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Abstract
This paper assesses the ability of a HMM-based speech synthe-
sis systems to model the speech characteristics of various speak-
ing styles1. A discrete/continuous HMM is presented to model
the symbolic and acoustic speech characteristics of a speak-
ing style. The proposed model is used to model the average
characteristics of a speaking style that is shared among various
speakers, depending on specific situations of speech communi-
cation. The evaluation consists of an identification experiment
of 4 speaking styles based on delexicalized speech, and com-
pared to a similar experiment on natural speech. The compari-
son is discussed and reveals that discrete/continuous HMM con-
sistently models the speech characteristics of a speaking style.
Index Terms: speaking style, speech synthesis, speech
prosody, average modelling.

1. Introduction
Each speaker has his own speaking style which constitutes his
vocal signature, and a part of his identity. Nevertheless, a
speaker continuously adapt his speaking style according to spe-
cific communication situations, and to his emotional state. In
particular, each situational context determines a specific mode
of production associated with it - a genre - which is defined by
a set of conventions of form and content that are shared among
all of its productions [1]. In particular, a specific discourse
genre (DG) relates to a specific speaking style. Consequently, a
speaker adapts his speaking style to each specific situation de-
pending on the formal conventions that are associated with the
situation, his a-priori knowledge about these conventions, and
his competence to adapt his speaking style. Thus, each com-
munication act instantiates a style which is composed of a style
that depends on the speaker identity, and a conventional speak-
ing style that is conditioned by a specific situation.
In speech synthesis, methods have been proposed to model and
adapt the symbolic [2, 3] and acoustic speech characteristics of
a speaking style, with application to emotional speech synthesis
[4]. However, no study exists on the joint modelling of the sym-
bolic and acoustic characteristics of speaking style, and speak-
ing style acoustic modelling generally limits to the modelling
of emotion, with rare extensions to other sources of speaking
styles variations [5].

1This study was partially funded by “La Fondation Des Treilles”,
and supported by ANR Rhapsodie 07 Corp-030-01; reference prosody
corpus of spoken French; French National Agency of research; 2008-
2012.

This paper presents an average discrete/continuous HMM
which is applied to the speaking style modelling of various dis-
course genres in speech synthesis, and assesses whether the
model adequately captures the speech prosody characteristics
of a speaking style. Incidentally, the robustness of the HMM-
based speech synthesis is evaluated in the conditions of real-
world applications. The paper is organized as follows: the
speaking style corpus design is described in section 2; the aver-
age discrete/continuous HMM model is presented in section 3;
the evaluation is presented and discussed in sections 4 and 5.

2. Speech & Text Material
2.1. Corpus Design

For the purpose of speaking style speech synthesis, a 4-hour
multi-speakers speech database was designed. The speech
database consists of four different DG’s: catholic mass cere-
mony, political, journalistic, and sport commentary. In order
to reduce the DG intra-variability, the different DGs were re-
stricted to specific situational contexts (see list below) and to
male speakers only.
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ABSTRACT

This paper assesses the ability of a HMM-based speech synthe-
sis systems to model the speech characteristics of various speak-
ing styles1. A discrete/continuous HMM is presented to model the
symbolic and acoustic speech characteristics of a speaking style.
The proposed model is used to model the average characteristics
of a speaking style that is shared among various speakers, depend-
ing on specific situations of speech communication. The evaluation
consists of an identification experiment of 4 speaking styles based
on delexicalized speech, and compared to a similar experiment on
natural speech. The comparison is discussed and reveals that dis-
crete/continuous HMM consistently models the speech characteris-
tics of a speaking style.
Index Terms: speaking style, speech synthesis, speech prosody, av-
erage modelling.

1. INTRODUCTION

Each speaker has his own speaking style which constitutes his vocal
signature, and a part of his identity. Nevertheless, a speaker continu-
ously adapt his speaking style according to specific communication
situations, and to his emotional state. In particular, each situational
context determines a specific mode of production associated with it
- a genre - which is defined by a set of conventions of form and con-
tent that are shared among all of its productions [1]. In particular,
a specific discourse genre (DG) relates to a specific speaking style.
Consequently, a speaker adapts his speaking style to each specific
situation depending on the formal conventions that are associated
with the situation, his a-priori knowledge about these conventions,
and his competence to adapt his speaking style. Thus, each com-
munication act instantiates a style which is composed of a style that
depends on the speaker identity, and a conventional speaking style
that is conditioned by a specific situation.
In speech synthesis, methods have been proposed to model and adapt
the symbolic [3, 4] and acoustic speech characteristics of a speaking
style, with application to emotional speech synthesis [2]. However,
no study exists on the joint modelling of the symbolic and acoustic
characteristics of speaking style, and speaking style acoustic mod-
elling generally limits to the modelling of emotion, with rare exten-
sions to other sources of speaking styles variations [5].
This paper presents an average discrete/continuous HMM which is
applied to the speaking style modelling of various discourse genres

