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ABSTRACT

Sieve-theoretical methods are one of the first historical ex-
amples of theoretical tools whose implementational char-
acter has largely contributed to the development of com-
putational musicology. According to Xenakis’ original
intuition, we distinguish between elementary transforma-
tions of sieves and compound ones. This makes sense if
the sieve construction is considered as part of the musical
meaning, as we show by analyzing Scriabin’s Study for
piano Op. 65 No. 3. This clearly suggests that the trans-
formational character of sieve-theory is still open to new
possible applications in computer-aided music analysis.

1. INTRODUCTION

According to Iannis Xenakis introductory note to the cello
pieceNomos Alpha(1966), sieve theory is ”a theory which
annexes the residual classes and which is derived from an
axiomatics of the universal structure of music”. It applies
to the formalization of traditional scales as well as micro-
tonal scales, non octaviant scales and any musical phe-
nomenon having a total order structure (intensities, dura-
tions, densities, etc.). For exemple, by combining differ-
ent periodicity by means of classical set-theoretical op-
erations (union, intersection, complementation, symmet-
ric difference), and by interpreting the resulting sieve in
the rhythmic domain one can easily ”build [...] very com-
plex rhythmic architectures which can even simulate the
pseudo-unpredictable distribution of points on a strait line,
if the period is long enough”[16]. In fact, as pointed out
by the composer in hisFormalized Music, ”sieve theory is
the study of the internal symmetries of a series of points
either constructed intuitively, given by observation, or in-
vented completely from moduli of repetition” [17]. More-
over, as the composer already predicted in his thesis de-
fenseArt/Sciences Alloys, sieve theory is entirely imple-
mentable and one of the future research area will be the
computer-aided exploration of the theoretical and analyti-
cal aspects of this approach [14]. By analyzing the evolu-
tion of computational musicology, starting from André Ri-
otte and Marcel Mesnage computer-aided models of mu-
sic analysis (see [12] for a collected essay of their the-
oretical writings), many attemps have been made to ap-
ply sieve-theory to other dimensions than pitch [2] and to

propose general sieve-theoretical algorithms for the for-
malization of musical structures (see [16] for some algo-
rithms proposed by Xenakis and [4] for the most recent ac-
count of implementational model of sieve-theory). More
generally, is the approach of inner metric analysis as such
sieve-related. It has been proposed by Guerino Mazzola in
the context of the software RUBATO [7] and has been fur-
ther elaborated and discussed in many musical analyses by
Anja Volk (Fleischer)[6] and [13]. The building stones of
these analyses are local meters, i.e. bounded elementary
sieves of onsets within a piece. The inner metrical analysis
is the combinatorial investigation of a complex union of
all maximal local meters, i.e. as a compound sieve. Metri-
cal and spectral weights quantify the incidence relation of
the bounded or unbounded components, respectively. Sec-
tion 2 of [8] gives a sieve-theoretic account to the study of
musical meter. In this paper we only focus on the pitch
domain and on the computer-aided sieve-theoretical de-
scription of chord structures and transformations between
them.

2. TONE SIEVES AND THEIR
TRANSFORMATIONS

The elementary building stones of Xenakis’sievesare dis-
crete affine lines of the kindab = {ka + b, k ∈ Z}, i.e.
arithmetic sequences of integers. General sieves are built
from these elementary ones through the boolean opera-
tions of union, intersection and complement.OpenMu-
sic visual programming language [1] offers specialized
functions and factories to construct sieves and to exper-
iment with them for compositorial or analytical purpose
(see section 4).

Our analytical example in section 3 departs from two
types of elementary sieves and their complements. One
the one hand we consider the (complementary) whole-
tone sieves

20 = {...,−4,−2, 0, 2, 4, ...}
21 = {...,−3,−1, 1, 3, 5, ...} (1)

On the other hand we consider the elementary minor-
third sieves in associations with their octatonic comple-
ments



Figure 1. Six configurations of sieve pairs(Am
n , Bm

n )
with elementary wholetone and octatonic sieve compo-
nents

3−1 = {...,−4,−1, 2, 5, 8, ...}
30 = {...,−6,−3, 0, 3, 6, ...}
31 = {...,−5,−2, 1, 4, 7, ...}

(2)

