong melodic systems — which is mainly the case of Steve Coleman — while
some others are using more the textural aspects of the sound, the system could have
musical personalities defined, for example by a ratios of melodic, spectral, harmonic
recombinations. This means that one “ clone ” ie one generated discourse has to be
generated concurrently by several instances of the knowledge model. This mechanism
has again, strong architecture implications. We present an architecture capable of such
behavior in chapter 10 of this thesis.

7.2.2 Content Shaping

The navigation and use of the whole model built (on the fly) on a particular input may
produce sometimes too surprising or inadequate musical discourse especially when the
input material is very heterogeneous or when the external context is more constrained than
in free improvisation. Therefore, in addition to choosing the type of variations through
the choice of the description underlying the knowledge model as explained in the previous
section, we need mechanisms to control more finely the content recombined through
the generation algorithm. For that we imagined two means: we can easily restrain the
navigation to definite regions of the knowledge model, corresponding to certain sections of
the learnt material which may exhibit desirable properties. We can also use the annotations
we have presented Section 6.3.1 to favor patterns which exhibit searched properties.

7.2.2.1 Regions

Constraining the navigation in a definite and contiguous section of the knowledge model
to control the content of the generation have been introduced very early in the system.
[Durand 03] already used a function which enables to specify boundaries (in percentage)
on the model to define where to start the generation. Along our work, we developed and
augmented the usage of this kind of regions. At first, we only implemented two regions and
enable the manual usage of those. Then, we actually notice that the smooth alternation
between two different but linked regions — linked for example in musical content which
will be revealed in the graph by strong links between both regions — produces a very
musical discourse combining two ideas in a consistent way. Thus we included a mechanism
to allow the navigation in several regions at once and/or an automatic alternation between
regions. As we still use the suffix links of the model to jump from one region to the other
we always ensure the smooth transition from one to the other region.
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We presented in section 6.3.3 our work on the automatic clustering of the information
contained in the knowledge model. The output of this work enable to recognize fragmented
portions of the model which are consistent in content. Thanks to this work, we can
generalize even more the notion of regions and use these identified fragmented sections of
the model resulting from the analysis of the links to the control the content of generation
done by the system. Constraining the navigation to these split regions enable to control
even more finely the content recombined in the computer based generation with, for
example, the usage of one specific thematic element which may appear several times
along the material learnt and thus being well recognized by the automatic clustering.
The resulting computer generated variation will exhibit and reinterpret recognizably this
thematic element and benefit from all the expositions and references to this element in
the original material.

7.2.2.2 Usage of Annotations

Our knowledge model ensures the smooth concatenation of portions of the original material
for all the descriptions we use. However, as presented in section 6.3.1 we can extract more
information than needed to build the model. These extra information can be used to
musically drive the content of the computer based generation, on top of the navigation in
the model. When examining and picking jumps as explained 7.1.1.2, we can benefit from
additional criteria to favor the playback of certain patterns depending of their musical
properties as the dynamic for example (which is not taken into account in the Factor Oracle
graph). The importance of these additional information can be either set automatically
(with scripts or depending on the context i.e. the current analysis of the input) or set by
the supervisor to bend the musical discourse generated by the computer towards arbitrary
musical directions. For example, putting forward the usage dynamic/energy information
in the generation process enables the supervisor to control the dynamic of the computer’s
discourse and play a forte variation — not with a simple volume amplification on the
output of the computer, but directly by using forte parts of the material learnt.

The pulse extraction (see 5.1.2.4) which is both continuous and periodic can be
integrated systematically in the process of jump selection when the external musical
context is relevant, that is, naturally in pulse contexts. In this case thanks to a difference
in phase with a acceptation threshold and a time-stretching if required, the jumps — found
in the knowledge model by the same process as explained earlier — can be selected on
their pulse characteristic to preserve the original pulse of the material or to adapt to the
current pulse context. Doing so we respect in the generation process characteristics of
the original material which are not modeled in the graph. This opens up a very powerful
enhancement in our system: the ground principle of our model rely on the recurrence of
patterns on the melodic, timbral or harmonic aspect of the music. This does not assume
any regular structure in the musical discourse and does not constrain our system to specific
style. But not being able to follow such pulse or harmonic structure de facto exclude
our system from improvisations contexts which may refer briefly or permanently to these
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structures. Using the pulse extraction as an external and complementary information let
us choose depending on the situation and along the playing with the system if a regular
pulsation is indeed an important aspect of the current improvisation that we need to
respect or not. In other words, not basing the knowledge of our system on the assumption
of a pulsed musical content and adding this constraint afterwards enhances drastically the
versatility of the system.

This mechanism developed for the pulse annotation is the first step towards an
automatic adaptation to the context. We plan to extend this mechanism to the harmonic
annotations and context. Dynamic or energy annotations can already be used the same way
i.e. for a systematical following of the current musical context. However, any systematic
behavior of the system on the musical leading of the improvisation may shadow its novelty
capacities by this repetitiousness and is likely to bore the musician(s). Therefore we decide
to leave the usage of the none periodic annotations to the will of the supervisor or to any
compositional scenario.
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Part III

Software Architecture
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Software Environment

The early prototypes of the OMax improvisation software have been based on a illustrative
separation of the real-time processing and the higher level modeling across two environment:
Max/MSP [Cycling74 ] and OpenMusic [OpenMusic ]. Both are visual programming
environment but the first one, Max/MSP is dedicated to MIDI and audio real-time
processing while the other, OpenMusic is oriented towards music composition.

In practice, OpenMusic is programmed using the object oriented facilities of the Lisp
language. The high level of abstraction of the Lisp language historically allowed to
manipulate, study or modify easily the internal knowledge model of the system. The
rudimentary MIDI functions of OpenMusic were at the time sufficient to prototype the
very early versions of the system, especially those without real-time interaction. From 2005
the system combined OpenMusic’s capacities for abstract structures with Max/MSP’s
facilities for real-time handling [Assayag 05]. The name OMax (O-Max, for OpenMusic
and Max) was invented at this occasion.

Max/MSP, was originally developed at IRCAM [Puckette 91] and is specifically de-
signed to handle a mixture of control and signal processing in data-flow oriented patching
interface. Nowadays simply named Max, it is in its 6.1.x version and integrally developed
and edited by Cycling’74, a californian company. Its visual interface takes the form of
a visual canvas, the patcher, in which objects are connected one to another to assemble
complex patches i.e. programs. Cycling’74 provides hundreds of objects to handle, process,
store or present control and audio messages or data. To enrich this included collection,
functions programmed in C or C++ languages can be encapsulated in the software Appli-
cation Programming Interface (API, written in C) supplied by Cycling’74 to build this
way external objects or externals implementing any desired function.

To apply the principles that we presented in the previous chapter, we have invented
new software architectures for our system. We present in this part of the thesis the three
main steps of this architecture. In the first chapter (section 8.1), we present the core
elements of the software: two low level structures. One structure is capable of holding
the data extracted from the input(s) and the other structure implements the Factor
Oracle graph. Along this part, we will describe how these two structures were initially
dependent and how we progressively made them independent to use them extensively.
In the second chapter of this part (chapter 9), we present the global architecture of the
first stable prototype for our improvisation system. Then, exploring the drawbacks of
this first prototype, we present in the third chapter of this part (chapter 10) a newer
and totally redesigned architecture for our software which adopts a database approach
of our knowledge model(s). From the very beginning of our work, we were attached to
adopt an efficient programming oriented towards the real-life testing of the system. That
means that we took very much care to produce effective prototypes to test our research
with musicians, possibly on stage in the critical concert situation where the usability, the
musical pertinence and a certain stability are required.
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Chapter 8

Fluid Data Access

In the early prototypes of the system, the illustrative separation of the high level knowledge
model in OpenMusic and the real-time processing to analyze and render a MIDI or audio
stream in Max/MSP, as presented in the previous section, implied the definition of a
specific protocol for the interaction between both environment, using the OSC protocol
as support. To enable thorough explorations and more efficient usage of the knowledge
and strongly link the memory of the system with the musical reality of both the analysis
part and the generation part of the system, we needed a more fluid access to the model.
We present in the first section of this chapter the core implementation of data and graph
structures in the software environment Max/MSP that we have done to obtain this fluidity
between extracted and analyzed information from the streams, and the storage and
modeling of these (section 8.1). Going then from this low-level implementation to a higher
level interaction with this core, we explain in section 8.1.2 the interfaces needed to interact
with these structures in our programming software environment. Then, in the third
section of this chapter (section 8.2), we present one of the first high level illustration of the
efficiency of these new structures: we propose the online visualization of the knowledge
model directly in our software environment Max/MSP (section 8.2).

8.1 Data & Graph Structures

We discussed in chapter 3 the need for an improvisation system to be adaptable to its
context. In the previous part, we presented the principle on which we base our system. We
claim in this part that the software architecture is not neutral towards this adaptability
and the software design drastically changes its usage and possibility. In this section, we
present the core structures we propose for our system (section 8.1.1). We pretend that the
fluid access to these core elements enhance the reactivity of the whole systems and the
interfaces to access these structures induces some orientations of the overall architecture.
This section examine the low-level aspects of this new core for our system.
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8.1.1 Low-Level Structures

On the contrary to the previous versions of the knowledge model (in Lisp) described
in [Assayag 06b] which combined in one structure both the content — ie the data extracted
and analyzed from the audio — and the graph attributes (transitions, links etc.), we
decided to split these information in two different structures. On one side, we store
the data extracted from the audio, on another side, we build the Factor Oracle graph
corresponding to these data. There are two main advantages of separating these structures.
Firstly, it follows our conceptual description presented in the previous part, in which we
have a process of extraction of information and segmentation of the input streams and
then, possibly a knowledge model build on certain parts of this information but only
if relevant. On the extracted data we need thus to store more information describing
the input than what is strictly necessary for the knowledge model. Secondly, it allows
freer research around a new knowledge model. If separated from the data, the Factor
Oracle graph can be replaced very easily and new models can be tested very soon without
rewriting the whole learning part. In the next paragraphs, we describe the very low level
implementations of these two structures in our programming environment, Max/MSP.

Data Structure The first structure we implemented is a hierarchical index database
relying on the vector implementation of the C++ Standard Template Library (STL)1.
The elements referred in this structure are named labels and can contain all the information
of the description of the audio and musical content: date on the medium timeline
(see 5.1.1.2), duration, section and phrase information for higher level segmentation,
tempo and pulse information etc. These labels are specialized (heritage mechanism in
C++) for one or the other description of the streams: MIDI (slices), melodic (pitches),
timbral (MFCCs), harmonic (chromagrams).

Graph Structure The second structure implements an agnostic Factor Oracle graph.
We mean by agnostic a purely symbolic graph structure containing the less musical
content possible for each state which are referred only by there state number in the graph.
Our Factor Oracle structure is also based on the vector implementation of the C++
STL; The elements of the structure, the states, include all and only the information
needed for the graph structure: list of transitions, suffix link, list of reversed suffix links
(see [Assayag 07] for an explanation of these latter links).

As we build our model and descriptions incrementally from the analysis stage, those two
structures are protected by multiple readers / single-writer locks in the multithreaded
Max/MSP environment.

These two structures were at first linked (internally) in two ways: they shared a
common name to refer them in Max/MSP and the states of the graph and the labels of the

1Users of Max/MSP a.k.a. Maxers will notice that the coll object proposes also an index database. However
its slowness and lack of hierachical storing makes it unusable for our intensive needs.
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data structure coincide in indexes i.e. each state in the graph corresponded to a label in
the data structure and the other way around. In other words they were developed to work
strictly on the same segmentation of the audio or MIDI stream. That especially means
that one description (for example the melodic description through pitches) is stored in
one instance of the OMax.data structure and the corresponding Factor Oracle is held in a
related instance of the OMax.oracle structure. Two descriptions data (for example melodic
and spectral) can not be stored in the same OMax.data structure. This coincidence of
structures and indexes of both structures was justified by the need for the musical content
of a state to compute its letter in the alphabet and compare it along the Factor Oracle
building algorithm. We will see later, in chapter 10, that we modified this aspect along
our research, in a different approach of the system.

8.1.2 Programing Interfaces

On the patching level of Max/MSP, we developed an ensemble of seven other objects
around these two externals for the data and graph structures in order to enable writing,
reading and querying them. Figure 22 illustrates this collection of externals.

Visualising
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Improvising
Rendering

Render

Read

Learner

FO Data

SLT state2date

date2state

to scheduler

Controlsfrom GUI

Build

from 
segmentation

Figure 22: The Initial Collection of OMax’s Externals for Max/MSP

In this version, the OMax.learn object receives the data of the segmented input stream
and is in charge of of running the Factor Oracle algorithm to build the graph and writing
both structures. Both structures can be read through specific externals which can be
instanciated several times anywhere in the system: the OMax.read object outputs for
each state of the graph all its transitions, its suffix link and lrs and reversed suffix links
and lrs, the OMax.render object accesses the data structure and outputs the whole
content of each label. It is important to note that in the version of the externals described
here, these two objects refer the structures content through the indexes in the databases.
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Because we need to link these indexes with a real musical medium, we implemented the
OMax.date2state and OMax.state2date. These two objects (thanks to hashtables of the
STL C++ library) are able to efficiently translate dates of the musical medium into the
corresponding state/label index of the structures and the other way around.

Our primary resource for the navigation of Factor Oracle is the Suffix Links Trees
(SLTs, explained section 7.1.1.2), we added thus a specific object capable of navigating
efficiently the graph to extract the pruned SLT of any state. Finally, from the initial data
and thanks to the knowledge model, we build a new musical sequence. This is the role
of the OMax.build object which can refer the labels contained in the data structure and
form a new sequence of those that can be access to render the new musical discourse.

8.2 High Level Application: Visualization

The first high level illustration of this fluidity of access to the data and graph thanks to
the gathering of the core elements in a single and efficient software environment is the
possibility of displaying and visually exploring a superposition of the knowledge model
and of the musical data. In this direction, we started by visualizing the audio content
with a simple waveform and added the segmentation information of our units. Figure 23a

(a) Visualization of a Detail of the Segmentation

(b) Visualization of the Knowledge Model Overlaid with the Sound Waveform

Figure 23: Visualization of the Sound with Higher Level Information

presents a detail of such display. The next and new step was to visualize the state of
the whole knowledge model on a particular audio. As the generation part of the system
relies on the suffix links of the Factor Oracle graph, we choose to visualize only those as a
informative summary of the model. An example of such representation is given Figure 23b
where the waveform of the corresponding sound is overlaid on the suffix links of the graph.
Darker links denotes higher lrs i.e. longer patterns than lighter links.
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The visualization of our knowledge model and generation process lead to a thorougher
research of several months that we undertook at the very beginning of our work. It is
presented in detail in [? ]. The main objective of this research was to visualize the internal
state of our system for both the acoustic musician playing and the supervisor of the
system. However, pattern visualization is not trivial especially in the case of music in
which time plays a very important role. We studied several possibilities coming from text
or genetic visualization researches to represent the recurrent patterns recognized by the
system. Eventually, we decide to display the suffix links of the model with arcs to make
them easy to embrace at a glance and efficient to emphasize the structure of the graph.
Example of such visualizations are shown Figure 24.

(a) Visualization of the Suffix Links with Colored Arcs

(b) Visualization of the Suffix Links with Colored Triangles

Figure 24: Visualization of the Suffix Links with Colorful Representations

The generation part of our system has also been the subject of studies to find efficient
visualizations. The main issue in this part of the research was an essential problem of
linearity of the visualization along the time: after several tests, we had to conclude that a
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non-linear representation of a musical discourse is not instantly readable for a musician
playing with or along the system. This conclusion constraints strongly the possible
visualizations for the generative part of the system. For the current usage of the system,
we kept in the end a classical linear timeline visualization of the knowledge as presented
above and decided to superpose it with a visualization of the generation part. But as
our system recombines fragments scattered along the original material it is impossible to
preserve the linearity for the visualization of both the input material and the computer
generated discourse. Example of the visualization of a very small computer generated
sequence with the corresponding original material is given Figure 25: the horizontal line at

(a) Visualization of a Generated Sequence with Suffix Links

(b) Visualization of a Generated Sequence with Colored Arcs

Figure 25: Visualization of a Small Generated Sequence with its Original Material

the bottom of these captures represents the original material, the small portions scattered
above and connected with simple links or arcs (representing the same links) show the
path in the graph followed to generate a new sequence. It is not trivial even on a simple
example as the one presented Figure 25 to retrieve the order of the jumps justifying the
computer generated sequence.

The visual explanation of each jumps in the graph has no reason to be a priority
either for the musician feeding the system or for the supervisor of the system who can
examine other clues in the interface. Therefore, we adopted a simpler visual for the
generation part of the system: a simple arrow pointing on the portion of the original
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material currently replayed and a shadow arrow indicating where it is going to jump for
the next recombination is sufficient to realize what is currently going on, on the musical
surface at least. This simpler visualization is illustrated Figure 26 with four different read
head of different colors corresponding to four “ clones ” (see section 7.2.1.1). The violet
“ clone ” (right most arrow) shows an example of duplicated shadow arrow (on the left side
of the blue arrow) which indicates the destination of the next jump in the graph.

Figure 26: Visualization of the Improvisations with Read Head and Next Jump

We show in this chapter how we implemented low-level structures to learn and store
both the knowledge model and the musical descriptions of the input into the sole Max/MSP
environment. Then we present the programming interfaces to interact with these structures.
Through the example of the novel visualization imagined to display the internal state
of the system, we intent to show how the renovation of the core of the system opened
widely the possibilities of research and experimentations around the higher level software
architecture for an efficient interaction with musicians. Following this first application
example, we will present in the second chapter of this part the work achieved mainly
at the patching level offered by Max/MSP and which is a very efficient environment for
prototyping new software architectures. Naturally and as we will see later in the third
chapter of this part (chapter 10), the high level software architecture research implies
sometimes new evolutions of the low level core that we have presented in this section.
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Chapter 9

Multiple Processing

We present in this chapter the high level architecture we designed initially for the system.
This architecture takes into account the constraints of our programming environment and
issues on efficiency, adaptability and performances. Important work on this architecture
has been done to benefit from the parallel processing of several audio and/or MIDI
streams and the extraction, analysis and modeling of several descriptions of these inputs as
described in chapter 5. This work concerns both the perception and the generation part of
the system. We present in the first section (section 9.1.1) of this chapter, the architecture
for multiple description of a single input as defined in section 5.1.1 with integration of
the visualization presented in the previous chapter. Then we present in section 9.1.3 the
architecture for multiple inputs. As we explained in section 7.2 we also aim to enable
polyphony in the system and we showed the different principles to achieve such polyphony.
The effective implementation of this polyphony and the musical conducting of it also
required to imagine an efficient architecture in order for the supervisor to be able to drive
the system (or enable the usage of scripts to do so). We explain first in subsection 9.2.1 the
organization for single output then we show subsection 9.2.2 how we obtained a multiple
output architecture.

Two main lines oriented our software architecture research and the design of this
system. Firstly, we favor as much as possible an implementation which follows the
conceptual principles that we presented in Part II. Thus we opted for a very modular
architecture. Each module implements a properly defined function of the system and the
inputs and outputs of each module were carefully studied to be restricted to the most
efficient scheme. We also took care to build self-contained modules as much as possible
to avoid underground, hidden or complicated references from one module to the other.
Naturally, this intention is utopian and a practical system necessarily includes some links
between its different entities. But we took care to reduce as much as possible the number
of these dependencies between modules. This control of the inter-modules dependency
also favors the versatility of the system. The recombination of these modules into another
configuration of the system to suit a different improvisation situation is greatly facilitated
in practice with the ease for reconnecting the modules together in another arrangement
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— the number of musicians may vary first but also as we have seen the number and nature
of actual streams, the complementarity of the inputs etc. The number of “ clones ” and
their features may need also to be adapted to the musical situation and many other
aspects of the system.

Secondly, we aimed for this system a proven usability in real-life musical situation, from
the impromptu improvisation in a garage with newly met musicians to the long organized
concert on stage with a large audience and much more technical resources. Therefore
we took care of the user interfaces of each module and the relative importance of the
parameters in the playing situation. For example, the size of an Fast Fourier Transform
(FFT) window of an extraction module is a very relevant parameter to properly configure
the system before playing with a musician. But, because it is situated at the beginning of
the processing chain and may influence the configuration of the rest of the whole system,
it has absolutely no reason to be easily changeable along the playing and thus may be
hidden or only informatively and discreetly displayed on the playing interface.

9.1 Multiple Perceptions

We defined section 5.1.1 our notion of an input which can be constituted of several streams.
Then we described the different types of information extraction (section 5.1.2) and analysis
(section 5.2) we can achieve on the different streams. We introduced the knowledge model
that we build on part of the information extracted from the streams (section 6.2) and we
explained how other part of the information can enrich this model (section 6.3). These
multiple perception possibilities have been modularly implemented in our system. The
architecture for the multiple description of one input is described in the next section (9.1.1)
and the visualization of such input is shown. Then we explain how we duplicated those
inputs to listen to several musicians in parallel. Because the primitive duplication of the
inputs poses an obvious problem of visualization and interaction with the too numerous
computer windows and parameters, we had to implement a centralization system to handle
this duplication correctly.

9.1.1 Parallel Chains

As explained in the introduction of this chapter, we tried as much as possible in the
architecture of our system to follow the conceptual organization of the processes. The
chain for one description of an input exhibits three types of modules:

• Extraction modules are in charge of handling audio signal and converting it into a
flow of raw information: initially pitch extraction module and spectra extraction
module have been implemented. The harmonic information extraction has been
added later.
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• Grouping or clustering modules: specifically designed for each type of raw information,
these modules implement exactly the different micro-to-macro units segmentation
described in section 5.2

• Learning modules: these modules are nearly generic, that is identical for all the
descriptions. They make use of the main three objects of the collection of externals
implemented for our system and described in the previous chapter: OMax.data to
hold the description’s data, OMax.oracle to contain the graph and OMax.learn to
write both structures including the building algorithm of the graph.