1This study was supported by ANR Rhapsodie 07 Corp-030-01; refer-
ence prosody corpus of spoken French; French National Agency of research;
2008-2012.

in speech synthesis, and assesses whether the model adequately cap-
tures the speech prosody characteristics of a speaking style. Inciden-
tally, the robustness of the HMM-based speech synthesis is evaluated
in the conditions of real-world applications. The paper is organized
as follows: the speaking style corpus design is described in section
2; the average discrete/continuous HMM model is presented in sec-
tion 3; the evaluation is presented and discussed in sections 4 and
5.

2. SPEECH & TEXT MATERIAL

2.1. Corpus Design

For the purpose of speaking style speech synthesis, a 4-hour multi-
speakers speech database was designed. The speech database con-
sists of four different DG’s: catholic mass ceremony, political, jour-
nalistic, and sport commentary. In order to reduce the DG intra-
variability, the different DGs were restricted to specific situational
contexts (see list below) and to male speakers only.
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Fig. 1. Prosodic description of the speaking styles de-
pending on the speaker. Mean and variance of f0 and
speech rate.

log f0

log(1/speech rate)
The following is a description of the four
selected DG’s:Figure 1: Prosodic description of the speaking

styles depending on the speaker. Mean and vari-
ance of f0 and speech rate (syllable per second).

The following is a description of the four selected DG’s:

mass: Christian church sermon (pilgrimage and Sunday high-
mass sermons); single speaker monologue, no interaction.

political: New Year’s French president speech; single speaker
monologue; no interaction.

journal: radio review (press review; political, economical,



technological chronicles); almost single speaker monologue
with a few interactions with a lead journalist.

sport commentary: soccer; two speakers engaged in mono-
logues with speech overlapping during intense soccer sequences
and speech turn changes; almost no interaction.
The speech database consists of natural speech multi-media au-
dio contents with strongly variable audio quality (background
noise: crowd, audience, recording noise, and reverberation).
The speech prosody characteristics of the speech databased are
illustrated in figure 1.

3. Speaking Style Model
A speaking style model λ(style) is composed of dis-
crete/continuous context-dependent HMMs that model the sym-
bolic/acoustic speech characteristics of a speaking style.

λ(style) =
“
λ

(style)
symbolic,λ

(style)
acoustic

”
(1)

During the training, the discrete/continuous context-dependent
HMMs are estimated separately. During the synthesis, the sym-
bolic/acoustic parameters are generated in cascade, from the
symbolic representation to the acoustic variations. Addition-
ally, a rich linguistic description of the text characteristics is
automatically extracted using a linguistic processing chain [6]
and used to refine the context-dependent HMM modelling (see
[7] and [8] for a detailed description of the enriched linguistic
contexts).

3.1. Training of the Discrete/Continuous Models

3.1.1. Discrete HMM

For each speaking style, an average context-dependent discrete
HMM λ

(style)
symbolic is estimated from the pooled speakers associ-

ated with the speaking style.

The prosodic grammar consists of a hierarchical prosodic
representation that was experimented as an alternative to ToBI
[9] for French prosody labelling [10]. The prosodic grammar
is composed of major prosodic boundaries (FM, a boundary
which is right bounded by a pause), minor prosodic boundaries
(Fm, an intermediate boundary), and prosodic prominences (P).

Let R be the number of speakers from which an average model
λ

(style)
symbolic is to be estimated. Let l = (l(1), . . . , l(R))

the total set of prosodic symbolic observations, and
l(r) = [l(r)(1), . . . , l(r)(Nr)] the prosodic symbolic se-
quence associated with speaker r, where l(r)(n) is the
prosodic label associated with the n-th syllable. Let
q = (q(1), . . . ,q(R)) the total set of linguistic contexts
observations, and q(r) = [q(r)(1), . . . ,q(r)(Nr)] the lin-
guistic context sequence associated with speaker r, where
q(r)(n) = [q

(r)
1 (n), . . . , q

(r)
L (n)]> is the (Lx1) linguistic

context vector which describes the linguistic characteristics
associated with the n-th syllable.