3−1
c = {...,−6,−5,−3,−2, 0, 1, 3, 4...}

30
c = {...,−5,−4,−2,−1, 1, 2, 4, 5, ...}

31
c = {...,−4,−3,−1, 0, 2, 3, 5, 6, ...}

(3)

From these buildings stones we go on to construct the
following unions and intersections:

A0
−1 = 20 ∩ 3−1

c A0
0 = 20 ∩ 30

c A0
1 = 20 ∩ 31

c

A1
−1 = 21 ∩ 3−1

c A1
0 = 21 ∩ 30

c A1
1 = 21 ∩ 31

c

(4)

B0
−1 = 20 ∪ 3−1

c B0
0 = 20 ∪ 30

c B0
1 = 20 ∪ 31

c

B1
−1 = 21 ∪ 3−1

c B1
0 = 21 ∪ 30

c B1
1 = 21 ∪ 31

c

(5)
We consider the six sieve pairs which are obtained from

the same two components and introduce the following arrow-
notation.

↖= (A0
−1, B

0
−1) ↑= (A0

0, B
0
0) ↗= (A0

1, B
0
1)

↙= (A1
−1, B

1
−1) ↓= (A1

0, B
1
0) ↘= (A1

1, B
1
1)

Figure 1 displays these six configurations, which are
obtained from the combinatorics of 2 wholetone scales
and 3 octatonic scales.

This array is useful for the distinction between elemen-
tary and compound sieve transformations. Horizontal and
vertical connections correspond to the rotation (transposi-
tion) of either the octatonic or the whole tone sieves, re-
spectively. Diagonal connections involve a simultaneous
rotation of both components. The following analysis of
a late piano study of Alexander Scriabin has the interest-
ing property that all successive sieve transformations are
elementary.

bars 1 - 3 4 5 - 8 9 - 11 12 13 - 16
sieves ↓ ↙ ↘ ↙ ↘ ↓

Table 1. Sieve-content of bars 1-16

Figure 2. Bars 1- 6 of Scriabin’s study for piano Op. 65
No. 3

3. AN ANALYTICAL EXAMPLE

Scriabin’s Study for piano Op. 65 No. 3 can be nicely
interpretated in terms of the sieve pairs(An

m, Bn
m) and the

elementary transformations between them. The associa-
tion between segments of the piece with these sieve pairs
is straight forward and from there the transformational
analysis leads to a two-voice ”Sieve Counterpoint”.

3.1. Bars 1 - 16

Bars 1 - 6 exemplify three sieve pairs, namely↓= (A1
0, B

1
0)

in bar 1 - 3,↙= (A1
1, B

1
1) in bar 4 and↘= (A1

−1, B
1
−1)

in bars 5 - 6 (continuing till bar 8). See Figure2. The
left hand of these segments exemplifies the intersection
sievesA1

0 = {1, 5, 7, 11}, A1
1 = {3, 5, 9, 11}, andA1

−1 =
{1, 3, 7, 9}. Both hands together exemplify the sievesB1

0 ,
B1

1 , andB1
−1 up to two missing tones each. The score in

Figure 3 displays a reduction of the bars 1 - 16 , which
justifies the sieve pairs in table 1.

3.2. Bars 17 - 62

In follows a longer passage of 14 bars, which is associated
with the opening sieve pair sieve pair(A1

0, B
1
0). The A in

bar 20 does not belong to the intersection sieveA1
0, but

it imitates the A’s in bars 17 and 19 and can therefore be
seen as a satellite to the right hand. The tones of both

Figure 3. Bars 1- 16 of Scriabin’s study for piano Op. 65
No. 3



Figure 4. Bars 17 - 20 of Scriabin’s study for piano Op.
65 No. 3

Figure 5. Reduction of bars 17 - 62

hands together still do not form form the complete sieve
B1

0 = {1, 2, 3, 4, 5, 7, 8, 9, 10, 11}. But now only one tone
is missing:8 = A[. Bars17 − 20 illustrate the syntactic
situation (see Figure 4).

The associated sieves can be verified with the help of
the reduction of bars 17 - 62 (see Figure 5).

3.3. Bars 63 - 92 and Coda

Up to a rhythmic detail bars 63 - 92 entirely repeat bars 1
- 30. Thus we have the sieve segmentation in table 2.