Additional modules are required for time-stamping data before feeding it to the learning
module. There is only one type of time-stamping module which is duplicated for each
description. This module also serves to segment the flow of information with higher level
elements: phrases and sections are based on silence detection. The grouping module
outputs an activity information which indicates if something consistent can be analyzed in
low level description, if no stable units can be found then it supposes that the activity flag
is zero and the higher level segmentation interprets it as a silence. Phrases boundaries
correspond to silences shorter than Sections boundaries. Therefore Sections are higher
level elements than Phrases. More importantly, the end of a section corresponds also
to the stopping of the recording. Thus it ruptures the linearity of the medium with an
interruption of the material. The mechanism to handle the starting of a new section has
been described section 5.2.2.

The time-stamping and all the timing issues are relying on another module: the
recording module. This module is in charge of the whole medium: it records the raw audio
or MIDI material of the medium and unwind the corresponding timeline which constitute
the common reference for all the descriptions. In the case of an audio material, it relies on
the writing of a buffer~ object of Max/MSP. This architecture is illustrated Figure 27
with a typical combination of the melodic (pitch) and spectral (MFCCs) descriptions on a
single audio stream.
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Figure 27: Dual Descriptions Input Chain

In terms of inter-module dependency, the extraction and analysis modules are totally
independent and only receive their on-line information from the upstream module or the
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audio stream. The recording module is also independent but possesses a name to be
referred by the time-stamping and segmentation module (not shown on the diagram of
Figure 27). Each of the learning modules also possesses a name to refer both the data
and the knowledge model structures. Figure 28 shows an example of an Input patch
interfacing the architecture described in this section. We can discern on this capture

Figure 28: Dual Descriptions Input Patch

exactly the different modules described. The reset button is self-explanatory. The Monitor
module enables to listen to the input streams and the small menu and buttons separating
horizontally the pitch description (above) and the spectral description (below) are used to
handle presets for the input parameters.

9.1.2 Visualization

A last module is added to handle the visualization of the whole input implementing in
the whole architecture our research on pattern representation previously explained in
section 8.2. This module is the most complicated of the input because it needs to be
informed of the other modules: timeline & medium name is need to render the unwinding
material, each description needs to be referred in order to display the current state of
the model. As our first and main usage of these parallel description have been with
only two descriptions: melodic and spectral descriptions, we adopted a symmetrization
of the visualization presented in the previous chapter. The two knowledge models built
are displayed above and below the common timeline of the medium. An example of
such representation is given Figure 29. Below the horizontal timeline, the pitch model is
depicted with the colored arcs. Above the timeline, the state of the spectral model is also
visualized with arcs. We can notice that arcs representing pitch patterns are thicker than
arcs showing spectral patterns. The thickness of each arc is proportional to the actual
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Figure 29: Dual Descriptions Visualization

duration of the pattern. As notes of the melodic patterns are typically of much longer
duration than timbre of the spectral patterns, the patterns themselves are also of much
longer duration. Hence the difference of thickness.

The whole input “ program ” we have described from the beginning of this chapter has
been designed to function identically with or without the visualization. The visualization
rendering is done in separated window and includes functions to capture the mouse, mainly
to select regions directly on the visual timeline. This visualization may not be useful
for prepared improvisation in which the original material is already known and timed.
Removing the visualization modules keeps the software intact in terms of functionality
and may enables to embed more easily the system in any other Max/MSP patch. This
has been effectively done in several compositions in which our system was only a small
part of the computer system.
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9.1.3 Duplication of Inputs

In a collective improvisation, we wanted our system to be able to listen and learn from
several musicians at once. Naturally, the first and main idea to do so is to duplicate the
input part of our program and this does work if we take care of the names referring the
underlying data and graph structures1. However, the question of the interface and the
visualization can not be as simple when a supervisor is controlling the system because of
the profusion of computer windows it creates. We had to imagine a centralization system
as presented in the next section (9.1.4).

Doing this duplication of the inputs strictly as proposed in this version of our system,
and on the contrary to the discussion presented section 5.1.1.2, we suppose that the
different inputs are totally independent. We will see how this will be improved in the
second approach proposed in the next chapter (10). In the approach presented here though,
as we duplicate the whole input patch (shown Figure 28), each instance includes its medium
and the associated timeline. No correlation is done either between the timelines or in the
analysis of the material. Figure 33 illustrates this architecture where each input embed
independently its own recording and associated timeline and the extractions, analyses and
modeling modules.

9.1.4 Centralization

As previously mentioned, for interfaces and visualization reasons, we still needed to
centralize the different inputs and the names to address their internal structures. We
adopted a software solution slightly opened up in the previous versions of the system: we
implemented a launcher in charge of instanciating all the other parts of the program with
the correct names. This launcher centralizes all the references. This means however that
the usage of the launcher has to respect a correct order and the user has to define the
input before creating the visualization part which will need the correct names. This order
and the need for centralization may be a major drawback in the collective improvisation
situation in which we wish for a system as versatile as possible.

9.2 Multiple Outputs

We explained in section 7.1 the two different parts necessary for the generation of a
new musical discourse in our system: the improvisation logic (section 7.1.1, illustrated
Figure 30) and the player (section 7.1.2). The former is responsible of generating a path
in the knowledge system, the latter is in charge of effectively rendering this path in sound.
We will see in this section that the implementation of these two modules poses important
architecture problems especially in the Max/MSP environment. We will explain first
the looped architecture we adopted for one “ clone ” then how we handle the polyphonic
extension of this architecture.

1Max/MSP does not enable proper handling of namespaces. Variables and references are always global.
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9.2.1 Generation Architecture

We discussed in section 7.1.1.1, the importance of the continuity parameter and its possible
dependency on the Factor Oracle graph. Originally, the coherence of the variations
generated by the system was granted by the forward reading of a number of successive
states in the graph before jumping — jumps and thus variations being justified by the
suffix trees. In the version of the system that we present in this chapter, we respect
this dependency and always attach an improvisation logic (see Figure 30) to a particular
Factor Oracle. This is natural when there is only one Factor Oracle in the input but as
discussed in section 7.2 and section 9.1.3, to gain versatility in the generation part we
need to benefit from the multiple listenings and knowledge model built in parallel. An
architecture to achieve this is proposed in the next chapter.

Nevertheless, in this first approach of the generation, an instance of an improvisation
logic is linked to an instance of the knowledge model which means that a variation
generated on the original material is always constrained to one specific description of the
material, either melodic, timbral or harmonic. We present here the architecture of the
improvisation logic which will also serve as a reference for the next chapter’s architecture.
The improvisation logic module is itself modular and its implementation depends for a few
parameters and a few internal modules on the type of description. The general scheme
of the navigation is illustrated Figure 30. The continuity, that is the forward reading of
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Figure 30: Generic Architecture of the Improvisation Logic

several states in the graph does not require any specific function except a counter. On
the other hand the jumping mechanism necessitates first to know the current position
— this may appear as trivial but we will see that it is the primary reason to design a
looped architecture. From this position, we collect all the possible jump destinations from
the jump trees (see 7.1.1.2) and gather them. Then we radically exclude some of these
solutions notably because of a taboo mechanism avoiding strict loops it the graph and
because of the region mechanism explained section 7.2.2.1 enabling to control the content
of the computer generated variation. Then we add to the description of each solution
some complementary information for example coming from the pulse, energy/dynamics
or harmonics annotations described earlier in this thesis or from ad-hoc calculations
depending on the Factor Oracle used — an example of the ad-hoc information is the
octave if we computed the knowledge model with a 12 semi-tone alphabet. Based on these
descriptions of all the possible solutions, we compute an overall weight for each solution
— which may reflect also choices of the user to emphasize certain aspect of the material

105



through the graphical user interface (GUI) — and we draw randomly among one of the
best solutions i.e. those with the highest weight. The weighting systems also enables
to output an indicator of the quality of the solution picked, compared to all the other
possible jumps. Figure 31 show the specialization of the improvisation logic module in the
case of pitch and spectral knowledge models on the input. This specialization shows the
different complementary descriptions of the solutions. The rhythm information presented
in this version correspond to the rhythmic coefficient of [Assayag 07]. This coefficient
(C

r

) rely on the durations d

x

and d

y

of two patterns and is computed with this formula:
C

r

= | log(dx
d

y

)|. The smaller the coefficient is, the closer in duration the two patterns
are. This coefficient enables to get a simple notion relative density to avoid rhythmical
ruptures in the generation.
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(a) Diagram of the Pitch Improvisation Logic
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(b) Diagram of the Spectral Improvisation Logic

Figure 31: Specialization of the Improvisation Logic for Pitch and Spectra Descriptions

Anticipation To enable the player to render on time the musical discourse, that is
without waiting for the next event to be decided we actually need the improvisation logic
to be early in its walking through the graph. In this architecture, the improvisation logic is
a few steps ahead thanks to an anticipation window. These few steps means actually a few
states ahead in the walking of the graph possibly with jumps and not a few jumps ahead
because contiguous portions of the original material between two jumps may represents
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seconds of music. As we aim for a reactive system, we want to keep this anticipation as
short as possible.

In this version of the system, we store the improvised sequence in the same kind of
data structure as the description data through an new instance the external objects for
OMax (OMax.data and OMax.build). The data stored for the improvised sequence are
the description data of each state read from the original sequence including the states’
number (in the original sequence) which enables to retrieve the path followed in the graph
by the improvisation logic. While the improvisation logic writes this sequence, the player
reads continuously this data structure to discover the portions of the original material to
be read. Naturally, we do not want the player to introduce any audio artefacts when the
portions to read are contiguous so only jumps triggers the typical crossfades used by the
player to concatenate audio chunks.

A specific kind of player implements the time-stretching feature (with or without
transposition) described section 7.1.2.2 thanks to SuperVP technology. This feature is
directly under the control of the supervisor of the system thus we can absolutely not
make any assumption on the actual speed of the unwinding of the generated discourse.
This is why the player has to trigger the walking of the graph. If the speed is higher
then the traveling of the graph must be faster as well. This closes the loop between
the improvisation logic and the player: the player triggers the computation of the next
steps in the path, these next steps are written by the improvisation logic in the sequence
read by the player. Figure 32 illustrates this whole loop with the internal elements of
the improvisation logic and player. Unfortunately, the loop architecture is intrinsically a
bad and risky implementation in the Max/MSP environment because of its event-base
scheduling. It creates very often instantaneous infinite loops which can provoke stack
overflows. The fine adjusting of this architecture for improvisation logic and player has
been very sensitive and time-consuming. This maladjustment between the architecture
design and our programming environment is also one of the reason why we favored a
different approach of the generation principles of our system in a second phase of our
work.

9.2.2 Polyphonic Extension

Broaching the question of polyphony for an improvisation computer system raises the
question of the number of voices. This question concerns three different aspects of the
system.

• On the musical side, it is important to measure the impact of polyphony on the
overall result in the improvisation. In particular, the number of separated voices
influence drastically the room taken by the computer in the global musical matter
and the space left for the other musicians. Too many voices may be very soon
overwhelming especially when they are meant to create mirrors and variations of
the acoustic musicians discourse that is second voices and not background elements.
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Figure 32: Generation Loop of with Improvisation Logic and Player

In our system, oriented towards the direct and balanced dialog between acoustic
musicians and computer generated improvisation, we do not need to include a
profusion of polyphonic voices.

• We choose for our system an instrumental direction which means that the computer
has to be controlled by a supervisor even if only sparsely or with very few interactions
as start and stop. It is then of responsibility of the supervisor to drive and control
the different “ clones ” sounding. A large number of “ clones ” at once requires very
different interface and interaction facilities to handle them with responsiveness and
pertinence. We preferred to limit the number of simultaneous voices and favor
individual and finer control of each of them.

• Finally a third remark on the software architecture level also supports this simplicity:
the players which manipulates directly MIDI or audio stream are CPU consuming
especially when equipped with the time-stretching and transposition possibilities of
a phase-vocoder module. Thus we need to avoid multiplying their instances.

The biggest setup of the system we tested had 4 inputs (one per musician) and included
up to 9 simultaneous players. However the playing of 9 distinct voices simultaneously
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was never used. A typical improvisation session or concert make use of 1 to 4 or 5 voices
maximum.

To achieve this prudent polyphony, we designed players which can be attached to an
improvisation logic navigating any knowledge model. The relevant information needed
by the player once attached to an improvisation logic is only: if the next portion to play
in the medium corresponds to the next state in the graph or if there is a jump to plan.
In that latter case, the editing points (the dates of the origin and the destination of the
jump on the medium timeline) are required. As they manipulate audio streams, the player
modules must be created at the loading time of the system because of Max/MSP handling
of the digital signal processing chain2. To attach an improvisation logic to a specific
player, we make use of the same centralization system as in 9.1.4. The launcher which
references all the inputs and knowledge models also references the players and lets the
user choose and load an improvisation logic for a given player. The connection between
the logic and the knowledge model and between the logic and the player is done when the
logic is loaded. However, logic modules manipulate only symbolic information so they
do not modify the audio chain. Therefore their loading can be achieve transparently and
smoothly while the system is running. This is also a reason for the strict separation of
the improvisation logic modules from the player modules.

Thanks to this architecture of fixed players interacting with different improvisation logic,
we can also configure the system to have several players attached to the same improvisation
logic. In this case the players will read the same path in the graph that is the exact same
variation on the original material. At first a side-effect of our implementation this became
a very interesting musical feature while actually testing with musicians. Indeed the strict
echo or the synchronizations and desynchronizations of the same material is a classical
effect in music. We enrich this possibility with a simple mechanism to obtain strict and
voluntary synchronization of two players. One player sends automatically to the other its
exact position at each step of the generated path. This feature is also particularly relevant
when making use of the transposition possibility of the SuperVP player. We obtain this
way an instantaneous and controllable harmonization of the computer generated discourse.

Figure 33 exemplify a possible setup of the system in this architecture. It includes
4 inputs with several descriptions on each of them (combined into one chain of modules
to avoid overloading the diagram) and 4 players. Only 3 improvisation logic (abbreviated
as Impro on the diagram) are loaded in this example to illustrate the possibility for two
players to render the same path in graph. Plain arrows denote the loading role of the
Launcher, dashed arrows indicate underlying reference to the structures through pointers.
For the sake of clarity, the references needed by the visualization module are not drawn.
The red framing of the improvisation logic stresses the hot loading possibility of these
modules.

2Maxers know that the modification of any audio object or connection while the audio processing is running
ruptures the chain and unfortunately outputs undesirable clicks.
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Figure 33: Summary of the First Multiple Architecture of the System

We described in this chapter a first architecture of our system capable of handling the
multiplicity of the perception part of the system — multiplicity in streams, descriptions,
inputs etc. This design also takes on the usage of this multiplicity in the generation
part of the system. This architecture has been thoroughly tested up to a stable version
used in a real-life concert. It has also been the base for two other important software
realization of the system. A public version of the OMax software has been released
2010 and incrementally updated since then. The architecture of this public version is
strongly based on the architecture described in this chapter, but it fixes the numbers of
improvisation logics and players to enable the user to take in hand the system more easily.
The documentation of this version is joined to this thesis in Appendix C.

A research team in Concordia University, Montreal, under the direction of S. Bhagwati
has built a very impressive “ Comprovisation ” system with the version of our system
that we presented in this chapter. Comprovisation is a portmanteau word coming from
composition and improvisation. It describe the musical research of S. Bhagwati who
develops very structured and prepared pieces still relying on the improvisation capacities
of a musician — and a computer system in this case. In a project named Native Alien3

in collaboration with N. Navab, they developed, around a customized version of our
system, a much bigger computer system integrating several compositional aspects as well
as other computer techniques as sound synthesis. Their sound environment for soloist
and 8 comprovising computer channels make intensive use of all the parts of our system to
listen to the acoustic musician and generate eight voices precisely controlled by N. Navab
and following a generated score. This realization is a successful usage of our research
— as much technically as musically — which has been played with leading musicians as
Lori Freedman (clarinets) or Vinny Golia (saxophones).

3http://matralab.hexagram.ca/projects/native-alien/
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The architecture for our system that we presented in this chapter has been particularly
well tried and gives pertinent results. However we showed that one improvisation logic
of this architecture is still attached to a specific instance of the knowledge model which
we consider as one of the serious limit to the benefit we could obtain from the many
perceptions possibilities we developed. For example the transition from one model to the
other can not be done smoothly in realtime. A skilled supervisor can simulate such a
transition by overlapping two players referring to two improvisation logics walking the
graphs of two descriptions of the same input but this remains a very audible artefact
in the playing with the system. In the next chapter we present a new architecture to
overcome this limit and allow even more versatility for the computer generated discourse.

111





Chapter 10

Database Approach

The previous chapter presented one of the first stable architecture for our system which
accomplished the multiple listening and polyphony objetives of our system. However we
also saw some drawbacks of this architecture: the intricated references, the following need
for centralization and the lack of fluid transition from one description or input to the other.
We present in this chapter a new architecture for the system that resulted from the careful
analysis of all the principle and evolutions of the system. This architecture proposes to
generalize and imply more systematically the principle we have seen. It starts with the
gathering of all the instances of the knowledge model into a database oriented design.
A disconnection between the low level description and the model building is needed to
achieve this architecture. We present those two point in section 10.1. Then, we make
use of this database approach to formalize the query, filtering and sorting of the jump
solutions gathered thanks to the knowledge models (10.2).

10.1 Knowledge Query

In the previous chapter, we saw how we first multiplied the descriptions of the streams then
the number of inputs. We also explained how we initially tried to benefit from these new
possibilities on the generation part thanks to a modular separation of the improvisation
logic in charge of exploiting the knowledge models and the players effectively rendering
the computer based improvisation. In this chapter, we will see how we came back on
this separation to enhance greatly the usage of the multiplicity of descriptions. We will
show that through an evolution of the data & graph structures enabling the disconnection
of the information analyzed from the audio and the model built on this information,
we favor even more the building of several models in parallel on the same data and
we facilitate the usage of these models concurrently. We first describe the differences
of the implementations of the data and graph structures in our software environment
(section 10.1.1) then we explain how we interact with these new structures in parallel
(section 10.1.2). Finally these changes lead us to a database approach of the concurrent
knowledge models (section 10.1.3).
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10.1.1 Independence of the Structures

In section 8.1 we presented the structures we implemented — in the form of external
objects for Max/MSP — to store and interact with instances of the knowledge graph
and to hold the information coming from the segmentation of descriptors of the input
streams. In particular, we explained that for one description of an input stream, the data
structure recording the description’s information (for example pitch information) and the
graph modeling the patterns found in this description share the same segmentation if
not the same data structure in memory. Thus the same indices are used in both graph
and data structures. In the evolution of the software architecture that we present in this
chapter, we propose to rupture this strong connexion between the descriptors data and
the model build on the macro-units formed with these data. Moreover, we choose to send
to the data structure the raw and unsegmented information coming from the different
extractions of descriptors (micro-units) for each stream. The data structure becomes this
way simply a specialized container for consecutive (and rather short) frames describing
one aspect of the content of an input stream. Each description is held in one instance of
this renewed data structure e.g. one OMax.data object stores the raw pitch information,
another instance stores the raw spectral information etc. While disconnected instances of
OMax.oracle objects can hold several graph built on macro-units formed either on pitch
and/or spectral description for example.

We still need to form the macro units and label them to build our knowledge model
as explained in the first part of this thesis. However in this renovation of the system,
we specialize this processing to the building of one specific instance of the graph. This
way, we enable the effective building of several knowledge model on the same content (or
description) but with different classifications, clusterings, segmentations and labelings
(↵�) as illustrated Figure 34. For example, on pitch description, raw information are
gathered into notes and the patterns of notes can be modeled in two different graphs
depending whether we label them with a full scale of pitches or with a one-octave scale
of pitches. Doing so, we amplify again the multiplicity of descriptions available in the
system but we will see in section 10.1.3 how we changed radically the approach of this
multiplicity to generate new musical discourses. This theoretical separation of data
and graph structures has some implementation consequences. The first of which is the
removal of the OMax.learn object which was in charge of writing both the data and graph
structures in parallel. This object in now obsolete since each structure is independent.
This independence also means that the algorithm to build the Factor Oracle has been
included in the OMax.oracle object itself. The same way, data are addressed directly to
the OMax.data object to store them in the data structure. We will see in section 10.1.3
that the OMax.build object is also obsolete because a computer base generation does not
correspond anymore to the walking of one graph and one description but to the query of
several graphs built on several descriptions. Figure 35 updates the diagrams of OMax
external objects for Max/MSP with these changes. A second major change done to the
Factor Oracle structure is a side effect of this real separation between description data
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Figure 35: Renovation of the Collection of OMax’s Externals for Max/MSP

and higher level modeling: as a Factor Oracle structure does not refer to a specific data
structure anymore and runs internally the incremental building algorithm, we have to
provide it with the letter of our labeling for each element to learn. Indeed, Factor Oracle
algorithm includes a strict comparison of the label to identify equivalent elements. But
we wish to preserve the agnostic implementation of Factor Oracle structure — i.e. not
containing any information external to the graph — so we choose to provide an abstract
letter encoded in an integer to the OMax.oracle object, whatever the alphabet is. In the
case we want to store the actual content of the alphabet, we do that externally in the
module in charge of the labeling.

10.1.2 Prominence of Medium

We have just explained that we broke the link between the data structure holding the
description information and the macro-unit segmentation, labeling and the knowledge
model. Another important consequence of this rupture is the crucial need for a common
reference to all these descriptions, segmentations and graphs in order to use them all
indiscriminately. As we stressed in the very beginning of the second part of this thesis,
the medium — that is the effective recording of the musical material and its associated
timeline — constitute the ground reference to which every process ensues. Thus in this
architecture, we make the medium and its associated timeline even more essential as a
common reference for every description and every knowledge model.