An average context-dependent discrete HMM λ
(style)
symbolic is es-

timated from the pooled speakers observations. Firstly, an av-
erage context-dependent tree T(style)

symbolic is derived so as to min-
imize the information entropy of the prosodic symbolic labels
l conditionally to the linguistic contexts q . Then, a context-
dependent HMM model λ

(style)
symbolic is estimated for each termi-

nal node of the context-dependent tree T(style)
symbolic.

3.1.2. Continuous HMM

For each speaking style, an average acoustic model λ
(style)
acoustic

that includes source/filter variations, f0 variations, and state-
durations, is estimated from the pooled speakers associated
with the speaking style based on the conventional HTS system
[11].

Let R be the number of speakers from which an average
model is to be estimated. Let o = (o(1), . . . ,o(R)) the
total set of observations, and o(r) = [o(r)(1), . . . ,o(r)(Tr)]
the observation sequences associated with speaker r, where
o(r)(t) = [o

(r)
t (1), . . . , o

(r)
t (D)]> is the (Dx1) observation

vector which describes the acoustical property at time t. Let
q = (q(1), . . . ,q(R)) the total set of linguistic contexts
observations, and q(r) = [q(r)(1), . . . ,q(r)(Tr)] the lin-
guistic context sequence associated with speaker r, where
q(r)(t) = [q

(r)
1 (t), . . . , q

(r)
L (t)]> is the (Lx1) linguistic context

vector which describes the linguistic properties at time t.

An average context-dependent HMM acoustic model λ
(style)
symbolic

is estimated from the pooled speakers observations. Firstly, a
context-dependent HMM model is estimated for each of the
linguistic contexts. Then, an average context-dependent tree
T(style)

acoustic is derived so as to minimize the description length of
the context-dependent HMM model λ

(style)
acoustic.
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acoustic.
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3.2. Generation of the Speech Parameters
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and Σbq and µbq are respectively the covariance matrix and the
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A phonetizer is used to convert the input text into a sequence of phonemes. A syllabifier
is used to merge the sequence phonemes into a sequence of syllables. At the prosodic level,
pauses are identified to

4.6 Abstract Model: Text To Prosodic Structure

The prosodic structure model is to infer a sequence of prosodic labels that are associated
with relevant prosodic events.

sentence Longtemps , je me suis couché de bonne heure .

⇓
prosodic
structure
FM * *
Fm * * *
P * * * *

syllable Long- temps ## je me suis cou- ché de bonne heure ##

Table 4.2: Illustration of the text-to-prosodic-structure conversion.

Two main approaches can be distinguished in prosodic structure modelling: on the one
hand, expert approaches attempt at elaborating formal models that account for the observed
prosodic variations with respect to linguistic, para-linguistic, and extra-linguistic con-
straints. On the other hand, statistical methods attempt at elaborating a statistical model
which accounts for the prosodic variations from the observation of statistical regularities on
large speech corpora.

4.6.1 Expert Models

Expert approaches mostly concern hierarchical prosodic structure mod-
elling, and in particular prosodic frontiers ([Cooper and Paccia-Cooper, 1980,
Gee and Grosjean, 1983, Ferreira, 1988, Abney, 1992, Watson and Gibson, 2004]
for English; [Dell, 1984, Bailly, 1989, Monnin and Grosjean, 1993, Ladd, 1996,
Delais-Roussarie, 2000, Mertens, 2004b] for French, [Barbosa, 2006] for some other
languages). Expert models assume that a prosodic structure results from the integration
of various and potentially conflictual constraints, in particular syntactic and rhythmic
[?, Dell, 1984] constraints.
The linguistic module mostly concerns the extraction of prominent syn-
tactic boundaries from deep syntactic parsing, based on syntactic con-
stituency (Constituent-Depth [Cooper and Paccia-Cooper, 1980], φ-phrases
[Gee and Grosjean, 1983, Delais-Roussarie, 2000], Left-hand-side / Right-hand-side
Boundary [Watson and Gibson, 2004]), syntactic dependency (Dependency-Grammar-based
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⇓
prosodic
structure
FM * *
Fm * * *
P * * * *

syllable Long- temps ## je me suis cou- ché de bonne heure ##
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• journal: radio review (press review; political, economical, tech-
nological chronicles); almost single speaker monologue with a
few interactions with a lead journalist.

