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This paper reports the experimental results of modifying the resonances of wind instruments using modal active
control. Resonances of a simplified bass clarinet (a cylindrical tube coupled to a bass clarinet mouthpiece including
a reed) are adjusted either in frequency or in damping in order to modify its playing properties (pitch, strength of
the harmonics of the sound, transient behavior). This is achieved using a control system made up of a collocated
loudspeaker and microphone linked by an observer, which contains a model of the system, and a controller.
Modifications of the transfer function, input impedance and radiated sound of the instrument are obtained.

1 Introduction
This study aims at modifying the resonances of the

air column of a musical wind instrument using modal
active control [1]. It is achieved using a control system
composed of a collocated microphone and speaker linked
by a controller and an observer, which uses a state space
representation of the system. This is a mathematical model
which represents the system in terms of state variables
(expressed as vectors and matrices) containing the modal
parameters (frequency, damping) of the system. Modal
active control enables the modal parameters of a system to
be modified so that individual resonances can be adjusted
to reach target frequency and damping values [2, 3].
Simulations have shown that the control of self-sustained
oscillating systems such as a clarinet is theoretically feasible
[4, 5]. There have been relatively few applications of
modal active control to musical instruments [6, 7] and no
application to wind instruments to the authors’ knowledge.

In this paper, experimental results of modal active control
applied to a simplified bass clarinet (a cylindrical tube
coupled to a bass clarinet mouthpiece with a reed) are
presented. The control is used with the intent of adjusting
the resonances of the instrument, thereby altering the timbre
of the sound it produces as well as its playing properties.
Such adjustments provide similar effects to those that would
result from modifying the instrument’s bore profile [8].

In Section II, the state-space representation of the resonator
of the simplified instrument (i.e. a cylindrical tube) used
by the observer of the control system is presented, as
well as the principle of the modal control. In Section III,
the controlled simplified bass clarinet with incorporated
collocated microphone and speaker, as well as measurements
of the effects of the control on the transfer function, input
impedance and radiated sound of the instrument are
presented. In a first example, the control aims at decreasing
the frequency of the 7th resonance of the system, and in a
second example, the control aims at increasing the damping
of resonances 4 to 10. Finally, Section IV provides some
conclusions and outlines the proposed next steps for the
research.

2 State-Space Model
In this section, the state-space representation of the

resonator is presented. This representation takes into
account the excitation from the speaker of the active
control system, as well as monitoring of the pressure by the
microphone of the active control system. Finally, the designs
of the observer and controller elements of the active control
system are described.

2.1 The Resonator
Modal active control makes it possible to control the

frequencies and damping factors of the modes of a system.
To be able to apply modal active control, however, the
system must be expressed in terms of a state-space model,
comprising vectors and matrices which describe the system’s
dynamics. Here, a state-space model of the resonator of the
simplified bass clarinet is described.

The state-space model of the cylindrical tube used in
this paper is derived in [2] and can be found with more
details in [4] and [5]. The diameter of the tube is sufficiently
small compared with its length Lt, that the tube can be
considered to be a one-dimensional waveguide with spatial
coordinate z, where 0 ≤ z ≤ Lt. In the model, the speaker
element of the control system is positioned at z = zs and
the microphone at z = zm. The microphone and speaker are
collocated (zs = zm).
The pressure in the tube, with the speaker incorporated in
the tube wall, is described by the nonhomogeneous equation
[2]:

1
c2 p̈(z, t) = p′′(z, t) + ρ0v̇s(t)δ(z − zs) (1)

where p is the acoustic pressure, vs the speaker baffle
velocity, ρ0 the density of the acoustic medium and δ the
Kronecker delta. The ′′ symbol represents the second
order spatial derivative and the ˙ and ¨ symbols represent
respectively the first and second order time derivatives. ρ0v̇s

represents the command sent by the control speaker.
In order to project eq.(1) in the modal base, let

p(z, t) =

∞∑
i=0

Vi(z)qi(t) (2)

where Vi is the modal shape of mode i and qi the particle
displacement of mode i inside the tube. To obtain a
modal state-space description of the cylindrical tube, with
embedded control system, truncated with r modes and
including a proportional modal damping, let

x(t) =
[
q1(t) ... qr(t) q̇1(t) ... q̇r(t)

]T (3)

where x(t) is the state vector used in the linear model so that

ẋ(t) = Ax(t) + Bus(t) (4)

y(t) = Cx(t) (5)

where us(t) is the command produced by the controller and
transmitted to the speaker, y(t) is the output of the system,
and