On the data structure side, every micro-unit is thus timestamped with the medium
timeline and furthermore, this structure is now solely indexed by these timestamps. As
no more higher segmentation is stored in this structure, no other index or referencing
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would be suitable. For example, in the case of spectral extraction (MFCCs) all the
successive frames are stored directly into the data structure and addressed through their
corresponding dates in the medium without consideration of higher level segmentation.
Various clustering of these frames may lead to different macro-units segmentations for the
parallel building of several models. For the same reason the two hashtables converting
timestamps into state number of the graph (former OMax.date2state object) and state of
the graph into timestamps (former OMax.state2date object) have to be attached now to the
OMax.oracle object. Indeed the macro-units are now only referred in the knowledge model
(through their symbol). We renamed the two objects interfacing these hashtables into
OMax.ID2state and OMax.state2ID to make explicit the future use of external material
which may not have been learnt in the system (external audio files with off-line analysis
for example). In this future case, the ID will not only encode the timestamping but also
an identification of the corresponding medium (buffer, audio file, MIDI file. . . ).

Pursuing this unification of multiple descriptions and model instances use in the
generation part of the system as well, we propose in this version of the system to abandon
the linkage of the improvisation logic with a specific Factor Oracle. In particular we
revised the expression of the continuity mechanism which alternates between contiguous
reading of the original material and jump. We reimplemented this alternation in form of a
separated module based directly on time references. There are several advantages in this
view: first it is totally independent from any instances of the model. Secondly, it enables
a more natural expression of the continuity : we can directly set the system to find new
variations every x (milli)seconds whatever the material is. Thirdly, it avoids having very
long portions of material played unchanged in the case of very long macro-units (typically,
long notes of several seconds each) which correspond to very few states of the graph.
However, to find some relevant jumps possibilities in real-time along the generation, this
timing must be linked with the rendering of the player. Indeed, we need to know where
the current read head of the generation is in the original material to find jumps which
origin will be accessible and respects the desired continuity. Therefore this new continuity
module can not be totally self-contained and needs to be attached to a player for real-time
generation.

10.1.3 Knowledge Models as Database

The goal of the changes presented in this chapter is to orient our view of the multiple
knowledge model instances towards a database approach. The collection of these graph
constitutes from a farther distance a huge ensemble of links connecting several parts of the
material together thanks to several descriptions. Thanks to these links, we can join two
portions of the material to create a variation. Then we can see this generation mechanism
as the regular query of this database for possible jumps depending on the current position
of the read head. To be efficient, we needed to unify the expression of these queries so
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that every instance of the model can participate to the general search of solutions. This is
why we favored the common medium time reference as explained in the previous section.

This database view overcomes the major critic we addressed to the previous generation
architecture of our system: one “ clone ” is no more linked to one specific description of
the input material. We query in parallel all the knowledge models built and gather the
jump possibilities of all of them before effectively playing one of them. We can of course
reduce the query to one model only and we emulate in this case the former behavior of
the improvisation logic necessarily locked in one Factor Oracle graph. But we can also
change over time the instance of the knowledge model we want to query without breaking
the musical discourse of the “ clone ”. Doing so, we can switch seamlessly from a melodic
variation on the material to a timbral or harmonic reinjection of this material for example.
With this architecture, we enable a much finer control over the core principles of the
generation of each separated “ clone ”. This new database view also enables to imagine
off-line queries to search for particular solutions which may come from compositional ideas
or any kind of preparation. For example, we may want to find with off-line algorithms
paths in the graph with particular constraints, or simply the shortest path that arrives
at a precise point in the material. The algorithms used may not enable real-time search
of these paths but our database view allows to query the whole knowledge to come up
with a suitable solution concurrently with the real-time generation (see Figure 37). This
view enables as well the future inclusion of any kind of knowledge model in the database
as soon as they provide continuation links between two parts of the material. Figure 36
summarize the new design of our system following the database approach. It shows two
inputs with their streams and medium and the gathering of all the knowledge models.
Three instances of the generative part are shown. We describe in more details this part in
the the next section.
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Figure 36: Overall Architecture of the Database Approach of the System
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10.2 Filtering & Weighting

In the previous chapter we presented section 9.2.1 the generation part of system in a
version which included three main steps:

• a strict selection of the jumps found in the graph

• the weighting of the accepted solutions

• and finally the draw among the best jumps the one to be effectively rendered.

This selection and weighting elements of the former generation process anticipated the
generalization we achieve in the database oriented version described in this chapter. We
give more detail about the strict selection and the weighting in this section.

10.2.1 Data Flow

In our work to unify the generation process for all the descriptions, we also generalized
the modular implementation of the generation. Each step in the process correspond to
a specific module and whenever it is possible, the same generic module is used for all
the descriptions. These modules follow the general scheme illustrated Figure 37. On
the contrary to the looped architecture presented section 9.2.1, this new architecture
is based on a continuous data flow principle. No data structure is written to hold the
generated paths and the player is not looped around the improvisation logic. As soon as
it is enabled, the player reads continuously the original material and renders a crossfade
with another portion of the material whenever it is sent the editing points (origin and
destination dates) of a jump. The continuity/jump module is in charge of handling the
alternation between the continuous reading of the material and the search for a jump. It
queries the player for the current position in the reading of the original material then
anticipates and outputs time-windows corresponding to the expected origin of the next
jump. These search windows are send to the knowledge database. A generic module, given
a pointer to one of the instances of the knowledge model, is in charge of searching in the
graph the possible jumps in this model. The number of instances of these search modules
is not limited. All the solutions are gathered, indexed by the date of the editing point
(origin of the jump). Then, they go through the filtering and weighting modules that we
will describe in the next sections. Once thoroughly described and ordered depending on
their weight, the same principle as before is applied: we either take the best solution or
draw randomly among the three best if we want to add variety to the process.

There are several benefits in this new architecture. Firstly we disconnected every
possible module from the knowledge model(s) thus we enable a general scheme for the
generation independently from the model(s) used. This enables to include several instances
of the Factor Oracle graph but it may also open to different types of models. We also
opened the loop of the previous architecture which helps the reactivity of system: we can
now choose efficiently if we want to plan a particular path (Off-line Search module of
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Figure 37: Diagram of the Database Approach of the Generation

Figure 37) or if we generate it on-the-fly. The player does not need to read the generated
sequence in a data structure and can effectuate it whenever it is needed. The conducting of
this path along the improvisation is thus more efficient thanks to a lower latency between
the decisions and their actual realization. To store an anticipated path if needed, we
just have to store the next editing points and send it to the player successively. With
this database approach, we are also free to make one “ clone ” improvise on one or the
other description or combine several descriptions by just enable the search in the different
graphs. This combination or switching between descriptions (and models) can happen at
anytime. It can be decided by the supervisor along the playing or planned depending on
the expected material. As soon as a model is activated in the database, the next search
for jump will include the result given by this model as well. Finally, we generalized the
filtering and weighting mechanism to favor particular musical aspects.
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10.2.2 Filtering

In the data flow process of the generation we gather the jump possibilities justified by the
collection of models and send them first to a strict selection process. This selection can be
composed of several modules each performing the filtering of solutions on different criteria.
We made generic the programming of these modules: each one receives the solutions and
outputs the accepted solutions on one side and the rejected solutions on another side.
Each module has also a bypass function to deactivate it and let through all the solutions.

10.2.2.1 Regions

This formalization of a filtering module leads us to an important renovation of the regions
system. In this database view of the system, a region is just a simple filtering module as
any other, based on an allowed portion of the original material. With this view, we could
program a generic Region module and instanciate it as many time as we wanted to obtain
as many regions as needed for our use. We could also imagine and realize negative regions,
that is specify directly forbidden portions of the material instead of specifying inclusive
regions. Depending of the connection between these modules we can also easily achieve
the union or the intersection of the regions. Musically, this means a great variety in the
way we want to constrain the generation to utilize specific material.

This renovation of the region mechanism — which was previously definitely included
in the improvisation logic — also enable to review, enhance and generalize specific usage
of the regions. One musical use in particular gave very pertinent results since the first
versions of the system: the continuous update of one of the region to the last x seconds
of the learning. This way the region follows the present time of the running material
(when the system is learning) and when we lock the generation in these x seconds we
achieve a musical smart delay effect: the computer generated discourse reuses only the
most recent material learnt but still recombines it into unheard variations. Then the
computer seems to follow the improviser it learns from. We generalized this mechanism
and made a module capable of updating any region to either follow the current last x

seconds of the recording or extending any region continuously to include the most recent
material while preserving its left-side (past) boundary.

The automatic alternation between the follow mode presented in the previous paragraph
and the free mode in which the generation is allowed to use all the material learnt has also
given very successful musical results. Again, thanks to this renovation of the regions, we
generalize this principle and implemented a module capable of alternating automatically
between any two regions. It is dotted with a settable period and a settable balance ratio
between the two regions. This way we achieve the musical effect of regularly combining
ideas coming from different part of the material learnt which is a very usual process in
improvisation.
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Phase The database approach of the generation and the generalization of the filtering
of the solutions gave us the correct framework to implement a mechanism to preserve the
pulse characteristic of the material as explained in section 7.2.2.2. This selection modules
compares the pulse annotation of the material at the origin and the destination of the
jump, in particular the phase in between two beats (see 5.1.2.4). It accepts jumps only
if the phase difference (between the origin and the destination of the jump) is below a
certain threshold. This way the original pulsation of the material is preserved. The same
idea can be applied to the phase difference between the destination of the jump and an
external running phase. This enables to synchronize the generation to an external pulse.
If this external pulse information comes from the extraction of the current common pulse
in a band for example, then we are able to synchronize our computer generation to this
common pulse.

10.2.3 Weighting

In the data flow process for generation we chain the filtering of solutions depending on
regions or phase constrains to the weighting system already outlined in section 9.2.1. As
we did for filtering modules, we generalize the prototype of a weighting module. This type
of modules receive the accepted jumps possibilities through a list of origin and destination
dates and computes a weight depending on some specific quality of the jump. The weight
is append to the origin and destination dates so that at after going through all these
weighting modules we just have to sum the separated weights to compute an overall quality
of the jump. For each module we also enable the possibility to choose the spreading range
of this weight. By adjusting relatively each weight range, we can thus favor one or several
aspect of the material compared to the others.

Context In the previous version of the system where the generation logic was attached
to a specific Factor Oracle graph, the context length (the lrs i.e. the length of the common
pattern at both end of the jump, see 7.1.1.2) was the primary and unchangeable criteria
to discriminate best jumps. In the database approach, the lrs is one of the modules of the
weighting process. The consideration of this quality is settable, as previously explained,
the module’s interface enable to choose the mapping range or the weight.

Energy We described section 6.3.1.2 how we can benefit from the amplitude information
of the pitch extraction algorithm or from the first coefficients of MFCCs vector to get an
annotation describing the musical dynamic. We also explained section 7.2.2.2 that we
can use this information to bend the musical discourse towards desirable content. We
implemented two weighting modules to do so with the energy. These modules depends
on the MFCCs extraction. The first module is a comparison module i.e. it compares the
energy at the origin and the destination of the jump to favor smooth jumps, jumps which
have close dynamics. The second module however is a conducting module which enables
the supervisor to favor jumps arriving to a specific range or energy. A small anticipation
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window is given and the modules computes the mean energy at the destination of the jump
over this anticipation window. Then it attributes a weight depending on the proximity
of this mean energy to the dynamic range by the supervisor. These energy weighting
modules which naturally can be enabled individually are used both to favor a smooth
generation and the fine conducting of the content.

Register The same anticipation mechanism as the one explained in the previous para-
graph for energy can be applied to conduct the musical register of the computer variation.
Specifying a window (in number of notes) the mean pitch of the next few notes at the
destination of the jumps is computed and a weight is calculated to favor high or low
pitches. As the pitch and segmentation in notes depend on the pitch extraction, this
module is only available if pitch extraction is effectively present and active. Through this
module, the supervisor of the computer can control the register favored by the computer
and for example create an inclination towards the material learnt which make use of the
bass register of the instrument. The database approach of our generation system enabled
to enhance greatly the possibilities of our system. Through the systematic query for jumps
in the models, we gather more solutions than previously and we can filter and weight
these solution according to musical criteria. The supervisor can this way conduct more
finely one “ clone ” by choosing the type of variations (i.e. the knowledge model(s) used),
emphasizing one or several musical aspects of the solutions: pulse, energy, register etc.
Figure 38 shows the interface of this new generation system.
We did not discussed the possibilities for polyphony in this architecture. However we did
implement several of the generation process we described without any kind of interference.
Thus we achieve polyphony simply by duplicating the generation architecture described
in this chapter.

The version of the system presented in this part is the latest we tested. This database
approach and implementation have given very successful results both on the musical
rendering and playing with musicians and on computer aspects (performances, ease to
adapt etc.). We achieve through this version a versatility and a very quick adaptation
to the performance which is extremely useful in the case of improvisation. We can now
integrate our system to very various sorts of musical contexts from the free abstract
timbral duet to the structured and pulse Jazz band. All the musical situations we have
tested along our work are listed in the List of Musical Experiences at the end of this thesis.
The next chapter details some of these experiences and explains how it influenced our
research. Naturally, we have many more prototypes and refinements already implemented
but which have not been tried. We also have many more ideas to enhance and improve
this system.
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Figure 38: Interface of the New Generation Part of the System
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Chapter 11

Musical Experiences

It has been a very important care in my research to confront the system to the musical
reality of improvisation. I tried along these years to test the prototypes in the most various
and numerous musical situation as possible and gathered (informally) feedback from the
musicians on these experiments. These various work sessions, concerts, impromptus and
other musical situations are almost exhaustively in the List of Musical Experiences at the
end of this thesis to which I will make often reference in the current chapter. I will detail
here a few notable experiences and explain how these musical situations influenced the
work presented in this thesis.

11.1 Duets

The first and simpler improvisation situation I tried with the system is naturally the case
of duet between an acoustic musician, improvising in its own style and the supervised
computer, learning in real-time and generating new musical discourse based on what it
just learnt. Technically and musically this situation appears as the simplest possible,
however since the computer only bases its discourse on the material provided by the
musician along the current improvisation, it deeply relies on the acoustic musician to be
inventive and bring new material to augment the variations possibilities of the computer.
The computer proposes new variations and thus also provide a consistent part of novelty
and creativity. But the primary musical material only relies on the acoustic musician in
this case. For example, a musician starting the improvisation by a looped pattern provides
very easily analyzed material considering the knowledge model of the system based on
repetition. But we can not expect the computer to escape this loop and suggest novel
directions until the musician gives himself different material than the initial loop.

Nevertheless, this simple situation allowed me to really adjust and refine the listening
part of the system. One of the first extraordinary musician I met and played with was
Michel Doneda, a French saxophonist (soprano). He is a long accomplished musician,
mostly improvising in very diverse contexts from totally free improvisations to collaboration
with independent rock bands and in various countries. He arrived in our working sessions
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(Doneda09) to prepare a collective concert (Martin10) and played with his very own
characteristic style constituted almost exclusively of continuous granular and colored
“ noises ” of subtle blowing and fingerings on his soprano saxophone. To capture the
patterns in this very unexpected style, I had to adapt very precisely the spectral detection.
In particular, I had to make a specific MFCCs distance profile (see section 5.2.1.3) to
enable the system to delimit proper clusters. In this same direction, the work with the
French percussionist Laurent Mariusse (Mariusse10a) who often constitutes his own set
of percussions with a marimba/vibraphone, a thunder metal plate but also kitchen bowls,
thick stone cutting discs and other unexpected objects, pushed further the research around
the spectral listening to achieve coherent recombinations of this kind of heterogenous
material.

The pitch detection part of the system had greatly benefited from the few months
residency of Steve Lehman in our team. Steve Lehman is a leading saxophonist of the
contemporary New York Jazz scene. Composer as well, his pieces have strong written
structures and he make use of all the techniques coming from the contemporary music
especially from the spectral music. He is especially skilled in the use of quarter tones
and microtonal intonations. So that during the time we tested the system together
(Lehman11), we developed a quarter tones pitch detection extending our initial semi-
tone scale. This scale gave very interesting results with the system enabling refined melodic
pattern recognitions and a stronger adaptation to the tuning of a specific instrument
or instrumentalist. I reused it later with singers for example helping the recognition of
vibrato patterns. But the fixed quarter tone definition was not precise enough to adapt to
the specific fingerings of Steve’s saxophones which provided finer microtonal tunings. He
extracted the pitch detection module of the system and customized the microtonal scale
to fit his saxophone and playing. He also integrated this module to his own computer
system for improvisation.

A third experiment in duet is here to note: I had the great opportunity to meet and
improvise with Steve Coleman. There is no need to present Steve Coleman, he is one of
the most influent saxophonist on the Jazz scene since the 80’s. His improvisation and
composition systems strongly relies on pitches’ structures and processes (scales, modes;
evolutions of those, mutations etc.). After explaining the functioning of the system
through the example of pitch description and melodic recombinations to Steve Coleman,
he tried it very accurately with two short improvisations (around 3 minutes each) using
two non-overlapping modes. Predictably, the system showed two disconnected parts in
the graph. Then he combined both modes in a third improvisation which led to many
links in the graph with the two previous parts. An idea came from this experiment that
we did not succeed to implement yet. I would like to be able to make this kind of musical
mode emerge from an improvisation. For example, if a musician used a 7-pitches scale in
an improvisation, I would like to enable the system propose variations reducing this scale
to 5 of these pitches for example. That would mean strictly excluding patterns using the
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2 other pitches and always finding a jump to exclude these patterns. We did not solve the
problem of efficiently navigation with such strong constrain yet.

11.2 Collective Free Improvisation

I placed the system often in a second usual improvisation context: collective free improvi-
sation. In this situation, several musicians improvise together without any pre-determined
references to a specific style or idiom. The musical issue for the system in such context
is to be able take on a pertinent place among the musicians while its material depends
from the input of one or several of them. A first important concert in this context took
place 2010 at IRCAM (Martin10) gathering four improvisators from different horizons:
Brice Martin, bassoonist coming from a contemporary music background, Beñat Achiary,
a basque singer with a very extended vocal technique, Médéric Collignon playing mainly a
pocket bugle but also making music with several small objects and experimenting extraor-
dinary vocal techniques as well, and Michel Doneda, saxophonist we already presented in
the previous section. We described in chapter 9 the multiple input and multiple output
version of the system that I thoroughly tested on this occasion. The audio stream coming
from a microphone on each musician constituted the four inputs of the system and on
each musicians, I had two descriptions and model learnt in parallel: a pitch description
and a spectral description. I had 9 players rendering the paths of 4 improvisation logics
maximum. This means that I had a maximum of 4 different variations generated at a time
but I had the possibility to read them simultaneously at different speeds with or without
transposition. A pre-defined structure had been planned: alternating between duets with
an acoustic musician and the computer system and collective intermezzi. During the
concert which lasted about an hour my role as supervisor of the system was crucial and
could be named computer musician. I had to handle, control, place in space and build
a pertinent discourse with the computer system in this musical “ arena ”. This meant
intensive musical decisions on which musician to listen to, which description to use, which
“ clone ” to play, which material to use etc. This as been a very founding experience for
the research presented in this thesis.

A second experience of smaller scale in collective free improvisation drove the research
around the different role of streams and inputs explained in section 5.1. I invited for work
sessions with the system, two acoustic musicians, a clarinetist, Jean-Brice Godet and
an viola player, Cyprien Busolini, who are long used to improvise together (Godet11;
Godet11a). They regularly play in the parisian free improvisation scene and have a
style of improvisation together which is characterized by the prominence of the overall
musical material over the individual discourses. They seem to create and manipulate one
global musical matter, a fusion of both instruments, rather than developing their personal
trajectories intersecting, evolving together or splitting apart. The usual way to play with
the system in trio (two acoustic musicians and the computer and its supervisor) up to
these sessions was to consider each instrument as an input for a separate copy of the
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Figure 11.1: Inputs and Streams with Two Instruments

software. When trying to play this way with them, I could not really capture and interact
with their musical content by using either one or the other instance of the system because
their musical matter was not just a superposition of the two materials but the real fusion
of both materials. This fusion was not captured by the system when listening to the
musicians separately. No dialog seemed to start in this configuration because the system
was not able to apprehend and participate to the global musical matter. So I had then
to revise our notion of input and start thinking that I would get better results merging
the clarinet and the viola audio streams, taking the mixture as the new global input as
presented Figure 11.1. The conceptual separation of streams and inputs took all this sense
in this situation. Naturally, this merging had notable consequences on the extraction and
analysis because the pitch description becomes almost obsolete with a polyphonic input.
However, as the main matter of the improvisation was this fusion of timbre, the spectral
analysis done on the merging of both stream instantly opened the musical dialog.

11.3 Jazz Band

Later on, I had the occasion of trying to use our system with a formed Jazz band. After a
few duet improvisation with the French saxophonist Raphaël Imbert, he introduced me
(and the software) to his music company, the Nine Spirit Company, based in the south
east of France. The company is a variable ensemble with strong Jazz roots but Raphaël is
very found of mixing several styles of music his concerts and recordings. The place of the
system was then rather easy to find, following Raphaël’s musical ideas. When playing
with this band, there usually was the classic Jazz rhythmic section with at least a drum
set and a double bass player, sometimes completed with keyboards. One of the first usage
of the system in this context was to learn a Jazz chorus (usually from the saxophonist)
then take on by itself a new solo later on in the piece. As we did not include any notion
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of harmonic grid in the system, we had to assume the floating/disconnected nature of the
computer generated solo. But Raphaël included this characteristics in his composing and
made suitable place for this kind of abstract superposition.