• sport commentary: soccer; two speakers engaged in mono-
logues with speech overlapping during intense soccer sequences
and speech turn changes; almost no interactions.

The speech database consists of natural speech multi-media audio
contents with strongly variable audio quality (background noise:
crowd, audience, recording noise, and reverberation). The speech
prosody characteristics of the speech databased are illustrated in fig-
ure 1.

3. SPEAKING STYLE MODEL

A speaking style model λ(style) is composed of discrete/continuous
context-dependent HMMs that model the symbolic/acoustic speech
characteristics of a speaking style.

λ(style) =
“
λ

(style)
symbolic, λ

(style)
acoustic

”
(1)

During the training, the discrete/continuous context-dependent
HMMs are estimated separately. During the synthesis, the sym-
bolic/acoustic parameters are generated in cascade, from the sym-
bolic representation to the acoustic variations. Additionally, a rich
linguistic description of the text characteristics is automatically ex-
tracted using a linguistic processing chain [9] and used to refine the
context-dependent HMM modelling (see [10] and [11] for a detailed
description of the enriched linguistic contexts).

3.1. Training of the Discrete/Continuous Models

3.1.1. Discrete HMM

For each speaking style, an average context-dependent discrete
HMM λ

(style)
symbolic is estimated from the pooled speakers associated

with the speaking style.

The prosodic grammar consists of a hierarchical prosodic repre-
sentation that was experimented as an alternative to TOBI [12]
for French prosody labelling [13]. The prosodic grammar is
composed of major prosodic boundaries (FM, a boundary which
is right bounded by a pause), minor prosodic boundaries (Fm, an
intermediate boundary), and prosodic prominences (P).

Let R be the number of speakers from which an average model
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q = (q(1), . . . ,q(R)) the total set of linguistic contexts
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guistic context sequence associated with speaker r, where
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vector which describes the linguistic characteristics associated with
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dependent tree T(style)

symbolic is derived so as to minimize the infor-

mation entropy of the prosodic symbolic labels qproso condition-
ally to the linguistic contexts q . Then, a context-dependent HMM
model λ
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symbolic is estimated for each terminal node of the context-

dependent tree T(style)
symbolic.

3.1.2. Continuous HMM

For each speaking style, an average acoustic model λ
(style)
acoustic that

includes source/filter variations, f0 variations, and state-durations,
is estimated from the pooled speakers associated with the speaking
style based on the conventional HTS system ([14]).

Let R be the number of speakers from which an average model is to
be estimated. Let o = (o(1), . . . ,o(R)) the total set of observations,
and o(r) = [o(r)(1), . . . ,o(r)(Tr)] is the observation sequences
associated with speaker r, where o(r)(t) = [o
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is estimated from the pooled speakers observations. Firstly, a
context-dependent HMM model is estimated for each of the
linguistic contexts. Then, an average context-dependent tree
T(style)

acoustic is derived so as to minimize the description length of the
context-dependent HMM model λ

(style)
acoustic.

The acoustic module models simultaneously source/filter variations,
f0 variations, and the temporal symbolic associated with a speak-
ing style. Speakers f0 were normalized with respect to the speaking
style prior to modelling. Source, filter, and normalized f0 observa-
tion vectors and their dynamic vectors are used to estimate context-
dependent HMM models λ

(style)
acoustic. Context-dependent HMMs are

clustered into acoustically similar models using decision-tree-based
context-clustering (ML-MDL [15]). Multi-Space probability Distri-
butions (MSD) [16] are used to model continuous/discrete parame-
ter f0 sequence to manage voiced/unvoiced regions properly. Each
context-dependent HMM is modelled with a state duration probabil-
ity density functions (PDFs) to account for the temporal structure of
speech [17]. Finally, speech dynamic is modelled according to the
trajectory model and the global variance (GV) that model local and
global speech variations over time [?].

3.2. Generation of the Speech Parameters

During the synthesis, the text is first converted into a concatenated
sequence of context-dependent HMM models λ

(style)
symbolic associated

with the linguistic context sequence q = [q1, . . . ,qN ], where
qn = [q1, . . . , qL]� denotes the (Lx1) linguistic context vector
associated with linguistic unit n.