The Coda (bars 95 ff.) presents a particularly inter-

bars 63-65 66 67-70 71-73 74 75-78 79-92
sieves ↓ ↙ ↘ ↙ ↘ ↓ ↓

Table 2. Sieve segmentation for bars 63-92

Figure 6. Bars 95 - 97 of Scriabin’s study for piano Op.
65 No. 3

bars 95 96 97 98 99 - 102
sieves ↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓

Table 3. Table captions should be placed below the table

esting situation, because of the chromatic run in the right
hand, which seems to undermine the fine harmonic struc-
ture by a purely melodic mechanics. However, this is not
the case.

It appears that the trioles in each half bar fit with the
left hand chords which themselves descend in minor thirds
along the four bars 95 - 98. This results in a correspond-
ing pendulum between the sieve pairs↓= (A1

0, B
1
0) and

↑= (A0
0, B

0
0). Within this process each of the two 10-

tone-sievesB1
0 = {1, 2, 3, 4, 5, 7, 8, 9, 10, 11} andB0

0 =
{0, 1, 2, 4, 5, 6, 7, 8, 10, 11} is fully accumulated.

3.4. A Two-Voice Sieve Counterpoint

Aside from the pure segmentation it is of course interest-
ing to study the transformational behavior of the sieves in
their succession. To that end we use the metaphor of a
two part counterpoint. Each sieve pair is determined by
one out of three states of the octatonic component and by
one out of two states of the whole tone component (see
Figure7). The following two voice counterpoint encodes
the octatonic states in its upper voice (using the tonesc2,
b1, andd[2 for 30, 31, 3−1 respectively) and the whole
tone states in its lower voice (using the tonesc1 andd1

for the21, 20 respectively. The sieve-pair ”arrow down” =
(A1

0, B
1
0) shall be called the central sieve pair and is meant

to be a sieve-theoretic analogue to the traditional concept
of ”Klangzentrum”. In the abstract sieve-counterpoint the
concrete tonesc1 and c2 represent the elementary con-
stituents of the central sieve pair, i.e. the whole tone sieve
{1, 3, 5, 7, 9, 11} and the octatonic sieve{1, 2, 4, 5, 7, 8,
10, 11}. In order to avoid confusion between the concrete
music and the analytical abstraction we chose tones which
are not elements of these sieves. We chose the stable in-
terval of the octavec1-c2 in order to express the aspect of
centrality, while the other four intervalsc1-b1, c1-d[2, d1-
c2, d1-b1 represent ”out of center”-sieve pairs. The sieve-
pair (A0

1, B
0
1) corresponding to the sixt possible interval

d1 − d[2 does not occur in the analysis.
As one can immediately observe, all transformations

are elementary, i.e. in each succession there is only one
voice moving. This indicates the absence of semitone



Figure 7. Two-Voice Sieve Counterpoint of the whole
piece. The upper voice represents octatonic sieves, the
lower voice represents whole tone sieves

and fifth-transpositions between the sieves throughout the
piece.

Cliff Callender [5] argues on the background of inves-
tigations into voice leading that the harmonic vocabulary
of the late compositions of Alexander Scriabin is located
between the wholetone scale and the octatonic. This di-
rectly motivates the present study. For further investiga-
tions see [9], [10] and [11]. In [10] the authors give an in-
formal introduction the the study of transformational log-
ics , which includes sieves of transformations. The paper
Noll [9]presents a more mathematically oriented inves-
tigation into this subject and, finally, [11] investiges the
links between sieves of tones, such as in this paper, with
sieves of triadic transformations.

We divide the piece in small harmonic segments such
as half bars and sometimes larger segments (as in bar 17
and following bars). To each harmonic segment we may
attribute exactly one pair of indicesm andn such that the
left hand tones are contained in the corresponding inter-
section sieveAm

n and that the tones of both hands together
are contained in the corresponding union sieveBm

n . The
sievesA1

0/B1
0 represent theKlangzentrumof this piece.

According to the fact that the whole-tone and the octanonic
sieves share a periodicity of 12 we may reduce this analy-
sis to pitch classes.