In my experiences, I had the occasion to prepare the system for the playing with another
formed Jazz band: Carine Bonnefoy’s quintet. Carine Bonnefoy is a French Jazz composer,
arranger, pianist and conductor, working in particular in the Conservatoire National
Supérieur de Musique et de Danse de Paris (CNSMDP). In her quintet, she is composing
and playing the piano, there are a trumpet player, a saxophone player, a double bass
player and a drummer. We recorded studio sessions and rehearsals to prepare a concert
with the system and the band at CNSMDP in October 2012. We extended the use of the
system in order to generate its own chorus by hybridizing instruments choruses. The idea
developed in collaboration with Georges Bloch was to learn successively in the same input
of the system two choruses played by the trumpet player and the saxophonist at different
moments of the same piece and on the same harmonic grid and tempo. The system was
then able to generate a new chorus jumping back and forth from the trumpet material to
the saxophone material creating some kind of new hybrid instrument improvising in the
piece. The same lack of harmonic grid as mentioned earlier had to be taken into account
when planning these pieces and choruses. But in this case of successive learning of two
different instruments, both the pitch and spectral descriptions gave pertinent and different
musical results. The ability of the system to generate a solo with the combination of ideas
and sounds of two instruments added a remarkable interest in its usage in such context,
even though it could not follow the harmonic grid.

With the material recorded during the studio sessions with Carine’s quintet described
earlier, we could also test for the first time the pulse preserving mechanism we developed
for the system (explained in sections 5.1.2.4, 7.2.2. and 10.2.2). During these sessions, a
multitrack recording of each separated instruments was made, including the drum part. I
could thus evacuate the critical problem of real-time pulse extraction and annotate off-line
the pulse for all the tracks thanks to the drum track. Then we could effectively test the
efficiency of the phase representation (section 5.1.2.4) and phase constraint (sections 7.2.2
and 10.2.2) for our system. It gave very successful results so that we could use it during
the concert planned with Carine’s quintet and the virtual saxophone and trumpet hybrid
could improvise and keep up with its tempo. As we had no real-time extraction of pulse
at the time, we could only preserve the pulse while generating and it was up the musicians
to synchronize themselves with the computer’s pulse.

Lately, I played regularly with Raphaël Imbert’s Nine Spirit Company. He invited
me several times to play in his concerts and had me come in his musical residencies with
different persons from the company. During one of the last residency with him and his
musicians (Imbert13), in a much larger setup, two trombonists were playing in the band.
I took advantage of this situation to test a new application of both the merging of streams
and the spectral description of the streams. The two trombonist played together a common
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duet chorus in one of the piece. I recorded and learnt this double solo in one input of
the system as they were playing in the same microphone. The spectral description gave
very successful result as the two instruments were sometimes playing together, sometimes
alternating in a classical question/answer scheme. The model built on the timbres of both
instruments was really meaningful. Then the computer was able to generate a very lively
and punchy jazz solo for two trombone.

During the same residency (Imbert13) and on the occasion of another concert right
after (Imbert13a), I decided to test the real-time extraction and usage of the pulse.
As explained in section 5.1.2.4, real-time pulse extraction is a whole research subject
on its own. But thanks to the implementations of L. Bonnasse-Gahot and J. Chao of
E. W. Large’s work on beat tracking with oscillators, I could get a working module to
extract more a less a relevant pulse. It has actually been very interesting to compare
the results of the pulse extraction with two different drummer playing with the band. I
placed piezo contact microphones on both cymbals of the drum set to extract the impacts
to drive the beat tracking module. This pulse was used at the same time to annotate
the learning of the system and to synchronize the generation. Even though the pulse
tracking was not perfect and I had to drive it carefully and check regularly its pertinence,
the musical result was very impressive. With this setup we could for the first time really
feel that the computer was participating to the common pulsed improvisation without
been disconnected or floating above the rest of the band. It constitutes a really promising
direction that we have to continue exploring.

11.4 Prepared Improvisations

In his exploration of the system, Raphaël Imbert liked also very much the possibility
to prepare the software with sound files on which we can apply the same analysis,
modeling and generation principles — exactly as if they were real-time sources. His
ethnomusicological research leads him to often incorporate historical material into his
compositions. The re-improvisation of such musical material through our system has been
really appealling to this idea. Thus, he gave me regularly historical recordings like the
first solo recording of Coleman Hawkins (famous Jazz saxophonist from the 20th century),
an old african-american preach, a recording of a prisoners’ work song which rhythm is
given by the sound of pickaxes on stones etc. In most of these cases, the musical idea
was to use one or several computer based generation on these materials to constitute a
musical framework for an original composition or improvisation of the band. The use of
the african-american preach for example leads to a collective idiomatic improvisation close
to hip hop style.

Raphaël Imbert pushed me to go further in the use of external recordings with a
particular recording of the 20th century saxophonist John Coltrane playing an improvised
coda of one of his composition: I Want to Talk About You. In this case, I prepared
the system with this recording of J. Coltrane then a real-time improvisation of Raphaël
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on the same theme is learnt on-the-fly as a present complement of the original coda.
I make the system learn the new solo of Raphaël on the same input as the recording
of J. Coltrane. Thus, as with the hybrid chorus with trumpet and saxophone material
previously presented, the computer generates in this case a hybrid coda using both the
ideas and sound of the original coda and Raphaël’s re-interpretation of the theme. Along
these experiences of “ historical-hybrid ” improvisations, I improved the recognition of
common patterns between both materials by blocking the alphabet discovery (along
Raphaël’s real-time learning) and forcing the spectral recognition to use the clusters
already defined when learning J. Coltrane’s solo. The idea is to avoid the explosion of
alphabet size and increase recombination links between the two sources. Doing so, I could
have successful melodic and timbral hybridizations. One of the advantages of the spectral
description in this setup is to include in the analysis the recording quality of both material.
Naturally, the quality of the recording of J. Coltrane’s historical solo is very different
from the quality of a real-time recording of Raphaël: the historical recording is noisier,
with less precision but there is almost no music in background while Raphaël’s recording
has usually a cleaner sound but may be overlaid with other musicians accompanying him
or audience’s reactions. The spectral description includes these differences as the whole
sound is considered. The common timbral patterns found by the system thus enable to
jump from one material to the other with smoother transitions than with the melodic
description which only consider the pitch of the notes. I played this “ piece ” based on
J. Coltrane’s coda several time in concerts with Raphaël (Imbert11a; Imbert11b) and
its has always created much impression by its timeless flavor.

11.5 Speech Improvisation

A very different type of improvisation with the system that I personally tested was the
playing with vocalists and singers. Very early in my work, I had the occasion to improvise
with Beñat Achiary, a Basque singer. His background is deeply linked with the Basque
tradition of south-west of France but he now mixes several vocal techniques and has
been practicing vocal improvisation for a very long time. He started his first testing
of the system (Achiary09) with the reading of written poetry in French and Basque
languages and explored directly the relation with the meaning of words. Obviously, the
system has absolutely no notion of words, sentences or meaning. Therefore, there is a
inevitable rupture of those elements of the language in the computer based generation.
However, the spectral description implemented in the system is very suitable to capture
the recurrences of the language’s sound. And the discourse generated by the computer is a
subtle recombination and jumbling of various words together which very much emphasizes
the sonorities sometimes hidden behind the meaning of texts. This work on texts with
Beñat has really been a poetic meeting which opened nice artistic directions.

I followed this work on texts and deconstruction of the meaning of words to emphasize
their musicality through my participation to a project of musical theater. Benjamin
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Lazar a French comedian and director called me to realize the computer part of one of
his modern creation. This project in which he was at same time writer and director
gathered a soprano (Claire Lefilliâtre), a composer (Vincent Manac’h), an artistic director
(Geoffroy Jourdain) and myself to build together a play which would talk about the thin
frontier between language and music in our human experience. The generative system
was naturally one piece of software only in the whole setup imagined and realized for
the piece. Its use during the theater play was concentrated around a scene in which a
mother is cradling her (imagined) child in her arms. She is telling an ancient tale to
lull the child and the system is recording this story. Along the tale, the voice of the
mother is duplicated thanks to the system and through spatialization, the multiple voices
are traveling around the audience. The voices coming from the computer generation
deconstructed the meaning of the words and the story thanks to the system. The “ goal ”
of this process was to immerse the audience in the particular state of a child letting him
or her go to the sleep with the melody of his or her mother’s voice. There exist a moment
in this falling asleep when the words do not make sense anymore and only the sonorities
and melody of the language accompany the mind to the sleep. I controlled the system
during this scene to accompany the audience to this feeling and we had very positive
feedback on this particular moment of the play.

Following these fruitful experiences on speech I then integrated to the system, the
specific analysis of the prosody done in N. Obin’s work (see section 6.1.3.1). N. Obin’s
process enables to segment speech material into syllables and label them with their
prosodic contour. The result of this process can be learnt in the OMax system instead
of the regular pitch analysis. This way the system is capable of generating new speech
material with respect to the prosody of the voice, that is the natural melodic flow of
the language. This speech generation gives very convincing results. It produces a fluent
stream of voice which sounds like real sentences but which dismantles subtly the words
and meaning of the language. The result is very close to glossolalia. I had the occasion to
explore this direction first on the voice of the French actor André Dussolier reading the
book À la recherche du temps perdu, a famous French novel from Marcel Proust. The result
is a truly disturbing flow of the quiet and grave voice of André Dussolier telling convincing
gibberish with a coherent French prosody. Then, I realized a first stable prototype of
this prosodic version of the system that G. Bloch used in a public performance for an
exhibition of the Centre Georges Pompidou about imaginary languages. This prosodic
version combined with his video extension of OMax was used to explore the famous chess
match scene of the movie Le septième sceau from I. Bergman. G. Bloch replaced the
original dialog of the scene with its translation in the imaginary language of the artist
Jaap Blonk. Then he let the system recombine both the sound and image of the scene
using in parallel the prosodic and spectral knowledge models of the dialog. I pursue this
work with N. Obin’s speech processing with the recording of several French and American
rapper like Roce, Dr. Dre and Snoop Dog. Combining these experiences with the new
pulse extraction of the system, I could give plausible reinterpretation of famous titles like
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Still Dre. The work with the French rapper Roce on the same principles has been filmed
in a very short movie produced for la Cité des sciences et de l’industrie, a famous Parisian
science museum which opens December 2013 an exhibition about the human voice.

11.6 PedagOMax

Finally, I had the occasion to invent a specific version of the system for another very
different context. The parisian contemporary music ensemble Court-Circuit asked me
to play a part in a pedagogical project which aims to introduce contemporary music
in a Collège1 in Paris. I developed a version of the system which can be controlled
through 8 joysticks so that we organized regular workshop with up to 8 children, one
musician-improvisator of the ensemble and my-self. In this setup, the system listens
and learns from the acoustic musician improvising. Then, four computer “ clones ” are
controlled collaboratively by pairs of joysticks. For each “ clone ” one joystick conducts
its behavior with 3 axes and one switch: the switch starts and stops the generation, the
throttle of the joystick controls the volume — that is the musical dynamic —, the X axis
controls the time-stretching and the Y axis controls the transposition. The second joystick
attached to a “ clone ” is used to choose the musical content of the generation through
the manipulation of a region. Two axes and one switch of this second joystick are used:
the switch activates or deactivates the effect of the region — when the region is on, the
“ clone ” is force to recombine musical material contained in this region, when the region
is off, the “ clone ” is free to recombine any part of the original material —, the X axis
is used to move the region along the timeline to select material towards the past (left)
or the present time of the learning (right), the Y axis enables to widen (up) or narrow
(down) the length of the region — so that the “ cloned ” is constrained in a large portion
of the material or a very small and focused area. This way, each of the four “ clones ” is
played by two children. This workshop has been a real success. Children understood
very quickly, with the help of the visualization, how the system works and we could build
all together prepared and free improvisations where everybody was careful to common
musical discourse.

1which is the common school for children from 11 to 14 years old, equivalent to the american Middle School
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Chapter 12

Conclusion & Future Works

12.1 Conclusion

We started this thesis with a review of several systems for music generation. We took
voluntarily various generative systems including some oriented towards music compositions
and presented three high level criteria enabling us to organize this review on the operational
level, that is on how those systems work. In the second chapter of this review, we embraced
another point of view and described how a system oriented towards improvisation should
behave on the musical level, that is what these systems musically produce. The second
part of this thesis thoroughly presented the concepts and principles for a generative
improvisation system based on stylistic reinjection. The organization of this part was
inspired by cognitive reflexions and adopted an anthropomorphic structure coming from
the consideration of the global entity formed by the system and its supervisor. This entity
should behave as any acoustic musician with his instrument. We detailed the listening,
learning and generative capacities of the system and the conceptualizations of those. In
the third part of this work, we proposed new structures and architectures to achieve
such a performance computer system. We exemplified this software design research with
successive architecture renewals and prototypes, and described several implementation
issues we encountered along the building of two main versions of the system. Finally in the
last chapter of this thesis, we told numerous musical situations in which we played with
the system along with leading acoustic musicians. These wide-ranging performances from
studio work sessions to large public concerts have considerably helped to challenge and
enrich the work presented in this thesis. They finally help us to measure its drawbacks
and project the future work remaining to be done around this system.

At the end of this thesis, we come off with a working and efficient system for interactive
and agnostic music improvisation systems. We made it versatile and controllable to enable
the playing in many musical contexts. To adapt to those contexts we included various
and efficient analysis of the music and gave the supervisor powerful means to develop
pertinent musical discourses. But this system has naturally some limitations. Some of
these limitations come from choices we made. For example our on the fly hypothesis
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made us avoid the usage of abundant external material, a choice which may be criticized
when huge databases of sounds and pieces are available. Our core paradigm and the
last architecture presented may actually not be incompatible with such databases but
certainly require specific adaptations. Some other limitations coming from this last
architecture may be overcome in further explorations for example the empowering of
the system with more automatic decisions would relieve the supervisor from low-level
choices and give him or her a higher view on the musical possibilities. To do so, we could
benefit from higher level analysis of the on-going music, for example the extraction of
the acoustic musician’s improvisation’s global structure would be of great interest. The
knowledge model that we use is essentially sequential and non-hierarchical. Even though
we proposed a clustering algorithm to extract some organization of the patterns, it may
not give very fruitful result to analyze higher order organization such as harmonic grid,
orchestration differences etc. The same kind of higher organization may come from the
preparation of an improvisation. Our way to play with the system in such context is either
to externally script the parameters to use or for the supervisor to perform in real-time
the improvisation’s plan. Thus we do not benefit, in the internal system’s working, from
the prepared information as a structured scenario and a source of knowledge. Finally, we
systematically use the sound capture of a musician as the system’s material for generation.
The deforming mirror created this way is intriguing and appealing to musicians and the
manipulation of such recorded material gives an intrinsic consistence in the generation’s
details as e.g. the articulation. But inspired from the existing numerous sound synthesis
we could try exploring possible realization of our stylistic reinjection with other sound
material. This idea has been successfully broached in the Native Alien project which make
use of our system with granular synthesis instead of our regular concatenative players.

12.2 Perspectives

Our thorough study of the principles and architectures for an improvisation system
lead us to explore several conceptions and designs for such a system. Judging by the
numerous musical experiences with the system and the interest shown by several world-
class musicians, we succeeded in the building of a musically pertinent system. Yet this
work calls for many more improvements and opens up new research direction to embrace
more and more aspect of musical improvisation.

The perception part of the system could benefit from new descriptions alongside with
melody, timbre and harmony, and enhance this way its capacities to capture several
aspects of the musical discourse. In particular, neither the pulse extraction, nor the tests
we have done on notes’ durations have lead to an efficient usage of the Factor Oracle
graph for the rhythmic modeling. Although our usage of pulse information represents
a major breakthrough for the OMax scheme from now on capable of taking part in a
strongly pulsed context, the precise modeling of rhythmical patterns would enable to
generate variations of these patterns and create thus an interesting musical dialog on this
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important musical aspect as well. We did not study another very important process of the
perception of improvisation: self-listening. Indeed, when improvising, acoustic musicians
not only listen to the others’ discourses and to the global result but also to their own
sound and the adequacy of it in the overall music. The system we built do not reproduce
this mechanism. One of the direction to do so would be to consider the output of the
system as a new input stream. However this external looping would not benefit from
the intimate knowledge of the systems’ generation. Therefore, there ought to be a more
efficient way to give the system musical self-awareness.

On the knowledge part, Factor Oracle graph has proven to be a very powerful core
for our knowledge model. However, we surely have now to integrate new models in the
memory of our system which properties would complement those of Factor Oracle. For
example, the search for paths satisfying arbitrary constraints in the Factor Oracle does not
appear as a simple issue. Several other structures have been invented to enable the efficient
search for such paths. The new architecture we proposed in this thesis allows a straight
forward implementation of new models in the knowledge database. Those models may
enable the artificial emergence of arbitrary properties in the generation part even though
the original material did not explicitly show this property. For example, the possibility to
improvise on a particular subset of notes (mode) from the original material has been of
strong appeal when trying the system in the idiomatic Jazz context. On a shorter term,
the automatic selection of the proper description to use for the generation may be an
interesting research direction. Indeed, up to now, it is still up to the supervisor to choose
the pertinent description(s) on which musical variations are based. Our architecture gave
the supervisor the mean to do so along the playing, without interrupting the musical
discourse of the computer. However, we could imagine a smarter system, capable of
detecting automatically from the musical context the correct description(s) to activate.
This direction would pursue the idea to achieve a system very responsive to its context
— all the way to the adaptation of its listening — and the evaluation of the adequacy of
its own musical discourse to the context with self-listening.

Finally, we wish that the integration of our system into musical projects will continue
and expand. We believe that many more musical explorations are yet to try. We hope
that long contributing musicians as well as musicians discovering the system for the first
time will keep on suggesting ideas and bendings of our system.
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List of Musical Experiences

Concerts

Martin et al.: Concert “L’improvisation” at IRCAM Martin10

Paris, Feb. 11, 2010.

Concert in l’Espace Projection at IRCAM, Paris in the framework of the Colloquium Analyze
Improvisation. Structured improvisation around OMax, 1 hour
Brice Martin, Bassoon
Beñat Achiary, Voice
Médéric Collignon, Trumpets and Voice
Michel Donéda, Saxophones
Benjamin Lévy, OMax.

Mariusse et al.: Improvisations avec OMax Mariusse10

Rennes, France, May 18, 2010.

Concert for the Journées d’Informatique Musicale 2010 in Rennes, around 35 minutes of free
improvisation
Laurent Mariusse, Percussions
François Nicolas, Piano
Nicolas Misdariis, Saxophone and Computer
Gérard Assayag, OMax
Benjamin Lévy, OMax.

Godet et al.: Music and Dance Improvisation Godet10

Paris, Oct. 2, 2010.

Concert for the opening of a sculpture exhibition in Paris. Around 45 minutes of free Music and
Dance improvisation inspired by the sculptures and paintings of the exhibition
Jean-Brice Godet, Clarinets
Jose Luis Sultan, Dance
Colette Grandgérard, Sculpture & Painting
Benjamin Lévy, OMax.
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Imbert et al.: Concert in Cité de la Musique of Marseille Imbert11a

Marseille, France, Jan. 20, 2011.

Raphaël Imbert, Saxophones
Pierre Fénichel, Double Bass
Simon Sieger, Piano, Keyboards and Trombone
Thomas Weirich, Guitars
Jean-Luc Di Fraya, Drums and Voice
Gérard Assayag, OMax
Benjamin Lévy, OMax.

Di Donato: Des puces, des souris et des hommes Di-Donato11

Lyon, France, Mar. 15, 2011. url: http://www.dailymotion.com/video/xw5n5y_
jacques-_di-_donato-_plays-_omax-_in-_lyon-_2011_music.

Performance in Lyon presented in a cycle of scientific conferences.
Jacques Di Donato, Clarinet
Gérard Assayag, OMax
Benjamin Lévy, OMax
Jacques Saramut, Speaker.

Lubat: Concert with the Lubat Company in New Morning, Paris Lubat11

Paris, May 9, 2011.

Bernard Lubat, Keyboard, Conducting and his musicians
Gérard Assayag, OMax
Benjamin Lévy, OMax.

Lubat et al.: Musique du XXIème siècle, L’homme, l’outil et la machine Lubat11a

Noaillan, France, Aug. 14, 2011.

Concert in the church of Noaillan, South-West of France, opening concert of the 34th edition of
the Hestejada dé las arts Music festival
Bernard Lubat, Keyboards and Voice
Fabrice Vieira, Guitar and Voice
Marc Chemillier, OMax
Benjamin Lévy, OMax.

Lubat et al.: Futuroscopie, Musique contemporaine d’Occitanie Lubat11b

Pompejac, France, Aug. 18, 2011.

Concert in the church of Pompéjac, South-West of France during the 34th edition of the Hestejada
dé las arts Music festival
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Bernard Lubat, Keyboards and Voice
Fabrice Vieira, Guitar and Voice
Beñat Achiary, Voice
Marc Chemillier, OMax
Benjamin Lévy, OMax.

Lubat: Concert at Espace Paul Jargot, Crolles Lubat11d

Crolles, France, Sept. 30, 2011.

Bernard Lubat, Piano
Assayag Gérard, OMax
Benjamin Lévy, OMax.

Martin: Concert in Studio de l’Ermitage, Paris Martin11a

Paris, Nov. 9, 2011.

Concert of the Sons Neufs Jazz Festival
Brice Martin, Bassoon
Benjamin Lévy, Computer.

Imbert et al.: OMax @ Lomax Imbert11b

Aix-en-Provence, France, Nov. 15, 2011. url: http://www.dailymotion.com/playlist/
x2d46f_RepMus_omax-_at-_lomax/1#video=xvpyag.

Concert with the Nine Spirit Company at Seconde Nature in Aix en Provence
Raphaël Imbert, Saxophones
Pierre Fénichel, Double Bass
Simon Sieger, Piano, Keyboards and Trombone
Thomas Weirich, Guitars
Jean-Luc Di Fraya, Drums and Voice
Gérard Assayag, OMax
Benjamin Lévy, OMax.

Godet et al.: Concert at Naxos Bobine, Paris Godet11b

Paris, Dec. 7, 2011.

Free improvisation, around 45 minutes
Jean-Brice Godet, Clarinets
Cyprien Busolini, Viola
Philippe Cornus, Percussions
Benjamin Lévy, OMax.
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Imbert et al.: Concerts at Roulette, Brooklyn and Columbia University Imbert12

New York, USA, May 16–18, 2012. url: http://repmus.ircam.fr/improtechpny.