Firstly, the prosodic symbolic q̄proso is inferred so as to maximize
the log-likelihood of the prosodic symbolic sequence qproso condi-
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⇓
prosodic
structure
FM * *
Fm * * *
P * * * *

syllable Long- temps ## je me suis cou- ché de bonne heure ##
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CHAPTER 4. SPEECH PROSODY MODELLING & SYNTHESIS:

STATE-OF-THE-ART

A phonetizer is used to convert the input text into a sequence of phonemes. A syllabifier
is used to merge the sequence phonemes into a sequence of syllables. At the prosodic level,
pauses are identified to

4.6 Abstract Model: Text To Prosodic Structure

The prosodic structure model is to infer a sequence of prosodic labels that are associated
with relevant prosodic events.

sentence Longtemps , je me suis couché de bonne heure .

⇓
prosodic
structure
FM * *
Fm * * *
P * * * *

syllable Long- temps ## je me suis cou- ché de bonne heure ##

Table 4.2: Illustration of the text-to-prosodic-structure conversion.
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straints. On the other hand, statistical methods attempt at elaborating a statistical model
which accounts for the prosodic variations from the observation of statistical regularities on
large speech corpora.

4.6.1 Expert Models

Expert approaches mostly concern hierarchical prosodic structure mod-
elling, and in particular prosodic frontiers ([Cooper and Paccia-Cooper, 1980,
Gee and Grosjean, 1983, Ferreira, 1988, Abney, 1992, Watson and Gibson, 2004]
for English; [Dell, 1984, Bailly, 1989, Monnin and Grosjean, 1993, Ladd, 1996,
Delais-Roussarie, 2000, Mertens, 2004b] for French, [Barbosa, 2006] for some other
languages). Expert models assume that a prosodic structure results from the integration
of various and potentially conflictual constraints, in particular syntactic and rhythmic
[?, Dell, 1984] constraints.
The linguistic module mostly concerns the extraction of prominent syn-
tactic boundaries from deep syntactic parsing, based on syntactic con-
stituency (Constituent-Depth [Cooper and Paccia-Cooper, 1980], φ-phrases
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• journal: radio review (press review; political, economical, tech-
nological chronicles); almost single speaker monologue with a
few interactions with a lead journalist.

• sport commentary: soccer; two speakers engaged in mono-
logues with speech overlapping during intense soccer sequences
and speech turn changes; almost no interactions.

The speech database consists of natural speech multi-media audio
contents with strongly variable audio quality (background noise:
crowd, audience, recording noise, and reverberation). The speech
prosody characteristics of the speech databased are illustrated in fig-
ure 1.

3. SPEAKING STYLE MODEL

A speaking style model λ(style) is composed of discrete/continuous
context-dependent HMMs that model the symbolic/acoustic speech
characteristics of a speaking style.
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HMMs are estimated separately. During the synthesis, the sym-
bolic/acoustic parameters are generated in cascade, from the sym-
bolic representation to the acoustic variations. Additionally, a rich
linguistic description of the text characteristics is automatically ex-
tracted using a linguistic processing chain [9] and used to refine the
context-dependent HMM modelling (see [10] and [11] for a detailed
description of the enriched linguistic contexts).
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composed of major prosodic boundaries (FM, a boundary which
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• journal: radio review (press review; political, economical, tech-
nological chronicles); almost single speaker monologue with a
few interactions with a lead journalist.

• sport commentary: soccer; two speakers engaged in mono-
logues with speech overlapping during intense soccer sequences
and speech turn changes; almost no interactions.

The speech database consists of natural speech multi-media audio
contents with strongly variable audio quality (background noise:
crowd, audience, recording noise, and reverberation). The speech
prosody characteristics of the speech databased are illustrated in fig-
ure 1.
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bolic representation to the acoustic variations. Additionally, a rich
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• journal: radio review (press review; political, economical, tech-
nological chronicles); almost single speaker monologue with a
few interactions with a lead journalist.

• sport commentary: soccer; two speakers engaged in mono-
logues with speech overlapping during intense soccer sequences
and speech turn changes; almost no interactions.

The speech database consists of natural speech multi-media audio
contents with strongly variable audio quality (background noise:
crowd, audience, recording noise, and reverberation). The speech
prosody characteristics of the speech databased are illustrated in fig-
ure 1.

3. SPEAKING STYLE MODEL

A speaking style model λ(style) is composed of discrete/continuous
context-dependent HMMs that model the symbolic/acoustic speech
characteristics of a speaking style.
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During the training, the discrete/continuous context-dependent
HMMs are estimated separately. During the synthesis, the sym-
bolic/acoustic parameters are generated in cascade, from the sym-
bolic representation to the acoustic variations. Additionally, a rich
linguistic description of the text characteristics is automatically ex-
tracted using a linguistic processing chain [9] and used to refine the
context-dependent HMM modelling (see [10] and [11] for a detailed
description of the enriched linguistic contexts).