A =

[
0r,r Ir,r

−diag(ω2
i ) −diag(2ξiωi)

]
(6)

is the dynamical matrix which contains the frequencies ωi

and damping factors ξi of the resonances of the cylindrical
tube for the ith mode. The modal parameters of these modes
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Figure 1: Model of a self-sustained wind instrument [9]
with control system. y(t) is defined in eq.(5), us(t) is defined

in eq.(9). x̂(t) is defined in eq.(12).

are extracted from a transfer function measured between
the microphone and speaker of the control system with a
Rational Fraction Polynomials (RFP) algorithm [10].
Meanwhile, Ir,r is the identity matrix,

B =
[
0r,1 KsKmV2

1 (zs) ... KsKmV2
r (zs)

]T
(7)

is the actuator matrix with Ks and Km gains, considering
that the transfer functions of the speaker and microphone
are pure gains, Vi(z) as described in eq.(2), KsKmV2

i (z) is
identified between the speaker and the microphone with the
RFP algorithm, and

C =
[

11,r 01,r

]
(8)

is the sensor matrix.

2.2 Modal Control
Schematically, a self-sustained wind instrument is a reed

coupled to a resonator (cylindrical tube) through a non linear
coupling (see Figure 1). To apply modal active control to
this resonator to modify its frequencies and damping factors,
a control system composed of a collocated microphone
and speaker linked by a Luenberger [11] observer and a
controller is added to the resonator. The observer directly
receives what is measured by the microphone; its role is to
rebuild the state vector x(t) using a model of the system and
the measurement y(t) = p(t). Let x̂(t) be the built state vector
estimated by the Luenberger observer. x̂(t) is used by the
controller to generate a command us(t) that is transmitted
through the speaker in order to apply the control to the
resonator. This command us(t), the same as in eq.(4), can be
expressed as

us(t) = −Kx̂(t) (9)

where K is the control gain vector used to move the conjugate
poles si of the A matrix, that is its eigenvalues, so that [12]:

Re(si) = −ξiωi, (10)

Im(si) = ±ωi

√
1 − ξ2

i . (11)

K is determined, together with the A and B matrices, using
a pole placement algorithm (in this work, the algorithm

Figure 2: Top : Simplified bass clarinet (a cylindrical tube
with a bass clarinet mouthpiece and a reed) with embedded

control system with collocated microphone and speaker.
Top right corner : control system removed from the

instrument. Bottom : Schematic view of the instrument with
embedded control system.

developed by Kautsky et al. [13] is used).
By using control gains K, these poles can be moved in order
to reach new, target values for the resonator’s frequencies
(angular frequencies ωit ) and damping factors (ξit ). These
new poles are the eigenvalues of A − BK.
The dynamics of the observer used to estimate the state of
the system can be written

˙̂x(t) = Ax̂(t) + Bus(t) + L (y(t) − ŷ(t)) , (12)

ŷ(t) = Cx̂(t) (13)

where L is the observer gain vector. L is chosen such
that the error between the measurement and its estimation,
ey(t) = y(t) − ŷ(t), converges to zero. It is calculated using
the same pole placement algorithm than for K, with the A
and C matrices.
The instrument and experimental measurements are
presented and discussed over the remainder of the paper.

3 Measurements
In this Section, the actual controlled system is presented.

Then, examples of the effect of the control on the transfer
function, the input impedance and the sound produced by
the instrument are provided. In a first example, the control
aims at decreasing the frequency of the 7th resonance of
the system, and in a second example, the control aims at
increasing the damping of resonances 4 to 10.

3.1 The Instrument
The controlled instrument is on Figure 2. It is a closed-

open cylindrical tube with a bass clarinet mouthpiece and
a reed at its closed end. Its length is 1.19 m and its radius
11 mm. The control system is composed of a collocated
speaker and microphone and is placed 50 mm from the
open end of the tube. The speaker is linked to the tube by
a cylindrical cavity of length 5 mm and radius 20 mm and
a hole of mean thickness 1.5 mm and radius 5 mm. The
components used in the control system are a 2′′ Tymphany
Peerless PLS-P830983 speaker and an Endevco piezoelectric
pressure resistive model 8507C-5 microphone. The control
is achieved using Simulink under Xenomai [14, 15], a
real-time development framework cooperating with the
Linux kernel, which allows a latency of about 20 µs when
controlling 10 modes.