Figure 8 displays the global harmonic organization of
the whole piece. For each harmonic segment there is ex-
actly one pair of indicesn andm, such that the union sieve
An

m covers the all pitch classes of both hands and the in-
tersection sieveBn

m covers the left hand pitch classesThe
harmonic organisation of the piece becomes transparent.

This segmentation is a proper refinement to the seg-
mentation into maximal sieve-extensions. The former one
has less dense segments within the sieves but it is more
sound with the topos-theoretic considerations of [9] as
well as with the voice leading considerations of [5].1

4. SIEVE CONSTRUCTIONS IN OPENMUSIC

We now present some aspects of a recent implementa-
tion of sieve-theoretical models inOpenMusicvisual pro-
gramming language [1]. This environment for computer-

1 The OpenMusicpresentation includes an maquette, where each
small or large segment can be played and interactively investigated.

Figure 8. Overview of the analysis of the whole piece

Figure 9. OpenMusic implementation of the complemen-
tary whole-tone sieves.

aided music theory, analysis and composition has been in-
tegrated as a package of mathematical tools (MathTools)
in the last version 5.0 ofOpenMusic. In a more general
way, the MathTools environment enables the construction
of algebraic models of music-theoretical, analytical and
compositional processes. Its ”paradigmatic” architecture,
taking several different group actions as the basis of vari-
able catalogues of musical structures, enables to give a
formalized and flexible description of the notion of ”mu-
sical equivalence”.

This makes use of some standard algebraic structures
(cyclic, dihedral, affine and symmetric groups) as well as
more complex constructions based on the ring structure
of polynomials. In this package, there are six main fam-
ilies of functions, which are: circle, sieves, groups, se-
quences, polynomials, canons. In a previous paper [3] we
focused on four families of tools which were strictly con-
nected with the problem of paradigmatic classification of
musical structures (the circular representation, groups and
polynomials).



Figure 10. OpenMusic implementation of the octatonic
scale.

Although from a mathematical point of view sieves are
infinite ordered structures, the sieve theoretical construc-
tion we used for the analysis of Scriabin’sStudyOp. 65
No. 3 are isomorphic to subsets of the finite cyclic group
of order 12. For this reason, we can easily represent the
sieves by means of the circular representation. Figure 9
shows theOpenMusicimplementation of the complemen-
tary whole-tone sieves of equation (1).

Figure 10 shows the constructions and musical repre-
sentation of the first octatonic sieve in equation (3) starting
from its minor-third complements. Notice that the same
octatonic sieve could be constructed as the set-theoretical
union of two minor-thirds sieves (Figure 11).

By using set-theoretical intersections and unions, we
can graphically represented the process leading, for ex-
emple, to the construction ofA0

0 = 20 ∩ 30
c andB0

0 =
20 ∪ 30

c (see Figure 12).
Starting from the circular representation, sieves can also

be represented in traditional musical notation via the func-
tion c2chord which maps the geometric representation
of a given chord into a chord or a rhythmic pattern. Fig-
ure 13 shows the pitch and rhythmic representation of the
sieveB0

0 = 20 ∪ 30
c.

5. CONCLUSIONS

It is very likely that the sieve analysis of the chosen ex-
ample by Alexander Scriabin does not represent a poi-
etic perspective. But on a neutral level of analysis it is
quite convincing and pedagogically more convincing than
some of Xenakis own examples. Furthermore it suggests
a more systematic study of partial transformations in com-
plex sieve constructions, i.e. the independent transforma-
tions of elementary components of compound sieves. In
our examples the partial transformations represent a spe-
cial case of transpositions, but generally this will not be
the case: A transposition of a defining component of a

Figure 11. A different set-theoretical construction of the
octatonic scale.

Figure 12. OpenMusic implementation of the sieves
A0

0 = 20 ∩ 30
c andB0

0 = 20 ∪ 30
c.



Figure 13. Pitch and rhythmic representation of the sieve
B0

0 = 20 ∪ 30
c.

compound sieve does not necessarily result in a transposi-
tion of the compound sieve.

Sieve-theoretical models have both a pedagogical and a
musicological interest for they enable the music theorist to
visualize some structural musical properties in a geomet-
ric way and to test the relevance of different segmentations
in music analysis. This could have a strong implication in
the way to teach music theory, analysis and composition.
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