3.1. Training of the Discrete/Continuous Models

3.1.1. Discrete HMM

For each speaking style, an average context-dependent discrete
HMM λ
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with the speaking style.

The prosodic grammar consists of a hierarchical prosodic repre-
sentation that was experimented as an alternative to TOBI [12]
for French prosody labelling [13]. The prosodic grammar is
composed of major prosodic boundaries (FM, a boundary which
is right bounded by a pause), minor prosodic boundaries (Fm, an
intermediate boundary), and prosodic prominences (P).
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context-clustering (ML-MDL [15]). Multi-Space probability Distri-
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context-dependent HMM is modelled with a state duration probabil-
ity density functions (PDFs) to account for the temporal structure of
speech [17]. Finally, speech dynamic is modelled according to the
trajectory model and the global variance (GV) that model local and
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ō = argmax
o

max
q

P(o|q, λ
(style)
acoustic, T )P(q, λ

(style)
acoustic, T )(3)

First, the state sequence q̄ is determined so as to maximize the log-
likelihood of the state sequence conditionally to the model λ
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and the sequence length T . Then, the observation sequence c̄ is
determined so as to maximize the log-likelihood of the observation
sequence conditionnally to the state sequence q̄, the model λ
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under dynamic constraint o = Wc.

Rq̄c̄ = rq̄ (4)

where:

Rq̄ = W�Σ−1
q̄ W. (5)

rq̄ = W�Σ−1
q̄ µq̄. (6)

and Σq̄ and µq̄ are respectively the covariance matrix and the mean
vector for the sate sequence q̄.

SPEECH SYNTHESIS

4. EVALUATION

The proposed model has been evaluated
on a speaking style identification percep-
tual experiment basis, and compared to
a speaking style identification experiment
with natural speech [18]. For the purpose
of such a comparison, it was necessary
to provide a single evaluation scheme for
both experiments. In particular, it was not
possible to control the linguistic content of
natural speech utterances which provides
evident cues for DG’s identification (a sin-
gle keyword would be sufficient to identify
a DG). Thus, such a comparison required
to remove lexical access and to focus on
the prosodic dimension only.
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is used to merge the sequence phonemes into a sequence of syllables. At the prosodic level,
pauses are identified to

4.6 Abstract Model: Text To Prosodic Structure

The prosodic structure model is to infer a sequence of prosodic labels that are associated
with relevant prosodic events.

sentence Longtemps , je me suis couché de bonne heure .

⇓
prosodic
structure
FM * *
Fm * * *
P * * * *

syllable Long- temps ## je me suis cou- ché de bonne heure ##

Table 4.2: Illustration of the text-to-prosodic-structure conversion.

Two main approaches can be distinguished in prosodic structure modelling: on the one
hand, expert approaches attempt at elaborating formal models that account for the observed
prosodic variations with respect to linguistic, para-linguistic, and extra-linguistic con-
straints. On the other hand, statistical methods attempt at elaborating a statistical model
which accounts for the prosodic variations from the observation of statistical regularities on
large speech corpora.

4.6.1 Expert Models

Expert approaches mostly concern hierarchical prosodic structure mod-
elling, and in particular prosodic frontiers ([Cooper and Paccia-Cooper, 1980,
Gee and Grosjean, 1983, Ferreira, 1988, Abney, 1992, Watson and Gibson, 2004]
for English; [Dell, 1984, Bailly, 1989, Monnin and Grosjean, 1993, Ladd, 1996,
Delais-Roussarie, 2000, Mertens, 2004b] for French, [Barbosa, 2006] for some other
languages). Expert models assume that a prosodic structure results from the integration
of various and potentially conflictual constraints, in particular syntactic and rhythmic
[?, Dell, 1984] constraints.
The linguistic module mostly concerns the extraction of prominent syn-
tactic boundaries from deep syntactic parsing, based on syntactic con-
stituency (Constituent-Depth [Cooper and Paccia-Cooper, 1980], φ-phrases
[Gee and Grosjean, 1983, Delais-Roussarie, 2000], Left-hand-side / Right-hand-side
Boundary [Watson and Gibson, 2004]), syntactic dependency (Dependency-Grammar-based
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4.6 Abstract Model: Text To Prosodic Structure

The prosodic structure model is to infer a sequence of prosodic labels that are associated
with relevant prosodic events.

sentence Longtemps , je me suis couché de bonne heure .