Figure 3: Top: Measured (solid grey line) and identified
(dash black line) transfer functions of the tube, and 10

identified modes (dash grey lines). Bottom: Measured (solid
grey line) and identified (dash black line) phase of the

transfer functions of the tube.

Table 1: Modal parameters of the identified modes.
Mode Freq. Damping Mode Freq. Damping

(Hz) (Hz)
2 214 0.0448 7 920 0.0113
3 361 0.0262 8 1050 0.0115
4 504 0.0172 9 1177 0.0100
5 646 0.0141 10 1306 0.0083
6 785 0.0114 11 1439 0.0065

Figure 3 shows the transfer function measured between
the microphone and the speaker of the control system, and
the transfer function identified using a RFP algorithm. Ten
modes are identified, from the second mode to the eleventh.
Table 1 gives the modal parameters (frequency, damping)
of the identified modes. The first mode of the tube (71 Hz)
is not identified. This is due to the resonance frequency
of the speaker (147.5 Hz) below which its response is very
weak. It is also due to the position of the control system,
close to the open end of the tube, where the first modes are
low in amplitude. The second mode is not well identified,
particularly with regarde to its phase, with a difference of
0.62 rad, and results in the impossibility of controlling this
mode. The 9 other modes are well identified. The acoustical
cut-off frequency of the control system is approximately
1500 Hz. As a result, measurements have been limited to
frequencies below this value.

3.2 Control of the 7th resonance frequency
In this Section, the frequency of the 7th resonance of

the system is controlled, with the aim of decreasing it from
920 Hz to 860 Hz.

Figure 4 shows the transfer functions of the system,
measured between the speaker and the microphone of the
control system, without control and with the control applied.
The effects of the control on the 7th peak are detailed in
Table 2 (top). The frequency of the peak is close to the
targetted frequency for the 7th resonance, with a difference
of 2 Hz. However, moving the frequency of the peak has
also resulted in a reduction in its amplitude. Effects on
the other peaks are also observed when controlling the

Figure 4: Transfer functions of the tube without control
(solid black line) and the with control applied so that the

frequency of the seventh resonance is decreased from
920 Hz to 860 Hz (dash black line).

Table 2: Frequency and amplitude of the seventh peak of the
transfer functions (top) from Figure 4 and input impedances

(bottom) from Figure 5 without control (U) and with the
control applied (C). Under brackets are the differences

between uncontrolled and controlled cases.
Case Frequency (Hz) Amplitude (dB)

U 920 -8.4
C 862 (-58) -10.2 (-1.8)
U 920 13.9
C 860 (-60) 18.5 (+4.6)

7th resonance. The amplitudes of peaks 5, 6, 8 and 9 are
affected, particularly peak 6 which increases in amplitude by
4 dB.

Figure 5 shows the input impedance magnitude of the
system without control and with the control applied. The
measurements are achieved using the BIAS system. The
effects of the control on the 7th peak are detailed in Table 2
(bottom). The frequency of the peak is exactly that targetted
for the 7th resonance. The control of the frequency of
the 7th resonance has also resulted in its amplitude being
increased. Effects on the other peaks are also observed when
the control is applied. The amplitude of peaks 5, 6, 8 and 9
are all affected, particularly peak 6 which increases by 5 dB.
The antiresonances after peaks 6, 7, 8 and 9 are increased
in amplitude by 20 dB to 5 dB, so that the antiresonances
between peaks 6 and 7 and between peaks 7 and 8 almost
desappear.

Figure 6 shows the spectrogram of the sound emitted
by the instrument, when blowing in it, with the control
applied. In this figure, the control is applied between times
2 and 5 seconds. When the control is not applied, the sound
shows only the odd harmonics, which is characteristic of a
closed-open tube. When the control is applied, the amplitude
of the 7th odd harmonic (about 920 Hz) is weakened,
because the 7th resonance is less harmonically related to
the fundamental. However, the even harmonics six to nine
(about 852 Hz, 994 Hz, 1136 Hz and 1278 Hz) are enhanced,
particularly the sixth even harmonic which is really close
to the frequency of the controlled 7th resonance. This
correlates with what has been observed on Figure 5. When
the control stops, the sounds is again composed mainly of



Figure 5: Input impedance of the tube without control (solid
black line) and the with control applied so that the

frequency of the seventh resonance is decreased from
920 Hz to 860 Hz (dash black line).