Concerts of the Workshop ImproTech Paris-New York 2012 : Improvisation & Technology
Raphaël Imbert, Saxophones
Simon Sieger, Piano, Keyboards and Trombone
Thomas Weirich, Guitars
Benjamin Lévy, OMax.

Martin: Concert in Concordia University, Montreal Martin12

Montreal, Canada, May 24, 2012. url: http://matralab.hexagram.ca/comprovisations2012/
about/andhttp://www.dailymotion.com/video/xvpn7l_brice-_martin-_-

and-_benjamin-_levy-_omax-_performance-_at-_comprovisation-_2012-_-

workshop_creation.

Concert at Matralab for the Comprovisations, Improvisation Technologies for the Performing
Arts Research-Creation Workshop
Brice Martin, Bassoon
Benjamin Lévy, OMax.

Imbert: Concert with the Nine Spirit Company in Marseille Imbert12a

Marseille, France, July 17, 2012.

Opening concert of the jazz festival "des cinq continents"
Raphaël Imbert, Saxophones
Sarah Quintana, Voice and Guitar
Paul Elwood, Banjo and Voice
Pierre Fénichel, Double Bass
Simon Sieger, Piano, Keyboards and Trombone
Thomas Weirich, Guitars
Jean-Luc Di Fraya, Drums and Voice
Benjamin Lévy, OMax.

Imbert: Concert with the Nine Spirit Compagny in Junas Imbert12b

Junas, France, July 18, 2012.

Concert of the jazz festival in Junas
Raphaël Imbert, Saxophones
Sarah Quintana, Voice and Guitar
Paul Elwood, Banjo and Voice
Pierre Fénichel, Double Bass
Simon Sieger, Piano, Keyboards and Trombone
Thomas Weirich, Guitars
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Jean-Luc Di Fraya, Drums and Voice
Benjamin Lévy, OMax.

Roux: Miroir Roux12

Uzeste, France, Aug. 23–24, 2012.

Concert in Uzeste, South-West of France during the 35th edition of the Hestejada dé las arts
Music festival
Sylvain Roux, Flutes
Benjamin Lévy, OMax.

Martin: Il est libre OMax Martin12a

Uzeste, France, Aug. 25, 2012.

Concert in Uzeste, South-West of France during the 35th edition of the Hestejada dé las arts
Music festival
Brice Martin, Bassoon
Benjamin Lévy, OMax.

Godet: CHI 2013 — IRCAM Lab Tour Godet13

Paris, Apr. 30, 2013.

Concert at IRCAM for the Lab Tour of Computer and Human Interactions Conference, two free
improvistions (about 10 minutes each)
Jean-Brice Godet, Clarinets
Benjamin Lévy, OMax.

Imbert et al.: Residency & Concert with the Nine Spirit Company Imbert13

Baux de Provence, France, May 25–29, 2013.

Concert and Residency in the framework of Marseille-Provence 2013, European Capital of Culture
Raphaël Imbert, Saxophones
Pierre Fénichel, Double Bass
Simon Sieger, Piano, Keyboards and Trombone
Romain Morello, Trombone
Christophe Leloil, Trumpet
Thomas Weirich, Guitars
Alain Soler, Guitars
Cedric Bec, Drums and Voice
Benjamin Lévy, OMax.

Imbert et al.: Rates of Spirit Imbert13a

Arles, France, June 2, 2013.
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Concert with the Nine Spirit Company in the framework of Marseille-Provence 2013, European
Capital of Culture
Raphaël Imbert, Saxophones
Pierre Fénichel, Double Bass
Simon Sieger, Piano, Keyboards and Trombone
Thomas Weirich, Guitars
André Rossi, Piano
Jean-Luc Di Fraya, Drums and Voice
Benjamin Lévy, OMax.

Lambla et al.: Soustraction addictive Lambla13

Uzeste, France, Aug. 18, 2013–Aug. 19, 2012.

OMax based composition during a Concert-Conference of the 36th edition of the Hestejada dé
las arts Music festival in Uzeste, South-West of France
Pierre Lambla, Saxophone
Jaime Chao, Voice, Guitar, Computer
Benjamin Lévy, OMax.

Roux: Miroir Roux13

Uzeste, France, Aug. 19, 2013.

Concert in Uzeste, South-West of France during the 36th edition of the Hestejada dé las arts
Music festival
Sylvain Roux, Flutes
Benjamin Lévy, OMax.

Imbert et al.: L’âme du temps Imbert13b

Tournai, Belgium, Aug. 31, 2013.

Concert of the Music & Philosophy Festival Les [rencontres] inattendues
Bernard Stiegler, Philosopher
Raphaël Imbert, Saxophones
Karol Beffa, Piano
Johan Farjot, Rhodes
André Rossi, Organ
Marion Rampal, Voice
Arnaud Thorette, Viola
Pierre Fénichel, Double Bass
Benjamin Lévy, OMax.
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Demonstrations

Mariusse: Prototype Evening Mariusse10a

Paris, June 19, 2010.

Live demonstration of OMax with a musician in IRCAM’s Studio 5, 1 hour
Laurent Mariusse, Percussions
Gérard Assayag, Speaker
Benjamin Lévy, OMax.

Lê Quang: Concert-Presentation of OMax in the MaMux Conférence at IRCAM
Le-Quang11

Paris, May 20, 2011.

Vincent Lê Quang, Saxophone
Benjamin Lévy, OMax.

Mezzardi: Performance-Conference in Le Blanc-Mesnil, Paris Suburbs Mezzardi12

Le Blanc Mesnil, France, May 5, 2012.

“Magic” Malik Mezzardi, Flute
Benjamin Lévy, OMax.

Kalinowski: Around Acoustics and Synthetic Sound Kalinowski12

Krakow, Oct. 12, 2012.

Live demonstration of OMax with a musician for the Music Academy of Krakow
Jan Kalinowski, Cello
Benjamin Lévy, OMax.

Imbert et al.: Le logiciel musicien OMax Imbert13c

Tournai, Belgium, Sept. 1, 2013.

Demonstration-Concert for the Music & Philosophy Festival Les [rencontres] inattendues
Raphaël Imbert, Saxophones
Karol Beffa, Piano
Benjamin Lévy, OMax.
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Sound Installation

Robin: Sound Installation in the Garden of Villa Medici, Rome Robin10

Rome, Italy, June 2–8, 2010.

Standalone improvisation with OMax in an short-lived building in the gardens of Villa Medici
Yann Robin, Composition
Benjamin Lévy, Realisation.

Workshops

CNSMDP: OMax Workshop at CNSMDP CNSMDP10

Paris, Oct. 9, 2010.

Gérard Assayag, Georges Bloch and Benjamin Lévy performing OMax with the students of the
Jazz department of the National Conservatoire of Paris.

CNSMDP: OMax Workshop at CNSMDP CNSMDP11

Paris, Mar. 31, 2011.

Benjamin Lévy performing OMax with the students of the generative improvisation department
of the National Conservatoire of Paris.

Chao: Informatique instrumentique Chao11

Uzeste, France, Aug. 15–20, 2011.

OMax workshop in public during the the 34th edition of the Hestejada dé las arts Music festival
in Uzeste, South-West of France
Benjamin Lévy, OMax and invited musicians.

Lubat: Workshop at Espace Paul Jargot, Crolles Lubat11e

Crolles, France, Oct. 1, 2011.

Bernard Lubat, Piano and invited musicians
Benjamin Lévy, OMax.

Chao: Informatique instrumentique Chao12

Uzeste, France, Aug. 19–21, 2012.

OMax workshop in public during the the 35th edition of the Hestejada dé las arts Music festival
in Uzeste, South-West of France
Benjamin Lévy, OMax and invited musicians.
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Chao: Jam’OMax Chao13

Uzeste, France, Aug. 22, 2013–Aug. 24, 2012.

OMax workshop in public during the the 36th edition of the Hestejada dé las arts Music festival
in Uzeste, South-West of France
Benjamin Lévy, OMax and invited musicians.

Work Sessions

Achiary: Work session at IRCAM to prepare concert Martin10 Achiary09

Paris, Nov. 19, 2009. url: http://recherche.ircam.fr/equipes/repmus/WoMax/
sessions/.

Beñat Achiary, Voice
Benjamin Lévy, OMax.

Martin et al.: Work session at IRCAM to prepare concert Martin10 Martin09

Paris, Nov. 2, 2009. url: http://recherche.ircam.fr/equipes/repmus/WoMax/
sessions/.

Brice Martin, Bassoon
Médéric Collignon, Bugle, Voice & other accessories
Benjamin Lévy, OMax.

Doneda: Work session at IRCAM to prepare concert Martin10 Doneda09

Paris, Nov. 4, 2009. url: http://recherche.ircam.fr/equipes/repmus/WoMax/
sessions/.

Michel Doneda, Saxophones
Benjamin Lévy, OMax.

Collignon: Work session at IRCAM to prepare concert Martin10 Collignon09

Paris, Dec. 11, 2009. url: http://recherche.ircam.fr/equipes/repmus/WoMax/
sessions/.

Médéric Collignon, Pocket Bugle and Voice
Benjamin Lévy, OMax.

Martin: Work session at IRCAM to prepare concert Martin10 Martin09a

Paris, Dec. 14, 2009. url: http://recherche.ircam.fr/equipes/repmus/WoMax/
sessions/.
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Brice Martin, Bassoon
Benjamin Lévy, OMax.

Collignon et al.: Work session at IRCAM to prepare concert Martin10 Collignon10

Paris, Jan. 7, 2010. url: http://recherche.ircam.fr/equipes/repmus/WoMax/
sessions/.

Médéric Collignon, Bugle, Pocket Bugle and Voice
Beñat Achiary, Voice
Benjamin Lévy, OMax.

Kimura: Work sessions at IRCAM Kimura10

Paris, July 8, 2010.

Work sessions at IRCAM Mari Kimura, Violin
Benjamin Lévy, OMax.

Kimura: Work sessions at IRCAM Kimura10a

Paris, Aug. 18, 2010.

Work sessions at IRCAM Mari Kimura, Violin
Benjamin Lévy, OMax.

Imbert: Work sessions at IRCAM Imbert10

Paris, Dec. 3, 2010.

Raphaël Imbert, Saxophones
Benjamin Lévy, OMax.

Imbert: Work sessions at IRCAM Imbert11

Paris, Jan. 11, 2011.

Raphaël Imbert, Saxophones
Benjamin Lévy, OMax.

Godet et al.: Work session at IRCAM to prepare the concert Godet11b Godet11a

Paris, May 13, 2011.

Jean-Brice Godet, Clarinets
Cyprien Busolini, Viola
Benjamin Lévy, OMax.
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Lehman: Work sessions at IRCAM Lehman11

Paris, June 13–22, 2011.

Steve Lehman, Saxophone
Benjamin Lévy, OMax.

Godet et al.: Work session at IRCAM to prepare the concert Godet11b Godet11

Paris, Sept. 22–23, 2011.

Jean-Brice Godet, Clarinets
Cyprien Busolini, Viola
Philippe Cornus, Percussions
Benjamin Lévy, OMax.

Lubat: Work session at IRCAM to prepare the concert Lubat11d Lubat11c

Paris, Sept. 26–27, 2011.

Bernard Lubat, Piano
Assayag Gérard, OMax
Benjamin Lévy, OMax.

Coleman: Work session at IRCAM Coleman11

Paris, Oct. 26, 2011.

Martin: Work session at IRCAM to prepare concert Martin11a Martin11

Paris, Nov. 3–8, 2011.

Brice Martin, Bassoon
Benjamin Lévy, Computer.

Lê Quang: Work session at IRCAM Le-Quang12

Paris, Mar. 10, 2012.

Vincent Lê Quang, Saxophone
Benjamin Lévy, OMax.

Blesing et al.: Work session at IRCAM Blesing12

Paris, Mar. 30, 2012.

Alain Blesing, Guitar
Karim Haddad, Composition
Benjamin Lévy, OMax.
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Blesing et al.: Work session at IRCAM Blesing12a

Paris, June 1, 2012.

Alain Blesing, Guitar
Karim Haddad, Composition
Benjamin Lévy, OMax.

Beuret: Work session at IRCAM Beuret12

Paris, July 13, 2012.

Denis Beuret, Trombone
Benjamin Lévy, OMax.
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Appendices A

Algorithms

A.1 Mel Frequency Cepstrum Coefficients Computation

For the timbral listening of our system, we base our analysis on the extraction of Mel
Frequency Cepstral Coefficients (MFCCs). These multi-scale coefficients are commonly
computed with the following steps:

1. Take the fast Fourier transform (FFT) of the signal

2. Slice and regroup the powers of the spectrum onto the mel scale (a perceptual scale
of pitches) using triangular overlapping windows

3. Take the logs of the powers for each mel band

4. Compute the discrete cosine transform (DCT) of the list of mel log powers, as if it
were a signal

5. MFCCs coefficients are the amplitudes of the resulting spectrum
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A.2 Factor Oracle Incremental Algorithm

The Factor Oracle algorithm we use is based on [Allauzen 99a] and includes the computa-
tion of the Length of Repeated Suffix (lrs) proposed in [Lefebvre 00]. In the work presented
in this thesis, we took care to include the improvements for lrs computation described in
[Lefebvre 02]. We present here a condensed version of the algorithm in pseudocode.
Assuming the automaton is built to state i� 1 (including lrs) and we want to add the
state i corresponding to the character �

i

Create a new state numbered i

Assign a new transition labelled �

i

from state (i� 1) to the new state:

�(i� 1,�
i

) = i

Retain state i� 1: ⇡1 = i� 1

Iteratively backtrack suffix links from state i� 1: k = S(i� 1) doing

if no transition from state k is labelled by �

i

then Assign a new transition from state k to the new state: �(k,�
i

) = i

Retain this suffix: ⇡1 = k

and Track its suffix link: k = S(k)

else End backtrack

if backtrack ended before state 0: k > �1

then an existing pattern is recognise and linked: S(i) = �(k,�
i

)

and lrs(i) = LengthCommonSuffix(⇡1, S(i)� 1) + 1

else the suffix link goes to state 0: S(i) = 0

and lrs(i) = 0

for all the other suffix links S(j) pointing on the same state (in increasing

order): 8j / S(j) = S(i)

if lrs(j) = lrs(j) and �

j�lrs(j) = �

i�lrs(i)

then S(i) = j and lrs(i) = lrs(i) + 1

and exit

LengthCommonSuffix(⇡1,⇡2) =

if ⇡2 is the suffix of ⇡1: ⇡2 = S(⇡1)

then Return lrs(⇡1)

else While no common suffix is found: S(⇡2) 6= S(⇡1)

Backtrack suffix links from ⇡2: ⇡2 = S(⇡2)

Return the least lrs before common suffix: min(lrs(⇡1), lrs(⇡2))
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A.3 Factor Oracle Clustering Algorithm

The clustering algorithm proposed for Factor Oracle graph is based on a weighting system
which allows a reinforcement mechanism and gives thanks to a threshold the boundaries
to potentially fragmented regions similar in musical content. It uses a list of weights
(integers) associated with every state (and initialized to 0). It is linear in time and space.
Three control parameters are required:

• minCtxt: a minimal context length.

• local: a value to decide the local/global character of a link.

• w: a value to define a zone of “influence” of a link.

See Section 6.3.3 for more details. Defining:

• W (i) the weight, and assuming W (k) is known for all k from 0 to i� 1,

• I a temporary interval or union of interval of states,

• r(i) the region ID and assuming it is known for all states with a non zero weight,

• a global region counter r

g

(initialized to 0)

• a local region ID r

I

• a local list of region ID lr

d

,

we consider state i, its suffix S(i) and context length lrs(i):

If the context of the link is high enough: lrs(i) > minCtxt do:

If the link is considered as local: i� S(i) 6 local

Then there is only 1 influence zone containing both ends of the link:

I = [S(i)� w ⇤ lrs(i), i]
Else the links is considered as global: i� S(i) > local

there are 2 influence zones containing each end of the link:

I = [S(i)� w ⇤ lrs(i), S(i)] [ [i� w ⇤ lrs(i), i]
Determine the region ID: r

I

= FindID(I)

Store the list of ID to drop: lr

d

= DropID(I, r
I

)

For every state in the influence zone: 8k 2 I

Increase weight: W (k) = W (k) + 1

and Assign the ID: r(k) = r

I

For every state of FO which has a non zero weight except the influence zone (already

done): 8k 2 [0, i]\I /W (k) > 0

If the region ID is in the drop list: r(k) 2 lr

d

Then Overwrite ID: r(k) = r

l
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FindID(I) =

Find the state with maximal weight in the influence zone I:

i

max

= argmax

I

(W (i))

If a non zero weight is found: W (i
max

) > 0

Then Return its ID: r(i
max

)

Else no state in the influence zone is already in a region: W (i
max

) = 0

Return the current region counter: r

g

and Increment it: r

g

= r

g

+ 1

DropID(I, r

I

) =

List all the region ID present in I (if any): lr

d

= W (I)

Remove doubles in the list: unique(lr
d

)

Remove the chosen region ID (if present): remove(r
I

, lr

d

)

Return the list of ID to drop: lr

d
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A.4 Virtual Fundamental Computation Code

In the case of a polyphonic MIDI input stream, we extract an approximate virtual
fundamental as label of the slices (see 6.1.2.1). The virtual fundamental is a (low)
frequency which multiples fall on the notes of the slice. In other words, the virtual
fundamental is a possibly missing note which would be the bass note of the harmonic
chord of the slice if it were purely harmonic — that is if all the frequencies were related with
fractional ratios. The main function to compute this virtual fundamental is a recursive
function that we implemented in C. It takes as argument the first and last elements of a
table listing the frequencies in the slice (freqs and end), a range of values to look for a
common divisor (divmin and divmax ) and the floating point approximation allowed when
comparing the actual frequencies of the chord (approx ). Here is the code (in C) of the
this main function:

float rec_virfun(float* freqs, float* end, float divmin, float divmax,

float approx)

{

float inf,sup;

float quo_min, quo_max;

float quotient;

float resu = 0;

if (divmin <= divmax)

{

if (freqs==end)

return((divmin + divmax) / 2.);

else
{

sup = freqs[0] * (1 + approx);

inf = freqs[0] / (1 + approx);

quo_min = ceil(inf/divmax);

quo_max = floor(sup/divmin);

quotient = quo_min;

while (quotient <= quo_max)

{

resu = rec_virfun(freqs+1,end, max(inf/quotient, divmin), min(sup/

quotient, divmax), approx);

if ((int)resu)
return resu;

quotient++;

}

return 0.;

}

}

return 0.;

}
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A.5 C++ Classes

Along this thesis, we presented structures to hold description information and graph
modeling of the input streams. We present a few details about the implementation of
those in C++ language.

A.5.1 Data Structure

The data structure rely on a main C++ class named O_data which includes a vector of
O_label elements containing the actual information extracted from the input stream. As
we explained along this work, several descriptions are implemented in our system. This is
achieve easily with the inheritance mechanism of C++. This way, the O_label class is the
base class for every descriptions, it contains all the common attributes: date, duration,
phrase and section number etc. Five child classes are derived from the O_label class to
specialize it for each description: characters (for testing purpose), floats (generic data
and Chromagrams), MIDI (polyphonic MIDI slices), pitch (melodic description), spectral
(MFCCs). Figure 39 illustrates this hierarchy of classes.

Figure 39: Inheritance Diagram of the Label Class

A.5.2 Graph Structure

The graph structure rely on a main C++ class named O_oracle which includes a vector
of O_state elements containing the actual states of the graph. This class also holds the
two hashtables (C++ map structures) for the conversion between state numbers and date
on the medium timeline. The O_state class contains the information for each state of
the graph: transitions (trans), suffixes (suff ), reversed suffixes (r_suff ) etc. Figure 40
illustrate this implementation with the collaboration diagram of the O_oracle class.
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Figure 40: Collaboration Diagram of the Factor Oracle Structure Class

IX





Appendices B

Publications

B.1 NIME 2012

2012, we wrote and submitted an article for the 12th international conference on New
Interface for Musical Expression. It has been accepted and we presented our work in this
conference on the 23rd of May. We include this article in this appendix. It describes
several aspects of the research of our work, in particular, the spectral description of audio
streams, the visualization part and some architecture considerations.
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ABSTRACT
OMax is an improvisation software based on a graph repre-
sentation encoding the pattern repetitions and structures of
a sequence, built incrementally and in real-time from a live
Midi or Audio source. We present in this paper a totally
rewritten version of the software. The new design leads
to refine the spectral listening of OMax and to consider
di↵erent methods to build the symbolic alphabet labeling
our symbolic units. The very modular and versatile archi-
tecture makes possible new musical configurations and we
tried the software with di↵erent styles and musical situa-
tions. A novel visualization is proposed, which displays the
current state of the learnt knowledge and allows to notice,
both on the fly and a posteriori, points of musical interest
and higher level structures.
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1. PRINCIPLES
OMax [2][4][6] is a software environment oriented towards
human-machine interaction for musical improvisation. It
learns in real-time by listening to an acoustic musician and
extracting symbolic units from this stream. It then builds
a sequence model on these units constituting an internal
knowledge. The internal model of OMax (named Factor
Oracle [1][5]) is a graph which incrementally recognizes the
repeated factors (patterns and subpatterns) of any symbolic
string. Factor Oracle only needs strict on the symbolic units
to be built. They can be called letters over a formal alpha-
bet.
OMax is able to navigate through this model to create one
or several “clones” of the musician feeding the system [2].
These “clones” are recombinations of the original discourse
justified by the model and realized by cutting and pasting
the original material in real-time (audio editing or MIDI
deslicing, see 2.1 and [4]).This stylistic reinjection [4] cre-
ates a specific musical interaction in which the musician
is constantly confronted to a reinterpreted version of his
own playing. It emphasize the memory e↵ects and usage
of (self-)reference found in improvisation contexts such as
collective free improvisation or jazz.
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This technique, close to concatenative synthesis, has been
extended in a video version of OMax [6]. The video of
the musician (or any other visual material) is aligned and
recombined as a slave synchronization with audio.