⇓
prosodic
structure
FM * *
Fm * * *
P * * * *

syllable Long- temps ## je me suis cou- ché de bonne heure ##

Table 4.2: Illustration of the text-to-prosodic-structure conversion.

Two main approaches can be distinguished in prosodic structure modelling: on the one
hand, expert approaches attempt at elaborating formal models that account for the observed
prosodic variations with respect to linguistic, para-linguistic, and extra-linguistic con-
straints. On the other hand, statistical methods attempt at elaborating a statistical model
which accounts for the prosodic variations from the observation of statistical regularities on
large speech corpora.

4.6.1 Expert Models

Expert approaches mostly concern hierarchical prosodic structure mod-
elling, and in particular prosodic frontiers ([Cooper and Paccia-Cooper, 1980,
Gee and Grosjean, 1983, Ferreira, 1988, Abney, 1992, Watson and Gibson, 2004]
for English; [Dell, 1984, Bailly, 1989, Monnin and Grosjean, 1993, Ladd, 1996,
Delais-Roussarie, 2000, Mertens, 2004b] for French, [Barbosa, 2006] for some other
languages). Expert models assume that a prosodic structure results from the integration
of various and potentially conflictual constraints, in particular syntactic and rhythmic
[?, Dell, 1984] constraints.
The linguistic module mostly concerns the extraction of prominent syn-
tactic boundaries from deep syntactic parsing, based on syntactic con-
stituency (Constituent-Depth [Cooper and Paccia-Cooper, 1980], φ-phrases
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⇓
prosodic
structure
FM * *
Fm * * *
P * * * *

syllable Long- temps ## je me suis cou- ché de bonne heure ##
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Table 4.2: Illustration of the text-to-prosodic-structure conversion.

Two main approaches can be distinguished in prosodic structure modelling: on the one
hand, expert approaches attempt at elaborating formal models that account for the observed
prosodic variations with respect to linguistic, para-linguistic, and extra-linguistic con-
straints. On the other hand, statistical methods attempt at elaborating a statistical model
which accounts for the prosodic variations from the observation of statistical regularities on
large speech corpora.

4.6.1 Expert Models

Expert approaches mostly concern hierarchical prosodic structure mod-
elling, and in particular prosodic frontiers ([Cooper and Paccia-Cooper, 1980,
Gee and Grosjean, 1983, Ferreira, 1988, Abney, 1992, Watson and Gibson, 2004]
for English; [Dell, 1984, Bailly, 1989, Monnin and Grosjean, 1993, Ladd, 1996,
Delais-Roussarie, 2000, Mertens, 2004b] for French, [Barbosa, 2006] for some other
languages). Expert models assume that a prosodic structure results from the integration
of various and potentially conflictual constraints, in particular syntactic and rhythmic
[?, Dell, 1984] constraints.
The linguistic module mostly concerns the extraction of prominent syn-
tactic boundaries from deep syntactic parsing, based on syntactic con-
stituency (Constituent-Depth [Cooper and Paccia-Cooper, 1980], φ-phrases
[Gee and Grosjean, 1983, Delais-Roussarie, 2000], Left-hand-side / Right-hand-side
Boundary [Watson and Gibson, 2004]), syntactic dependency (Dependency-Grammar-based

52
CHAPTER 4. SPEECH PROSODY MODELLING & SYNTHESIS:

STATE-OF-THE-ART

A phonetizer is used to convert the input text into a sequence of phonemes. A syllabifier
is used to merge the sequence phonemes into a sequence of syllables. At the prosodic level,
pauses are identified to

4.6 Abstract Model: Text To Prosodic Structure

The prosodic structure model is to infer a sequence of prosodic labels that are associated
with relevant prosodic events.

sentence Longtemps , je me suis couché de bonne heure .
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Table 4.2: Illustration of the text-to-prosodic-structure conversion.

Two main approaches can be distinguished in prosodic structure modelling: on the one
hand, expert approaches attempt at elaborating formal models that account for the observed
prosodic variations with respect to linguistic, para-linguistic, and extra-linguistic con-
straints. On the other hand, statistical methods attempt at elaborating a statistical model
which accounts for the prosodic variations from the observation of statistical regularities on
large speech corpora.