Figure 6: Spectrogram of the sound emitted by the
instrument. The control is applied for 3 seconds, between

times 2 and 5 seconds.

the odd harmonics of the fundamental.

3.3 Control of the damping of resonances 4 to
10

In this Section, the damping factors of the resonances 4
to 10 are controlled and increased by 300 %.

Figure 7 shows the transfer functions of the system
without control and with the control applied. The effects of
the control on peaks 4 to 10 are detailed in Table 3 (top). The
amplitudes of all the peaks are reduced, with a maximum
reduction for peak 7 of 10.3 dB. Apart from for the 7th
peak, the increase in damping also has an effect on the peak
frequency. Below the 7th peak, the frequency decreases (by
as much as 54 cents for peak 4) while, above the 7th peak,
the frequency increases (by as much as 41 cents for peak 10).
The control also has an effect on the amplitudes of peaks 2
and 3, with respectively increases of 2.1 dB and 2 dB.

Figure 8 shows the input impedance of the system
without control and with the control applied. The effects
of the control on peaks 4 to 10 are detailed in Table 3
(bottom). The amplitudes of all the peaks are reduced, with
a maximum reduction for peak 6 with 9.9 dB. Apart from
for the fifth peak, the increase in the damping also results

Figure 7: Transfer functions of the tube without control
(solid black line) and with control of the damping of

resonances 4 to 10, increased by 300 % (solid grey line).

Table 3: Frequency and amplitude peaks 4 to 10 of the
transfer functions (top) from Figure 7 and input impedances

(bottom) from Figure 8 without control (U) and with the
control applied (C). Under brackets are the differences

between uncontrolled and controlled cases.
Peak Freq. Amp. Freq. Amp.

(Hz) (U) (dB) (U) (Hz) (C) (dB) (C)
4 501 -13.4 479 (-22) -14.2 (-0.8)
5 644 -11.3 619 (-25) -17.1 (-5.8)
6 784 -9.6 770 (-14) -18.3 (-8.7)
7 920 -8 920 (0) -18.3 (-10.3)
8 1050 -8.4 1063 (+13) -18.6 (-10.2)
9 1179 -10.5 1200 (+21) -18.8 (-8.3)

10 1311 -14.8 1357 (+46) -16.9 (-2.1)
4 505 17.7 493 (-12) 9 (-8.7)
5 647 16.7 647 (0) 8.3 (-8.4)
6 786 15.7 796 (-10) 5.8 (-9.9)
7 920 14 915 (-5) 4.7 (-9.3)
8 1052 12.2 1050 (-2) 2.8 (-9.4)
9 1180 12.6 1172 (-8) 4.9 (-7.7)

10 1310 13.7 1307 (-3) 6.3 (-7.4)

in a decrease in the frequencies of the peaks (by as much as
29 cents for peak 4). All the antiresonances are increased
in amplitude by as much as 10 dB. The control also has an
effect on the amplitudes of peaks 2 and 3, with respectively
increases of 2.2 dB and 1.2 dB. These side effects may be
due to the latency of the control system, to calculation errors
or to model errors.

Figure 9 shows the spectrogram of the sound emitted by
the instrument, when blowing in it, with the control applied.
In this figure, the control is applied between times 3 and
6 seconds. When the control is applied, odd harmonics
4 to 9 are weakened. Harmonic 10 is not shown on the
figure, because it was too weak to be visible even before
the control. The control also has an effect on the even
harmonics, particularly on even harmonics 2 to 4 which are
enhanced. This correlates with what has been observed on
Figure 8.



Figure 8: Input impedances of the tube without control
(solid black line) and with control of the damping of

resonances 4 to 10, increased by 300 % (solid grey line).

Figure 9: Spectrogram of the sound emitted by the
instrument when increasing the damping of resonances 4 to
10 by 300 %. The control is applied for 3 seconds, between

times 3 and 6 seconds.

4 Conclusion and perspectives
In this paper, experimental validation of modal active

control applied to a simplified self-sustained musical wind
instrument has been presented. Effects of the control have
been studied in two sets of measurements. Modifications
were observed of the transfer functions, the input impedance
and the emitted sound of the instrument when blowing
in it. The effects are similar to what would happen with
modifications of the bore profile of the instrument.
It is next planned to apply modal active control to real
musical wind instruments, starting with a bass clarinet.
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Université Pierre et Marie Curie (UPMC, Paris 6). We thank
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