Previous versions of OMax made use of two very di↵erent
software environment, Max/MSP and OpenMusic (hence its
name “OMax”) respectively for real-time signal processing
and abstract model construction and navigation processes.
In this paper we will present a new version of OMax we
developed solely based on Max5. We will describe the ma-
terial it is now able to“understand”and how it achieves this.
Then we will explain the architecture of this new version and
its novel visualization and interactions possibilities. Finally
we will discuss a few situations we encountered testing with
musicians.

2. MATERIAL
Historically, OMax emerged from studies on stylistic simu-
lation by Shlomo Dubnov and Gérard Assayag and Marc
Chemillier’s research on improvisation modeling. It has
since gained considerable attention from improvising musi-
cians worldwide through dozen of concerts, workshops and
master-classes.

2.1 Audio vs. MIDI
Both audio and MIDI streams can constitute a source for
OMax learning. Though MIDI is already a flow of abstract
data, it still needs to be segmented into consistent units to
be learnt. In the case of a monophonic MIDI input , segmen-
tation is trivial: a unit for a note. However a polyphonic
MIDI input feeds a continuous and overlapping flow of notes
to be separated into polyphonic chord-like slices (Figure 1).
This slicing happens with the birth and death of significant
events and has been described in [4]. It does not imply any
specific labeling (or lettering) to tag the symbolic units to
be compared and learnt.
In the case of an audio input, prior to any kind of group-

ing, information needs to be extracted from samples. We
have in OMax two very di↵erent types of audio analysis
which infer two di↵erent kind of listening. The first type of
analysis is pitch extraction. For now, we are able to deal
only with monophonic pitch extraction and use the YIN
algorithm [8]. To make the output of yin more consistent
and stable, we use a statistical analysis with concurrent vot-
ing agents gathering pitches over fixed windows [3]. Stable
pitches are gathered and grouped into units when equal and
consecutive to form notes. At this point, we are brought
back to the simpler case of monophonic MIDI-like data.
We summarize the di↵erent steps to form consistent units

for the di↵erent type of analysis in Figure 1. From an audio
stream, micro-units are constituted with an initial framing
and the extraction of a descriptor of the signal. Depending
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Figure 1: Analysis chain of the input

on the algorithm of extraction, di↵erent sliding windows
are used. Then, in a second phase, macro-units can be put
together by grouping similar and consecutive micro-units.
The boundaries are defined by di↵erent criteria depending
on the type of units. Then, to achieve the segmentation,
we time-stamp these units linking them with the chunk of
signal they encode — and we take into account the latency
and time specific parameters of each methods.

2.2 Spectral Segmentation
The second type of audio analysis in OMax uses spectral
descriptors. They allow the system to listen and play with
wider types of sound including noises, percussions or di↵er-
ent instrumental playing modes. Mel Frequency Cepstral
Coe�cients has been proven (for example in [7]) to be eas-
ily computable, very compact and reliable for recognition
tasks. It is suitable to constitute our micro-units. However,
MFCCs are vectors of floating-point multi-scale coe�cients.
It is thus necessary to have a clustering algorithm to put to-
gether consistent and meaningful macro-units.
Rather than using a rough quantization as in [6], we de-

signed a weighted Euclidean clustering algorithm. This al-
gorithm achieves both the macro-grouping and the symbolic
labeling at once.
For every incoming MFCC vector, dropping the first co-
e�cient (which represent the overall energy of the slice),
we weight the remaining coe�cients according to profiles
to help enhancing the di↵erences we want to discriminate.
These profiles have been adjusted empirically along exper-
iments with several instruments and playing styles. Then
we compare the vector to the clusters already encountered
by computing the Euclidean distance with their centroids
and we determine (with an adjustable threshold) if it can
be identified or if it constitute a new letter in our spectral
alphabet.

2.3 Alphabets
This incremental clustering mechanism creates a growing al-
phabet of spectral letters in a multidimensional Euclidean
space, meaning that the system is able to discover the sym-
bolic units along the musicians playing. It allows us to have
an ad-hoc definition of the clusters depending on the input
material. Regions of the timbre space thoroughly explored
by the musician will have therefore more clusters than other
regions, less brought into play. On the other hand, pitch

classes and quantized spectral vectors constitute a fixed and
predetermined alphabet.

(a) Clusters (b) Clusters later on

Figure 2: Example of mutation in spectral clustering

Another e↵ect of this classification is the possibility of
mutations according to the past of the learning. Depend-
ing on the material already encountered and known in the
system — which means in our MFCC space, depending on
the clusters already defined —, the same (or close) spectral
vectors can be identified di↵erently. An example of such a
mutation is given in 2D Figure 2: vectors framed in red,
although very close, are recognize di↵erently depending on
the moment they appear. The first vector (Figure 2a) is
considered in the “blue” class while the second occurrence
is closer to a more recently defined “yellow” cluster (Fig-
ure 2b). The appearance of the “yellow” cluster in between
did not change the class of the previously encountered vec-
tor but it modifies the classification of forthcoming material.
This also has a musical meaning: a specific playing mode
can be considered as an accident and identified as close to
an already heard mode if encountered only once. But the
same playing mode, if developed by the musician may be
rightfully creating one or more new cluster(s) — letter(s) in
our spectral alphabet —to describe its slighter di↵erences.
Thus the mapping between signal units and symbols has
become adaptive instead of being rigid, which reflects an
important aspect of implicit learning in human interaction.

3. ARCHITECTURE
Further than being able to use di↵erent segmentations and
alphabets, the whole software has been reprogrammed to
adopt a very flexible and versatile architecture presented
Figure 3.
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Figure 3: Functional diagram of OMax 4.x

3.1 Modularity
First of all, a modular approach has been taken to develop
the di↵erent functions needed (Figure 3). The audio in-
put is split in two streams. One is directly recorded into
a bu↵er while the other enters a two stage process to con-
stitute macro-units. The detection stage regroups both the
framing of the signal and the extraction of a descriptor to
get micro-units. Then the segmentation stage is in charge of
the grouping and the time-stamping to define macro-units



and date them (see 2.1 and Figure 1).
Thanks to a fixed delay, the analysis chain described in the
previous paragraph has a retro-action on the recording to
start and stop it consistently (mainly avoiding to record
long silences).
Once labelled (see 2.3), the symbolic units are fed incre-

mentally to the model which will be read and navigated by
improvising agents. To create a new “clone”, the improviser
is in charge of reading and jumping in the graph to create
a new coherent path — a musical variation on what the
acoustic musician played until now. The scheduler read-
ing this path puts it back “in time” with the possibility of
time-stretching or backward reading. Finally, the renderer
e↵ectively reads and crossfades the di↵erent bu↵er chunks
corresponding to this new musical discourse.

3.2 Parallelism
The modularity of the new design allows now OMax to run
in parallel di↵erent analysis and labeling and to acquire this
way a multi-description model on a single input. The most
typical setup making use of this is to run both the pitch
and spectral analysis on a single audio input, building thus
two Factor Oracles which refer to the same bu↵er and time-
stamping.
Another very common option the new architecture allows,
is to have several independent “clones” improvising on the
same model. For that, we duplicate the whole generation
chain, improviser -scheduler -renderer. Each improviser is
able to have its own path on the common model of the
input.
Besides these simple configurations, more sophisticated

schemes are possible to create di↵erent musical linkage in-
side OMax. An example of these configurations is to have
two “clones” playing the same computer-based improvisa-
tion — possibly at di↵erent speed or with transposition —
ie. the same path in the model.

3.3 Versatility
Multiplying and combining at will the modules — the only
limit being the power of the computer — we can shape and
adapt our OMax setup to very diversified musical situations.
From one to several inputs in parallels with one or more de-
scriptions and models built on each of them and one to
several “clones” improvising together or independently, the
variety of arrangement allows us to start playing OMax al-
most as an instrument. We will see in 5 how OMax can now
take its own musical part in di↵erent musical ensemble.

4. VISUALIZATION
On top of the redesign of the architecture, OMax 4.x adds
to the software a whole new interface (thanks to Jitter, the
graphical part of Max5). This interface is based on a visual-
ization of the current state of one or two models being built.
It takes the simple form of a growing horizontal and linear
timeline representing what has already been learnt — time
“flows” from left to right: left is farther in the past, right
is the most recent element. Above and below this timeline
can be shown some links of the Factor Oracle graph indi-
cating the occurrences of repeated patterns. An example is
presented Figure 4.

4.1 Live
Although unadorned, this feedback constantly given on the
current state of the model revealed itself to be very e�-
cient to locate and memorize on the fly musically interest-
ing points. Seeing patterns of links appearing on the screen
related to what the musician is currently playing allows to

associate musical passages with particular sections of the
graph. And retrieve them easily later on.

Figure 4: “Clones”and regions on the sequence visualization

While playing with OMax, the visualization is also a new
interface to interact with the software. Indeed, as intro-
duced Figure 4, the di↵erent “clones” OMax is able to play
are also pictured on the display with moving arrows above
and below the timeline. These arrows reflect the current po-
sition of each “clone” in the model and jump along the links
when improvising new paths (see [2]). With the mouse, re-
gions of the graph can be selected (green and blue sections
on Figure 4) to constrain“clones”to specific sections of what
has been learnt.
Many other features and functions that can not be de-

tailed here have also been implemented to make the visual-
ization as intuitive, interactive and useful as possible.

4.2 A Posteriori
Following the same visualization principles with di↵erent
musical materials and visuals, we noticed that examining
our model, a posteriori, could reveal important higher level
structures. Moreover, this analysis may show, in real-time,
these higher level formal structures with little graphical pro-
cessing. For example, with colors to identify patterns and
thickness to stress the durations, we can enhance certain
aspects of the analysis and help discover interrelations of
parts.
Figure 5 shows the analysis of a saxophone improvisation.

Figure 5: Visualization with colors and thickness

On the bottom half (below the horizontal timeline, which
correspond to the model built on pitch), we can see with



the important number of arches, that the material intro-
duced at the beginning of the session is developed for about
a third of the total duration then the rest of the improvi-
sation is very di↵erent (few links/arches connecting it with
the beginning). Finally a short but strong recapitulation of
the first material is played: many arches connecting the last
moments of the improvisation with the beginning.
This way, the new interface of OMax may open possibili-

ties for a simple yet e�cient musicology tool to study pieces
or improvisations and compare them.Automatic segmenta-
tion of formal high level structures in musical sequences has
been experimented as a derivation from this visualization
but is not presented in this paper.

5. OMAX IN ACTION
In the last two years, we had the opportunity to play with
OMax in numerous and various situation. Here are some
of the rough observations we could empirically make. We
encountered mainly two kinds of musical ensembles. The
first is a duet between an acoustic musician improvising and
feeding the system and an electronic musician controlling
the software. The second common situation is to include
OMax (and the person controlling it) into a small musical
group (usually up to ten musicians).

5.1 Duets
Naturally, the first idea to try out a software like OMax
is to ask a musician to feed the system with an improvi-
sation and play along with the computer based “clones”.
This allows us to test at the same time how the system
understands the musicians playing and how they musically
interact. Multiplying this kind of experiments with very
di↵erent instruments helped us refine the di↵erent analy-
sis stages of the software. While multiplying the di↵erent
styles showed us the musical possibilities and limits of such
a dialog.

It soon appeared in this situation that the choices made
by the person controlling OMax strongly influence the course
of the session. Thus, the acoustic musician could notice very
fast the interventions and the character of the electronic mu-
sician, and often referred to this partner as a mixed entity
constituted of OMax and the person controlling it, rather
than as the software by itself. Duets of short duration work
very well most of the time and some characteristics of purely
acoustic improvised duets can be found.
However, when musicians want to make it longer (and con-
front it with a public), they usually feel more confident
(pre)setting narrative elements. They frequently start to
predefine the type of interaction with the system, mostly
in terms of when to play and what part of the learning to
use (which could be identified to a music score for OMax
player). Or they feed OMax with some prepared mate-
rial (pre-composed and/or pre-recorded) and improvise with
these. Some previous experiments have been done in this
last direction such as in Peking Duck Soup (Bloch 2008 [6]).

5.2 Groups
The other kind of musical situation OMax has regularly
been involved in could be qualified as “collective free im-
provisation” or “band”, that is a small group of musicians
playing together, either improvising freely or with strong
predetermined structuresIn this cases, one or two instances
of OMax were used and each of them could listen and learn
from one or two of the acoustic musicians. Technically, the
question of feedback of other musicians and OMax into the
microphones gets really serious in these situations.

Despite the di↵erence of nature between the acoustic in-
struments and OMax — which usually does not have its
own sound source — the computer and its player could re-
ally find a place comparable to the other musicians in the
group. And the work to build a whole concert program was
in almost every aspects similar to the work with an ensem-
ble of only acoustic instruments.

6. FURTHER DIRECTIONS
Both the entire renovation and the musical testing feed the
research around the musical aptness of OMax.
The explorations already started around the notion of al-

phabet in OMax constitute a strong direction of our future
work. It puts up questions about the consistency of these
alphabets and ways to build finer and even more meaningful
alphabets. On-going research about information geometry
or other content-oriented machine learning techniques may
nourish our reflexion.
Multiplying the alphabets and models built in parallel gives
opportunities to exploit more or di↵erently the knowledge of
the system. The various descriptions of an input sequence
may be queried concurrently or jointly to help drive the sys-
tem towards more expressive and speaking musical paths.
This database oriented approach could use some reinforce-
ment learning technique in order to make interesting solu-
tions emerge.
Finally, numerous musical situation suggested we should

investigate the relation of OMax with the rhythm both in
a broad (phrase leading, endings. . . ) and in a strict (pulse,
time signature. . . ) sense. A strong anticipation mechanism
may be a relevant approach to these problems.
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B.2 In Progress

2013, we wrote an article describing the result of the whole work presented in this thesis.
This article is not finished and has not been accepted for publication yet. Our approach
in this article is to present the new usage of OMax in playing context enabled by our
research. We join this article to this thesis in this appendix. It briefly summarizes how
OMax works then it details the new influence of the context and the new possibilities for
the supervisor to control the content of the computer based generation. Finally it gives
two examples of real-life utilizations.

XVI
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Abstract. OMax is a software which learns in real-time from a mu-
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presents new improvements to support automatic or manual adaptation
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1 Introduction

Studies on style modeling through machine learning and statistical models have
been turned over several years ago to generate new musical discourse which
would exhibit many aspects of the original music [5]. The development of OMax
software started in this field and improved over the years to be able to learn
patterns and generate in real-time new variations for both MIDI and audio
streams [3]. Several techniques and scenarios have been explored with OMax,
feeding our research. And the participation to musical co-improvisations between
acoustic musicians and supervised computer(s) have become the most typical use
of the software.

Thanks to its agnostic and constantly learning core and with several meth-
ods to enhance the variety of its discourse, OMax (usually with its supervisor)
has been able to relevantly challenge a large panel of musicians. However the
computer-based generation still seems to lack important features of improvisa-
tion to widen its horizon, notably a grasp of the musical context and a certain
versatility. This gap is the main focus of our current work. We start by describing
the essential learning and generating core of OMax in a very concise and practi-
cal way. Then we present our work to bend and orient the musical discourse of
the computer through automatic contextual annotations and new steering pos-
sibilities o↵ered to the supervisor. We describe as well how these improvements
have been set up in new prototypes and tested in musical situations.
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2 Improvisation Core

The very first and strong hypothesis at the core of OMax is the sequential na-
ture of a musical performance. This grounding does not assume anything about
the content of the units in the sequences but allows us to use very well known
and studied statistical modeling and in particular context models as the knowl-
edge structure of our system. After testing classical Markov Chains then Vari-
able Markov Chains (especially with Incremental Parsing and Prediction Su�x
Trees [6]) we chose the Factor Oracle automaton as the backbone of our sys-
tem [2]. The Factor Oracle graph is acyclic, linear in time and space and recog-
nizes at least all the factors (ie. subsequences of any length) of the word (input
sequence) it is constructed on.

2.1 Chaining Patterns

The two strongest assets of this structure in our musical application is the incre-
mental algorithm, originally given in [1] and improved in [8], and the linear spine
of m + 1 states and m + 1 transitions if the input word is of length m, which
exactly represents the musical sequence given as input. Besides the linear (from
states i to i+1) and forward transitions, Factor Oracle presents backward tran-
sitions named su�x links which connect occurrences of repeated factors in the
input sequence. We intensively use these su�x links as possible variation paths
for generating new musical phrases on the learnt material (see [2,3] for more
details). The su�x characteristic of these links— the same pattern is present
as a su�x at both ends of each link and the link is labelled by the size of the
common pattern named lrs (length of repeated pattern) — ensures a smooth
concatenation, on the symbolic level, of two connected chunks. This jumping

mechanism serves as the essential supply of variations in OMax.
One improvisation feature already appears in this succession of literal cita-

tions and variations: the rate of these jumps. It can be translated in the musical
vocabulary into a di↵erence ratio or a distance from the original material. We
usually call it continuity, in regard to the audible length of the chunks and the
overall fragmentation of the result. Less jumps means longer contiguous chunks
from the original sequence in the computer generation, thus noticeably closer
discourse to the original input.

2.2 Continuity

Even though the chaining of patterns is justified by our underlying symbolic
model, perceptively, either with MIDI or in the audio domain, the connections
between these patterns can sometimes sound rough or very surprising. Drawing
the thin æsthetic line between a relevant innovative surprise and a rough unde-
sirable collage is totally out of our research scope especially because it widely
depends on the music content and intent — which are artistic choices. However,
giving the possibility for a system such as OMax to interact with the musician(s)
on a chosen spot considering his/her æsthetic line is the very way to make OMax
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attractive and pertinent, especially in the situation of improvisation. Therefore,
we added in the process of improvising (ie. jumping in OMax) a very large num-
ber of parameters to allow the system and its supervisor to smooth over (or make
uneven) transitions and/or orient the content of the computer based generation.

Firstly, a threshold on the lrs of the su�x links to look for in the Factor
Oracle (see 2.1) conditions the number of acceptable jumps. But besides the
symbolic units fed to the graph, three musical qualities are also extracted from
the input stream and can be used to weight the possible jumps and discriminate
between them. The energy of the pattern, in the form of MIDI velocity or of the
first MFCC coe�cient when working on spectral description (see 4.1 and [9]),
is computed. To even (or not) transitions, energies of the pattern we jump from

and the pattern we jump to are compared: closer energies will result in smoother
jumps. The same principle is applied with a rhythmic coe�cient which charac-
terizes the duration’s ratio of the patterns at the origin and destination of the
jump. It is close to a notion of rhythmic density and gives a hint on the tempo
but has little to do with pulse or beat. Finally, a third parameter depends on
the content of the symbolic units used to build the graph: it can be the octave
if we extract and learn pitch classes patterns or pitch if we extract and learn
textural/spectral patterns.

These three parameters are computed by default to automatically obtain
smooth concatenations but their use is controllable by the supervisor of the
software. He/she can choose to emphasize the importance of one or the other
depending on the musical context and start playing OMax in this way.

3 Contexts Influence

To help adapting the computer based generation to its current musical context,
we extended the notion of additional features and parameters presented in the
previous paragraph, to a wider notion of contextual annotations of various kinds
which may influence the choice of jumps and material through a selection and
weighting system.

3.1 Energy

When extracting the current energy — or dynamic, in musical term — of the
musician’s playing, we can use that information not only to annotate the stream
which is learnt, but also to influence the current discourse generated by the
computer. Either with predefined scenarii like follow the current dynamic or do
the opposite of the current dynamic, or under the control of the supervisor, we
can musically lead the dynamic content by favoring jumps to musical material of
desired energy. We thus compare the energy descriptor of the destination of the
jump to the present (continuously updated) energy extracted from the real-time
input, and weight the jumps according to the desired dynamic.

This mechanism does not ensure that the computer generation will exactly
execute the musical choice but it will incline its content towards the material
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with the closest quality attainable in the current knowledge of the machine;
and this way it will use statistically more material of that quality. Even if the
dynamics instruction is thus not strictly followed by computer, the permanent
considering of the external energy — ie. from the acoustic musician(s) — and
the comparison with the computers internal energy — ie. what the machine
is going to play — mimics the permanent tradeo↵ a musician has to deal with
when playing and especially when improvising with others. In that way, we make
OMax perceptive to the context in which its discourse takes place.

3.2 Tempo and Phase

In the same direction, making OMax receptive to the rhythm and beat has
been a strong appeal. Experiences showed us that analyzing rhythmic patterns
with Factor Oracle and using it as the core mechanism for variations (see 2.1)
does not ensure enough continuity (see 2.2) to build a musically coherent and
apprehensible discourse — except with specific types of music.

However, using the work of E. W. Large on beat tracking with oscillators [7]
and thanks to the implementation of L. Bonnasse-Gahot [4] and J. Chao we
can represent the pulse with a running phase and a constantly updated tempo.
These two values extracted from the audio can be used both to annotate the
learnt material and to adapt the computer based generation along its playing.
But giving the feeling of pulse requires a strongest mechanism than favoring
jumps with the weighting system presented 3.1. Therefore we introduced simple
constraints on the jump candidates to obtain a strict selection before rating the
acceptable jumps. Essentially, we compare phase values and, using a threshold,
we examine if the di↵erence is small enough to avoid a break in the feeling of
pulsation.

As explained for energy in 2.2 and 3.1, we also imagined two usage of the
pulse annotation. Either we compare the phase value between the origin and
the destination of the jump candidate, which will preserve the rhythm of the
original material even when recombined by the computer. Or we can compare
the phase of the destination of the jump candidate to the current phase extracted
in real time. This second alternative will synchronize the computer generation
to the external beat context, making OMax participate to the musicians pulse
environment.

3.3 Guidance

From the weighting and simple constraint systems described for energy and
pulse, we derived another way to give control to the supervisor on the musical
content OMax generation. Indeed, the techniques used to adapt the dynamic to
the current context can obviously be used to obtain arbitrary nuance. We also
imagined di↵erent kinds of influence and constraints on the musical material.
For example, when pitch description is available, we can either constrain or
favor jumps leading to a chosen register of the instrument.
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4 Supervisors Influence

Albeit we developed OMax as an improvisation tool, we noticed along the years
very di↵erent usages. It goes broadly from the composer using it to transform
and generate chosen musical material in search for new lines during his/her
writing process, to the computer musician improvising freely on stage with one
or several acoustic musicians. Even though each of these di↵erent usages may
require specific developments or interfaces, we generally consider that giving
more control over the software’s behavior to the user will make it more usable
and apropos. In that sense we try to enrich the playability of OMax ie. the
possibilities to manipulate the musical content of the softwares output.

4.1 Descriptions

Nowadays OMax is able to feed its Factor Oracle core with three types of sym-
bolic data robust enough to ensure continuity (see 2.2); namely MIDI slices,
notes — that is pitch, velocity and duration information — and spectrally co-
herent units as explained more thoroughly in [9]. Besides handling di↵erent kind
of streams and/or instruments, the meaning underlying the symbolic knowledge
model does make a perceptible musical di↵erence when generating new phrases.
Therefore we oriented our view on the improvisation core towards a database ap-
proach and enabled the query of one or several Factor Oracle (when available),
corresponding to one or several descriptions of the input, to gather possible
jumps, then filter, weight, order them and pick the best solutions.

This approach not only multiplies the variation possibilities, but also allows a
musical choice through selecting the kind(s) of listening and variations (melodic,
harmonic, timbral and combinations of these) OMax produces. For example,
when playing with a saxophonist, both spectral and pitch descriptions may be
simultaneously or alternatively relevant depending on the musical content and
intent. Thus we developed a new unified architecture which lets the supervisor
seamlessly combine or switch from one description to the other, without breaking
the musical flow of the machine, in addition to control the jumps rate (2.2) and
the smoothness of variations (3.1).

4.2 Regions

Following the unification process started with the accessibility to all the descrip-
tions at once, we also generalized the regions system which permits to control
the origin of the content used for the computer based generation in the history
of the learnt material. Two regions per description were already available in the
former versions of OMax. To augment their power and their versatility, we can
now have as many regions as the supervisor needs, usable with any description
and each of them can benefit from two online updating mechanisms — a follow

option keeps a fixed-width window updated along the musician’s input while
an extend option augments the width of the region to include the most recent
material. Avoiding specific material is also a very musical way of choosing the
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content of a musical discourse, so each region can as well be inverted to allow
all the material outside the definite domain to be used.

From the long term experience with various musicians, we also noticed that
alternating between material coming from the long term learning and elements
from the very recent events added to the graph, is a pertinent process for intro-
ducing both surprise and apropos in the computer based generation. We gen-
eralized this process with an automatic switching module, which can alternate
between any region (or no region at all), with a settable period and repartition
over the period. Finally, these new regions can be combined as will, by taking
their mathematical union or intersection to select several possible origin of the
material recombined by the computer.

5 Applications

Along our research we built several prototypes of OMax to concretize and test
di↵erent ideas and improvements around the software. We also regularly give
concerts with these prototypes — when they are robust enough — ensuring that
way the musical interest for the musicians and the audience.

5.1 ProtOMax

The last prototype we built implements all the functions we described in this
paper with a very modular architecture in order to easily assemble di↵erent
combinations of the new elements. Several constraints and weighting modules
have been programmed for energy, pitch, rhythm, pulse. . . A new generic and
versatile region module has been designed as well as the follow, extend and
region switch modules to refine the possibilities of these regions. The diagram
given Figure 1 summarizes the architecture of the new prototype. It is naturally
also based on older modules especially for the learning part and it includes the
graphical aspects and the visualization possibilities described in [9].

5.2 Concerts

Two recent concerts made use the new functionalities describe here, with two
very di↵erent setups. Both concert were organized around a long formed jazz
band playing mainly pulsed written music with composed parts and improvised
solos or duets.

Nuit de l’Impro. The very first public performance with the new phase and
tempo (3.2) possibilities of OMax took place during the night of the 12th Oc-
tober 2012 at the Conservatoire National Supérieur de Musique et de Danse
de Paris thanks to Georges Bloch, head of sound department and his students.
We had the opportunity to prepare rather long in advance this concert with
Carine Bonnefoy’s quintet (piano, trumpet, saxophone, double bass, drums) so
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Fig. 1. Overall view on the architecture of the new OMax prototype

we recorded compositions from Carine’s in studio and gathered this way very
precisely annotated and good quality recordings. During the public performance,
OMax was loaded with this prepared material and didn’t learn on the fly. The
challenge though, was to make OMax respect — for the first time — the very
regular pulsation of a jazz band. Choruses with OMax solo and duets between
OMax and a musician of the band were included in the compositions and OMax
was prepared to forge improvised discourses mixing both the trumpet and the
saxophone recordings, sounding like a hybrid instrument1.

Compagnie Nine Spirit. More recently, the Compagnie Nine Spirit, long time
contributors to OMax experiences, also helped us test the new prototype. In a
bigger jazz configuration around the saxophonist Raphaël Imbert and his musi-
cians (two guitars, two trombones, trumpet, double bass, drums and saxophone),
OMax was used both in free improvisations and compositions from Raphaël in
which the learning and the generation of the system may be planned.We gave
two concerts with the band, May-June 2013 in Les Baux-de-Provence and Arles
— in the framework of Maseille-Provence 2013, European Capital of Culture —
where all the new annotations (especially tempo and phase) were learnt on the
fly, on stage, and the new control possibilities were used to drive voluntarily
the system and to automatically adapt and synchronize the computer based
generation with the current musical context.

6 Conclusion & Future Directions

In this work we made OMax perceptive mainly to the dynamics and pulse aspects
of its environment. We would like now to address the problem of harmonic

1 a video footage can be found at www.dailymotion.com/video/xvcu1q
OMax’s interventions around 3:17, 6:55 and 9:00
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elements. Some promising results came out of the research of L. Bonnasse-Gahot
around SOMax— a corpus-based accompaniment variation of OMax—who uses
a chromagram as information for harmonic context with great success.We may
pursue this direction using the chromagram as annotation or core data.

In this work, we also gave the supervisor more control over the musical con-
tent of the computer base generation in terms of location, musical features and
types of variations. This way he/she has more possibilities to play with OMax.
However, for now, it is still up to the supervisor to give resolvable instructions
and care about the consistency between weighting and constraints on the gen-
eration, the actual material learnt and the musical context. We need to explore
errors and failure handling to obtain a more autonomous system. We have to
consider cases of impossible constraints and automatic selection of annotations,
this way we could entrust the supervisor with higher level musical decisions.

Acknowledgments. The work presented in this article greatly benefited from
L. Bonnasse-Gahot’s work around SOMax in the framework of the SOR2 project,
http://sor2.ircam.fr, funded by the French research agency, ANR. We would
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Appendices C

Documentation of OMax Public
Software

From 2010, a public version of the OMax software which benefits from the work presented
in this thesis has been released and updated. This version is based on the architecture
proposed in chapter 9. However, it is limited to one Audio input with pitch and spectral
description and one MIDI input with the virtual fundamental description of slices. The
generation part has also been constrained to simplify its usage. For the Audio part,
only four improvisation logics and five players are supplied. Each improvisation logic is
associated with one player. An additional player with transposition and time-stretching
possibilities is able to work with any improvisation logic and synchronize with one of the
other four players. In the MIDI part, only two improvisation logics and three players are
supplied.

We include in this appendix, the documentation of the public version of OMax that
we distribute with the software. This documentation has been fully written from scratch
during the PdD. It explains in a first part the principles of OMax and the software
architecture. Then is thoroughly describes each module, its interface and usage.
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Chapter 1

Introduction

1.1 System Requirements

Hardware

OMax 4.5.1 has been developed and tested for Apple computers based on an Intel processor only. It has
been extensively used on laptops of the Macbook Pro series, models going from Macbook Pro 3,2 (2007
with Core 2 Duo processor) to the most recent Unibody models.

Software

OMax 4.5.1 has been developed and used in Max/MSP 5 in its most recent (and last) version, 5.1.9. It has
not been thoroughly tested on Max 6 yet, however no specific feature of Max/MSP 5 is used and positive
feedback has been given on first tests. So it may work fine in Max 6 (without any guarantee).

1.2 OMax Principles

1.2.1 Fundamentals

OMax is an improvising software which uses on-the-fly learning and generating from a live source. It
is capable of simultaneously listening to the audio stream of a musician, extracting information from
that stream, modeling this information into a complex formal structure (think of a musical roadmap),
then navigating this structure by recombining the musical material to create variation(s) or “clone(s)” of
the input. OMax has no a priori knowledge or rules to guess or infer any specific analysis of the input
based on a particular music theory (it is said agnostic). Thus its versatility and adaptability. OMax can
either input and generate MIDI information or input and output an audio signal, in which case it uses a
recording of the very musician’s sound, thus enforcing the “cloning” e↵ect.
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1.2.2 Style Modelling

“By Style Modelling, we imply building a computational representation of the musical surface that captures
important stylistic features hidden in the way patterns of rhythm, melody, harmony and polyphonic
relationships are interleaved and recombined in a redundant fashion.”. In other words, style modeling is
the extraction of implicit rules from a musical material (often referred as the source). Whether the system
infers the implicit rules of the source or mimics the surface without trying to guess these rules depends
on the representation model used.
In this field, investigations have been done (in collaboration with Shlomo Dubnov) with dictionary based
models such as LZ compression algorithm (Incremental Parsing (IP) methods) or Prediction Su�x Trees.
Both methods build a tree encoding patterns occurrences and allows to calculate probabilities on the
continuation of a given pattern.
In the years 2001-2002 the Music Representation team in IRCAM started to use a novel representation of
pattern repetition, Factor Oracle, coming from the genetic research on patterns in genome. Since then,
they studied and successfully used this representation for style modelling and music generation and built
OMax, a real-time improvising system using stylistic reinjection.

1.2.3 Stylistic Reinjection

The musical hypothesis behind stylistic reinjection is that an improvising performer is informed continu-
ally by several sources, some of them involved in a complex feedback loop. The performer listens to his
partners. He also listens to himself while he is playing, and the instantaneous judgment he bears upon
what he is doing interferes with the initial planning in a way that could change the plan itself and open up
new directions.
Sound images of his present performance and of those by other performers are memorized and drift back
in memory from present to the past. From the long-term memory they also act as inspiring sources of
material that would eventually be recombined to form new improvised patterns. Musical patterns are
supposed not to be stored in memory as literal chains, but rather as compressed models, that may develop
into similar but not identical sequences: this is one of the major issues behind the balance of recurrence
and innovation that makes an interesting improvisation.
The idea of stylistic reinjection is to reify, using the computer as an external memory, this process of
reinjecting musical figures from the past in a recombined fashion, providing an always similar but always
innovative reconstruction of the past. To that extent, OMax, as a virtual partner will look familiar, as well
as challenging, to his human partner. The interesting thing is to see how the human partner reacts to his
“clone” and changes his improvisation accordingly.
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1.3 Quick Start

1.3.1 Audio

1. Starting point to get OMax working (after checking the system requirements) is to load the
OMax.4.5.x.maxpat patch in Max 5. This patch is highlighted in red in the OMax Patches&Objects
folder. Or you can use the alias pointing to it present in the OMax4.5.x folder. It may take one
or two minutes as the patch embeds a lot of others. It should print about 35 lines in your Max
window with the credits for external objects and OMax.data, OMax.oracle and OMax.buffers
declarations. However, none of them should be red (error message). Next steps will make reference
to the capture presented Figure 1.1.

2. If you want to use OMax on a live input, adjust the channels (accordingly to your hardware and
Max I/O mappings) then check the Input toggle (frames 2, top left corner of the patch).
NB: The first channel (named rec) is used to record the sound in a bu↵er (and replayed later on)
while the second channel (named dtct) is fed into the detection (analysis) system. These two
channel can receive the same stream if you use only one microphone.
If you want to use OMax on a sound file, click on the open message of the Play file box and choose
an ai↵ file in the navigator popping up. Checking and unchecking the toggle (frame 2b, top left
corner of the box) will start and stop the playing of your file once the audio is turned on.

3. Provided that you had no errors in the Max window when you loaded the patch, you can now turn
on the audio with the “speaker” button (frame 3, bottom right side of the patch).

4. You can check and adjust the level of the sound arriving to OMax with the horizontal vumeters
(and their overlaid sliders) in and on the right of the Record box (frame 4). You can also monitor
this stream by checking the top left toggle of the Monitor box (frame 4b) — you may need to adjust
the channels of your monitoring system with the numbers in the same box.
The Pitch and Spectral boxes LEDs should start flashing (frame 4) as the sound gets through.
It indicates that they are detecting some activity and able to extract information from the audio.
Otherwise you need to continue adjusting levels and/or detection parameters (see 2.2.3 or 2.2.4).

5. When you are ready, you can start recording and learning by checking the big toggle labelled
Start Learning on the top of the patch (frame 5).
If you work with a sound file, you can stop and start reading the file again from the beginning with
the toggle of the Play file box (frame 2b).
Model should start being built, Size and Hi Ctxt of the Dual_MIDI and Dual_SP boxes should start
growing.

6. You can activate the visualization of the knowledge by checking the top toggle of the Visu box
(frame 6) and looking in the Jitter window. At least an horizontal black line should appear and
hopefully some white and grey arcs below and above this timeline proving that OMax is recognizing
some interesting patterns.

7. OMax is now ready to improvise! Check the top left toggle of one of the players and it should
start playing (frames 7). You can adjust the channel and volume of each of the players in the
Output box right below.

8. Hit the Stop! button (frame 8, on the top of the patch) to stop all the players at once. And reset
the Audio part of OMax with the Reset button underneath the Start Learning toggle (frame 8,
on the top of the patch) and to be ready to start again a new improvisation.
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Figure 1.1: Audio Quick Start
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1.3.2 MIDI

1. Starting point to get OMax working (after checking the system requirements) is to load the
OMax.Forum patch in Max 5. This patch is highlighted in red in the OMax4.5 folder. It may
take one or two minutes as the patch embeds a lot of others. It should print about 35 lines in your
Max window with the credits for external objects and OMax.data, OMax.oracle and OMax.buffers
declarations. However, none of them should be red (error message). Next steps will make reference
to the capture presented Figure 1.2.

2. First you need to define a MIDI input to receive data from by double-click on the notein object in
the MIDI Poly box (frame 2). You can also adjust the channel you want to listen to with the number
box right below (frame 2). A value of �1 means all channels.
NB: if you want to play a MIDI file and feed it to OMax, you need to use an external software as
Sweet MIDI Player to play and route the MIDI stream to Max/MSP.
The LED of the MIDI Poly box should start flashing as soon as you receive MIDI data.

3. You are now set to start the learning of OMax by checking the toggle labelled Start Learning
(frame 3, on the top of the MIDI part of the patch).

4. You can activate the visualization of the knowledge by checking the bottom toggle of the Visu
box (frame 4) and looking in the Jitter window. At least an horizontal black line should appear
and hopefully some white and grey arcs below and above this timeline proving that OMax is
recognizing some interesting patterns.

5. Before making OMax improvise, you need to adjust the MIDI output of the players. Double-
click on the noteout box of each of them (frame 5) to decide if you want to use the default
synthesizer of the Apple Operating System, AU DLS Synth or if you want to send the MIDI stream
to another synthesizer you may have on your computer.

6. OMax is now ready to improvise! Check the top left toggle of one of the players and it should
start playing (frames 6).

7. Hit the Stop! button (frame 7, near the players) to stop all the players at once. And reset the
MIDI part of OMax with the Reset button on the left of the Stop! button (frame 7) to be ready to
start again a new improvisation.
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Figure 1.2: MIDI Quick Start
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1.4 Architecture

1.4.1 Overall view

From a very distant point of view, OMax is built in two parts. A first ensemble is in charge of the listening
and learning process and a second ensemble is the improvising part itself. The analysis is conceptually
divided in three stages. A first stage extracts from the incoming stream some abstract description based
on signal processing principles (which will be described later in this documentation). Once this detection
has been done, a segmentation stage takes the abstract stream (of numbers mostly) from the detection to
aggregate them into consistent units that have a symbolic coherence and a defined value.
For example, in the common case of pitch information, the detection stage will be an algorithm for
fundamental frequency extraction. It will output a continuous stream of frequencies that need to be
filtered and grouped by the segmentation to give a symbolic information of note defined by its onset,
o↵set and pitch value (possibly given also with a velocity value).
The result of these two steps of analysis is a symbolic representation of the input stream that can be learnt
in the pattern recognition model of OMax. This modelling is done by constructing the Factor Oracle
graph previously mentioned.

Rendering

Detection

Modelling

Input

Output

Segmentation

Generation

Learning
Improvising

Figure 1.3: Overall architecture of OMax

Once the building of the model has started, the improvising part of OMax is able to navigate in this
model to create a virtual improviser (often referred as a “clone”) which plays variations on the learnt
sequence. A first block reads the model and generates a path for an improvisation. This generation block
sends (usually along the navigation) the informations about this path to the rendering block which is in
charge of retrieving the e↵ective recorded elements (typically the audio chunks) to read and produce the
sound of the “clone”.

1.4.2 Functions

In a more detailed view of OMax, we can describe the di↵erent parts previously presented with more
blocks. As suggested, there is naturally a recording part in the learning ensemble of OMax composed of
a bu↵er and a record agent. The rendering part of the improvising ensemble can also be divided in two
di↵erent elements : the scheduler is in charged of putting the path (in the learnt knowledge) in time then
the renderer read the recorded bu↵er to get the information to output the actual sound material.

The visualisation part is one of the main novelty in OMax 4.x (compared to the previous versions). It
allows the user to see in real-time on the interface the current state of the model and interact with the
improvising part, with regards to this state.
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Figure 1.4: Functions in OMax

1.4.3 Externals

The second main novelty in OMax 4.x is the integration of OMax in the Max/MSP environment solely.
On the diagram 1.4, with respect to Max/MSP conventions, black links represent message connection
while yellow and black arrows are audio connections. The green links show the connections with the
knowledge model which required specific external objects for Max/MSP developed in C/C++ especially
for OMax. A collection of 9 external objects for Max/MSP is provided with OMax. They are all named

RenderRead

Learner

Oracle

Build

Data

SLT state2date

date2state

Figure 1.5: External objects for OMax 4.x

with the prefix OMax. They implement two data structures: one (OMax.oracle) is the Factor Oracle
graph structure, the other one (OMax.data) holds the musical (symbolic) content of the input sequence.
The other objects are used to interact with these structures, read them, write them and use their content.
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Chapter 2

Modules

The third novelty of OMax 4.5.1 is the entirely modular structure of the software. Even though OMax
is opened through a single and main patch in Max/MSP, each part of the software is embedded in its
own abstraction that can be reused in many other configurations. Thus it is possible to construct with
these elements an OMax patch suitable for specific needs or even reuse some part of OMax to build your
own system. The modules of OMax are closely following the functions previously presented. Here is the
diagram of the actual modules of OMax.

Oracle 
& Data

Player

Extraction Segmentation 
& TimeStamp

Impro

Input

Output

Buffer & 
Transport

Graph

Display

ImproVisu

Figure 2.1: Modules of OMax

The Extraction module is in charge of computing the detection information on the input stream. It
passes the result to the Segmentation& TimeStamp module which does the gathering of consistent and
sequential description data to constituted the symbolic units and dates them with respect to the recording
time. Timestamping is the link between the symbolic units describing the input and the actual recording
of the stream made in the Bu↵er & Transport module.
Then, the symbolic information is organised and stored in the Oracle & Data module which is thus the
core of OMax knowledge. The Graph module periodically reads the model and gives a visualisation of
its state which will be displayed by the Display module thanks to Jitter.
The Impro module navigates in the knowledge model with respect to the parameters and constraints
given through the interface and computes a new path to generate a “clone”. This path is graphed on the
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display thanks to the ImproVisu module. Then the Player modules reads this path and with the actual
recording recreates a sounding virtual improviser.

2.1 The two and a half worlds of OMax
OMax 4.x allows two types of input stream of two very di↵erent nature: MIDI data coming from a
keyboard or any other MIDI instrument or audio coming from a microphone or the reading of a sound
file. These two worlds are totally separated in OMax: the bottom half handles the MIDI part (Fig 2.2)
while the top half of the main patch handles the audio part of OMax (Fig 2.3).

Figure 2.2: MIDI part of OMax

Figure 2.3: Audio part of OMax

Each one of these domain possess its own analysis module(s), data structures and improvisation parts.
They share the same conceptual organization presented 1.2 and have the same kind of modules but no
link. Only the Jitter display is mutualized for obvious performance and screen reasons.
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Figure 2.4: Visualization part of OMax

2.2 Input(s)
As previously mentioned, there are two types of inputs in OMax and three di↵erent analysis possible. We
will present here how to use the modules concerning each one of them.

2.2.1 MIDI

The MIDI input of OMax is contained the part of the patch presented Figure 2.5. The parameters to get
and analyze a MIDI stream are contained in the section framed in red.

Figure 2.5: MIDI input section of OMax

⌥⌃ ⌅⇧notein
⇤⇥ ��x : the notein box and its associated toggle is used to select and enable the receiving of MIDI

data. Double click on notein to chose the MIDI port.

chan : the number labelled chan is used to select a specific MIDI channel to listen to. If the value -1 is
put, the data from all the 16 channels of the port will be received.

tolerance : the tolerance parameter defines the time granularity (in milliseconds) to separate two MIDI
events. Once a note has arrived, all the other notes arriving within the tolerance time will be
considered as simultaneous and constituting a common chord. A note arriving after that time will
be considered as a new event (possibly a new chord).

legato : the legato time (in millisecond) defines the separation between two notes (or chords) that
are overlapping. If the overlapping lasts more than the legato time, then the resulting chord is
considered as a meaningful event, otherwise, the overlapping is ignored and only the two notes (or
chord) before and after are considered.

LED : a small grey LED (flashing green) indicates on the right of MIDI Poly if MIDI data arrives in the
module.
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2.2.2 Audio

In the current version of OMax, the analysis being done on an audio stream can rely on two di↵erent
extractions: pitch content or spectral content. These two analysis run in parallel on the same audio
stream so they share the same bu↵er and timeline but feed to di↵erent graphs/knowledge (Factor Oracle)
to play with. The audio input of OMax can come from both a real-time stream of one or two microphones
or the playing of a sound file. The modules to adjust the audio input are common for both the pitch or the
spectral analysis.

Figure 2.6: Audio Input of OMax

Input: if you have one or two microphones
plugged on your computer, you can activate the
“live input” patch by ticking the toggle on the top
left corner and use them. Once you have turned
on the DSP of Max/MSP, the two flashing green
LEDs named rec (for recording) and dtct (for de-
tection) will tell you if it gets any signal. You can
adjust the channel for the recording and the detec-
tion separately with the two corresponding number
boxes labelled ch (for channel).
The detection channel goes into the di↵erent ex-
traction and segmentation stages while the record-
ing channel is recorded into the bu↵er as explained
in section 1.4.2. It is sometimes better to use two
di↵erent microphones for those two processes. For
example a close field mic, less sensible to the en-
vironment (if there are several musicians for in-
stance) may be more e�cient for detection while a
farther mic will give more bass and air for a better
quality recording.

Play file: if you want to use a sound file as audio input for OMax, you can use the small player
embedded. Start by choosing the file with the open button. Then, once the DSP of Max/MSP is on,
checking and unchecking the toggle (top left corner of the Play file frame) starts and stops the playing.
You can also pause and resume the playing with the buttons on the bottom of the frame.
The stereo toggle lets you choose the routing of the channels if you file is stereo. When uncheck (default),
both channels of your file are summed and fed identically into both the detection and recording channels.
If you check the stereo toggle, the first channel (left) of your file is fed into the recording while the
second (right) is routed to the detection.

Two horizontal VUmeters framed in red on figure 2.6 are overlaid with two sliders which allows
you to adjust the volume of both detection and recording channel. The small bang button at the bottom
right corner of each of them is use to come back to the default (127) value. In the Record module, beside
seeing and adjusting the recording volume, the red LED let you know when OMax is actually recording
and the numbers (refreshed four times per second) indicates the present duration of the recording.

Lastly, the Monitor modules allows you to listen to the audio fed to OMax. You can chose the channel
you want to monitor on with the two (one for the recording channel, one for the detection channel) number
boxes labelled ch and adjust the volume with the vertical slider on the right (the bang button on top
brings back the slider to the default value).
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2.2.3 Pitch

Pitch extraction and segmentation are done in the module framed in red on figure 2.7.

Figure 2.7: Pitch detection in OMax

Level : to be able to adjust separately the volume of the signal used in the pitch and the spectral detection,
you can use the number box labelled Level.

Quality : the
⌥⌃ ⌅⇧yins object outputs along with the pitch stream a quality stream corresponding roughly

to the saliency of harmonic frequencies. It is used in OMax as a relevance or consistency threshold
to select dominant pitches. Pitches with a quality under the value given in the number box will be
ignored.

Window and Proba : a statistical mechanism is included in the pitch detection module to improve the
relevance of extracted information. Raw pitches are gathered during a certain time window (in
milliseconds) and the so cooked pitch is output only if its probability over this window is above the
Proba parameter (between 0. and 1.).

2.2.4 Spectral

Spectral detection in OMax relies on descriptors named MFCCs for Mel-frequency cepstral coe�cients.
If you do not want to use presets supplied with the patch, you can adjust manually the parameters shown
in the red frame of figure 2.8.

Figure 2.8: Spectral detection in OMax

Thresh : the first coe�cient of MFCCs represent the overall energy of the spectrum. As with quality in
pitch, we can exclude spectral slices of too weak energy (as background noises for example) with
the Thresh number box. The higher you put this threshold, the less sensible the detection will be.

Dmax : an adaptive clustering is implemented in this detection to recognize similar pitches. It uses a
distance to compare the spectral content of the frames. The Dmax parameter adjusts the maximal
distance for two frames to be considered as similar. Practically, it means that if you decreasing
Dmax you gives the detection a finer resolution (di↵erentiation) but may drastically decrease the
quality of recognized patterns in the model as well. Increasing Dmax will agglomerate more
di↵erent spectral contours as one type of spectrum which may augment the number of recognized
patterns in the model but lower their relevancy.
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2.2.5 Common interfaces

Silence segmentation

Figure 2.9: Silence segmentation

For both MIDI and audio input, OMax also performs a two level
higher scale segmentation based on silences. The input stream is cut
into phrases and sections based on the durations (in milliseconds)
given in the number boxes labelled Phra and Sect°.

Current state of the model

Lastly, each detection gives you a feedback (presented figure 2.10) on the current state of the model once
you have started the learning (see 1.3 to learn how to start). Size indicates the number of states in the
Factor Oracle graph ie. the number of elements in OMax knowledge model of the input sequence. And
Hi Ctxt (for highest context) displays the length of the longest repeated pattern recognized in the model.
This gives you a clue on the current state of the learning and also some information on the adjustment of
the detection. Typical values for highest context should be above 3 and not higher than 15 except if the
source itself has some long repetitions.

Figure 2.10: Current state of the Factor Oracle

15



2.3 Improvisation(s)
The improvisation part of OMax strongly relies on the Factor Oracle model used to analyze the source
material (see 1.2). Variations or “clones” played by OMax are created by navigating this model and
jumping from time to time to diverge from the original material. While the principle of this navigation
are common to the di↵erent inputs and analysis done in OMax (see 2.1) some specialization are needed
to adapt the result to the di↵erent material and gain in smoothness and musicality.

2.3.1 Core

Figure 2.11: Improvisation & Player System

In OMax 4.x the navigation strategy fol-
lows the functional diagram presented
opposite (figure 2.11).
The original sequence is read for a few
consecutive elements (ie a few notes or
a short duration) that we name conti-
nuity then, it is time to diverge from
the original sequence and the system de-
cides to jump.
OMax has a small anticipation system
to be able to find a good transition (vari-
ation) so it searchs and collects the dif-
ferent solutions over a short searching
window.
It selects next all these solutions based
on di↵erent criteria both automatic (as a
taboo system to avoid strict loops) and
user based (as regions which allow to
choose the part of the past serving as
source). And discards solutions not fol-
lowing these rules.
Remaining solutions are described mu-
sically with parameters which strongly
depends on the type of analysis and
each solution is weighted with a mix-
ture of these parameters. So the pool
of solutions is ordered according to this
weight.
Finally, one of the solution is drawn
(among the best), validated and planned
as the next jump. The destination of this
jump starts a new continuous sequence
and buckles the cycle.

Interface for this common mechanism is presented figure 2.13. There are six of these improvisation core
in the current version of OMax. Four of them are attached to the audio input (Fig 2.12a), two of them
deal with MIDI data (Fig 2.12b). You can open and interact with them by double-clicking on their box
(showed figure 2.12).
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(a) Audio improvisation boxes (b) MIDI improvisation boxes

Figure 2.12: Improvisation cores boxes

Each one of these core is reading and improvising on one type of analysis only, indicated by the second
argument given to these boxes. Dual_MIDI stands for pitch description, Dual_SP stands for spectral
description (Dual being the name of the audio input) and MIDI_POLY is the model of the MIDI input.

Figure 2.13: Common Improvisation Interface

Continuity : acts as a kind of variation rate. The higher, the longer consecutive chunks will be (so the
lesser OMax will diverge from the original material).
B Typical value for continuity strongly depends on the type of analysis.

Min Context : acts as a kind of smoothness parameter. The higher, the smoother divergences from the
original material will be. However, forcing higher contexts makes also possibilities of jumps rarer.
In brackets is recalled the highest context currently found in the model.
B Putting a higher value than the one in brackets will stop OMax to vary from the original.

Regions : this toggle globally activate or deactivate the region mechanism. Defining the regions is done
either directly on the visualization (see 2.4 §2) or automatically with the follow or extend mode in
the case of region 2 (see region 2 below).

Region 1 : enables and disables the first region shown in green on the visualization.
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Button : the bang on the right of Region 1 line sends the reference of the middle of green region
to the attractor.

Region 2 : enables and disables the second region appearing in blue on the visualization.

Follow : besides selecting manually (see 2.20) the region 2, you can have it automatically set to
the last x seconds – x being set by the number box next to the Follow word – by ticking the
Follow box.

Extend : like the Follow (but exclusively with it), right bound of region 2 can be set automatically
to the most recent event learnt in OMax while the left bound is set by the user. This allow to
have a second region extending towards the present but limited in the past.

Attractor : aside from regions that are strict constrains, an attractor can be placed on the timeline
(see 2.20) to help OMax “clone” to vary around a specific element of the past. The main toggle
(next to the word Attractor) activate and deactivate this e↵ect. The number box allows to place it.
B Range for the attractor goes from 0 to the most recent event learnt which depends of course
from the input and the analysis.

Follow : automatically puts (and updates) the Attractor to the most recent event learnt.

Lock : is useful when the attractor position has been set through Region 1. If you activate the
Attractor with Lock ticked, the attractor will help the “clone” to get inside the green region.
As soon as it is inside, the Attractor will be replaced by the Region 1. The e↵ect is a smoother
(but longer) transition of the “clone” to get into Region 1 thanks to the Attractor.

2.3.2 Players

Core patches presented in the previous paragraph (2.3.1) generates improvised sequence however they
do not play them. Players, located in the right half of the main OMax patch are in charge of e↵ectively
playing the “clones”.

There are five players for the audio part of OMax (Figure 2.14a) and three for the MIDI part
(Figure 2.14b). There are also three types of players in OMax: players of type A, players of type B and
SVP players.
In the default configuration of OMax, each player, except SVP players, is reading (and polling) a di↵erent
improvisation core. For example in the audio part, the first player on the left (red) is reading the first
improvisation core (named Impro1 and navigating the pitch description, Dual_MIDI, of the input), the
second player (green) reads Impro2, the third (blue) reads Impro3 (navigating on Dual_SP, the spectral
description of the input) and the fourth (magenta) reads Impro4 core. The players color matches the color
of the core being read.
The same thing is also true for the MIDI part: the first player reads the first improvisation core (named
ImproM1, in red) and the second player reads the ImproM2 improvisation core (in green).

SVP players are versatile and can read indiscriminately any improvisation core (of the same input).
You can switch from one core to another with the message on the top labelled with the name of the cores:
Impro1, Impro2, Impro3, Impro4 for the audio part and ImproM1 and ImproM2 for the MIDI part.
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(a) Audio Players (b) MIDI Players

Figure 2.14: Players

Player A

Figure 2.15: Player A

Players of type A are the simplest player possible. They start and stop with the
toggle in their top left corner (on a dark blue background). The background
of this toggle flashes (with a light blue color) whenever a variation (from the
learnt input) occurs. The number indicates how many states (notes, chords or
spectral slices) has already been read. And the black button on the right of
the number box lets the player find a smooth ending then stop there.

Player B

Figure 2.16: Player B

Players of type B works the same way as players of type A: start and stop
toggle is in the top left corner on a blue background, flashing when a variation
occurs. The number indicates the size of the sequence already played and the
black button triggers a smooth ending.
Besides these basic functions, players of type B provides a variable speed
option. The floating-point speed box is a multiplicative factor going from
5. to �5. Normal speed is 1., 2. means two times faster, 0.5 half the normal
speed (ie. two times slower) and so on. Negative speeds automatically ticks
the toggle box labelled +/- and means reading the sound backward. However
these changes of speed are link with a “natural” transposition exactly as when
rotating old vinyls faster or slower.
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SVP Player

Figure 2.17: Player SVP

SVP players make use of the Super Phase Vocoder developed at IRCAM and
allows on top of the regular functions of the other players to transpose and/or
change the speed independently. Start/stop toggle, smooth ending button
and speed box work exactly as in Players of type B. Another floating-point
number box allows to transpose finely the whole clone from 18 semi-tones
below to 18 semi-tones above the original tuning (a value of 1. meaning one
semi-tone above).
A SVP player can also be synchronized on another player (of type A or B) and
thus used to harmonize a clone with a transposition for example. You need
first to choose on which of the other players you want to synchronize with
the buttons labelled Impro1. . . 4 (or ImproM1. . . 2 in the case of MIDI section)
framed in red on Figure 2.14. Then you can tick the Sync toggle to synchronize
the SVP player. You can check that they are indeed well synchronized by
watching the number box showing the state being read.

Output

(a) Audio Output

(b) MIDI Output

Figure 2.18

Below each of the players, you will find a small audio output patch which will
let you adjust the volume with the left-hand side fader. The view meter lets
you know the loudness of the clone (before applying the volume of the fader).
You can choose the channel (ch) with the top number box on the right-hand
side and decide to duplicate the output to another channel by ticking the stereo
(st) toggle and addressing another channel with the second number box. You
may also deactivate the whole audio output of the clone with the top left toggle.

This is useful in the case of a “clone” on the pitch description. Indeed this
description of the audio input is able to emulate a monophonic MIDI stream.
You can then play the “clones” through MIDI with the patch presented Fig-
ure 2.18b. Enable the MIDI playback by ticking the toggle next to the noteout
box of the MIDI out patch. Choose the channel (ch) with the number box and
the MIDI destination by double clicking on the noteout box. Use the button
on the right to flush all MIDI notes.

Figure 2.19

In the case of the MIDI part of OMax, the output is named DeSlicer. It
lets you choose the destination of the MIDI stream by double clicking on the
noteout box which may be deactivated with the toggle on its right. By default,
the output of MIDI OMax uses the same channel(s) as the input stream it learnt
but you can override this by choosing a channel with the number box labelled
ch and ticking the toggle on its left. The button in the top right corner flushes
(ie. stops) all the MIDI notes on every channel.
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2.4 Visualisation
Version 4.x has added a novel visualization to OMax. The state of the internal knowledge (Factor Oracle)
can be represented in real time thanks to Jitter (the graphical part of MaxMSP), see Figure 2.25 for an
example. There is only one (jitter) rendering window (named Vizu); as a result, you can display only one
timeline (ie. one of the two inputs — Audio or MIDI — of OMax) at a time. However, when visualizing
the audio input, both pitch and spectral modelling can be represented above and below the timeline.

Figure 2.20: Visualization Control Interface

Display

Figure 2.21

The Display module is in charge of refreshing and handling the Jitter window.
You can start and stop computing the graphics with the top left toggle. The
button labelled reset view re-centres the view on the default origin of the
display. Finally, you can put the visualization fullscreen with the bottom left
toggle. Press the Esc key to come back to the window mode.

Timeline

Figure 2.22

The Timeline module allows to show an horizontal line representing the elapsed
time of recording and learning (growing in realtime). The toggle enable and
disable this rendering. This module is also in charge of adjusting the zoom of
the display. If you turn the Auto Zoom function O↵ with the first option of the
radio button on the right, the display will simply stay still as it was. Clicking
on the All option or pressing the spacebar of your keyboard will set (and
automatically refresh) the zoom to display the whole knowledge. The Follow
option will slide the display horizontally towards the right as the learning is
growing.

Along the timeline and thanks to the Display module — which is also in charge of converting the
mouse position into time position in the recording — you can select regions (region 1 in green, region 2
in blue) on the visulization. Simply click, hold and release the mouse to extend the region 1. Defining a
region 2 works the same way with the shift key pressed while selecting. Depending whether you selected
a region above or below the timeline, this region will refer to (and be used to control) the pitch or the
spectral model (see 2.4, radio button).
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Links

Figure 2.23: Control of the visualization of the links

The main visual information about the state of the model is given by tracing the links of the graph.
This is controlled, for each graph being built, with the interface presented above (Fig 2.23). The toggle
enable and disable this function, the radio button on the right of the box controls if the links (for each
graph) is displayed above (t for top) or below (b for bottom) the horizontal timeline (see 2.4). You can
choose the minimal quality of links to render with the number box labelled Min Ctxt, a higher value will
display fewer but better quality links (and may allow you to save some CPU). The quality (context length)
of the links are shown with a grey scale going from white (lower contexts) to black (higher contexts).
Changing the Min Ctxt value will also set the White number box to the same value adjusting this way the
grey scale to your display. However, you can also change these parameters by hand by indicating in the
Black and White number boxes your bounds for the grey scale. It may be useful if you want to project
the visualization on a large screen or if you work in specific lights conditions which dims the di↵erences
in colors.

(a) Full Audio Visualization (b) Full MIDI Visualization

Figure 2.24: Toggle Shortcut for Visualization

A handy shortcut is provided in the interface to activate/deactivate all the features at once. The bigger
toggle on the left of the Timeline boxes will check all the other boxes of the same row. Because there is
only one Jitter rendering window, both bigger toggles are mutually exclusive so that you can visualize the
two models built on the Audio input or the model built on the MIDI input but not both.
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Figure 2.25: Example of the Visualization Window with Regions
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Benjamin Lévy

Principles and Architectures for an Interactive and Agnostic Music Improvisation System

Abstract
Since the beginnings of computer science, computers have been used fruitfully for the generation of new music. In the
last decades, their utilization to create generative systems moved from the implementation of tools for composition
towards the invention of reactive programs aimed at participating in the much more unpredictable and challenging
situation of musical improvisation. The work presented in this thesis focuses on the conception and realization of
such a software, capable of pertinent interaction with acoustic musicians in a collective free improvisation, that is an
improvisation without any predetermined knowledge of structures, rules or style. It is extended at the end of our work
with considerations on emerging properties such as pulse or a broad notion of harmony. The OMax project proposes
to approach the problem of non-idiomatic improvisation by learning and mimicking the style of a musician with an
agnostic and incremental knowledge model. We take this computer system as our work basis and examine carefully
three aspects: the conceptual principles of the system, the software architectures for effective implementations and
the real-life usage of this system in numerous testing and concerts situations.
Besides a thorough study of all the conceptual elements of the system based on anthropomorphic decomposition of its
parts, our main contribution is the design and realization of several variations of the OMax system. We first propose
to use dual structures to store the literal information extracted from the input stream of a musician and to hold the
knowledge model built on this information. We illustrate this architecture with a novel real-time visualization of the
model. We claim that duplicating all the processes that lead up to the building of the knowledge model enables the
computer system to listen at once to several aspects of the ongoing music with their own temporal logics captured in
the different model instances. Running this way a multiple descriptions and multiple inputs modeling of the on going
musical content greatly improves the pertinence of the computers response. The study of the generation mechanisms
of the system enables us to put forward a new database oriented approach to the collection of these models. Our
work has been also strongly coupled with the testing of our prototypes with several leading musicians. The musical
feedback gathered along these numerous musical experiences lead the work presented in this thesis and opens up many
directions for further research on the system, notably the exploration of automatic decisions based on the pertinence
of the different descriptions at a given moment of the improvisation or a larger use of prepared material to a composed

improvisation perspective.

Résumé
Depuis les débuts de l’informatique, les ordinateurs on été utilisés fructueusement pour générer de nouvelles musiques.
Au cours des dernières décennies, l’utilisation de systèmes génératifs s’est progressivement tournée des outils pour la
composition vers l’invention de programmes réactifs pouvant participer à une improvisation musicale, situation bien
plus imprévisible et stimulante. Le travail présenté dans cette thèse se concentre sur la conception et la réalisation
d’un tel système informatique, capable d’interagir musicalement et pertinemment avec des musiciens acoustiques dans
le cadre de l’improvisation libre collective, c’est à dire de l’improvisation détachée de toute structures, règles ou style
prédéfinis. Nous étendrons ce cadre à la fin de notre travail en y intégrant l’utilisation de propriétés émergentes telles
que la pulsation ou une notion large d’harmonie. Le projet OMax propose d’aborder le problème de l’improvisation
non-idiomatique par l’apprentissage et l’imitation à la volée du style d’un musicien à l’aide d’un modèle de connaissance
agnostique. Ce système sert de base à notre travail et nous en examinons attentivement trois aspects : les principes
conceptuels du système, les architectures logicielles permettant une implémentation efficace, et l’usage réel du système
dans de nombreux tests et concerts.
Outre une étude fouillée de tous les éléments théoriques du système suivant une décomposition anthropomorphique
de ses différentes parties, les contributions principales du travail présenté dans cette thèse sont la conception et la
réalisation de plusieurs nouvelles versions du système OMax. Nous proposons en premier lieu l’utilisation de structures
duales pour contenir d’une part les informations extraites du flux d’entrée d’un musicien et d’autre part le modèle
de connaissance construit sur ces informations. Nous illustrons cette architecture avec une nouvelle visualisation en
temps-réel du modèle de connaissance. Nous prétendons que la multiplication de tous les processus menant à la
construction du modèle de connaissance permet au système d’écouter en parallèle plusieurs aspects de la musique
se déroulant. Chacun de ces aspects possédant sa propre logique temporelle mène à la construction d’une instance
différence du modèle. Nous obtenons ainsi une modélisation du discours musical basée sur plusieurs descriptions de
plusieurs entrées ce qui permet d’augmenter considérablement la pertinence de la réponse de l’ordinateur. L’étude
menée sur le mécanisme de génération du système nous permet de proposer une nouvelle approche de la collection de
modèles de connaissance vue comme une base de donnée. Notre travail a été fortement associé à des tests réguliers
des prototypes du système avec de nombreux musiciens de premier plan. Les réactions collectées au cours de ces
nombreuses expériences musicales ont fortement orienté le travail présenté dans cette thèse et ont ouvert de nouvelles
directions de recherche autour de ce système, notamment l’exploration de la prise automatique de décisions éclairée
par la pertinence des différentes descriptions du flux musical au cours de l’improvisation ou une plus grande utilisation
de matériau musical préparé dans le cas d’improvisations composées.
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