4.6.1 Expert Models

Expert approaches mostly concern hierarchical prosodic structure mod-
elling, and in particular prosodic frontiers ([Cooper and Paccia-Cooper, 1980,
Gee and Grosjean, 1983, Ferreira, 1988, Abney, 1992, Watson and Gibson, 2004]
for English; [Dell, 1984, Bailly, 1989, Monnin and Grosjean, 1993, Ladd, 1996,
Delais-Roussarie, 2000, Mertens, 2004b] for French, [Barbosa, 2006] for some other
languages). Expert models assume that a prosodic structure results from the integration
of various and potentially conflictual constraints, in particular syntactic and rhythmic
[?, Dell, 1984] constraints.
The linguistic module mostly concerns the extraction of prominent syn-
tactic boundaries from deep syntactic parsing, based on syntactic con-
stituency (Constituent-Depth [Cooper and Paccia-Cooper, 1980], φ-phrases
[Gee and Grosjean, 1983, Delais-Roussarie, 2000], Left-hand-side / Right-hand-side
Boundary [Watson and Gibson, 2004]), syntactic dependency (Dependency-Grammar-based

52
CHAPTER 4. SPEECH PROSODY MODELLING & SYNTHESIS:

STATE-OF-THE-ART

A phonetizer is used to convert the input text into a sequence of phonemes. A syllabifier
is used to merge the sequence phonemes into a sequence of syllables. At the prosodic level,
pauses are identified to

4.6 Abstract Model: Text To Prosodic Structure

The prosodic structure model is to infer a sequence of prosodic labels that are associated
with relevant prosodic events.

sentence Longtemps , je me suis couché de bonne heure .
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• journal: radio review (press review; political, economical, tech-
nological chronicles); almost single speaker monologue with a
few interactions with a lead journalist.

• sport commentary: soccer; two speakers engaged in mono-
logues with speech overlapping during intense soccer sequences
and speech turn changes; almost no interactions.

The speech database consists of natural speech multi-media audio
contents with strongly variable audio quality (background noise:
crowd, audience, recording noise, and reverberation). The speech
prosody characteristics of the speech databased are illustrated in fig-
ure 1.
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context-dependent HMMs that model the symbolic/acoustic speech
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HMMs are estimated separately. During the synthesis, the sym-
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linguistic description of the text characteristics is automatically ex-
tracted using a linguistic processing chain [9] and used to refine the
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description of the enriched linguistic contexts).

3.1. Training of the Discrete/Continuous Models

3.1.1. Discrete HMM

For each speaking style, an average context-dependent discrete
HMM λ

(style)
symbolic is estimated from the pooled speakers associated

with the speaking style.

The prosodic grammar consists of a hierarchical prosodic repre-
sentation that was experimented as an alternative to TOBI [12]
for French prosody labelling [13]. The prosodic grammar is
composed of major prosodic boundaries (FM, a boundary which
is right bounded by a pause), minor prosodic boundaries (Fm, an
intermediate boundary), and prosodic prominences (P).

Let R be the number of speakers from which an average model
λ

(style)
symbolic is to be estimated. Let qproso = (q

(1)
proso, . . . ,q

(R)
proso)

the total set of prosodic symbolic observations, and
q

(r)
proso = [q

(r)
proso(1), . . . , q

(r)
proso(Nr)] is the prosodic sym-

bolic sequence associated with speaker r, where q
(r)
proso(n)

is the prosodic label associated with syllable n. Let
q = (q(1), . . . ,q(R)) the total set of linguistic contexts
observations, and q(r) = [q(r)(1), . . . ,q(r)(Nr)] is the lin-
guistic context sequence associated with speaker r, where
q(r)(n) = [q

(r)
1 (n), . . . , q

(r)
L (n)]� is the (Lx1) linguistic context

vector which describes the linguistic characteristics associated with
syllable n.

An average context-dependent discrete HMM λ
(style)
symbolic is estimated

from the pooled speakers observations. Firstly, an average context-
dependent tree T(style)

symbolic is derived so as to minimize the infor-

mation entropy of the prosodic symbolic labels qproso condition-
ally to the linguistic contexts q . Then, a context-dependent HMM
model λ

(style)
symbolic is estimated for each terminal node of the context-

dependent tree T(style)
symbolic.

3.1.2. Continuous HMM

For each speaking style, an average acoustic model λ
(style)
acoustic that

includes source/filter variations, f0 variations, and state-durations,
is estimated from the pooled speakers associated with the speaking
style based on the conventional HTS system ([14]).

Let R be the number of speakers from which an average model is to
be estimated. Let o = (o(1), . . . ,o(R)) the total set of observations,
and o(r) = [o(r)(1), . . . ,o(r)(Tr)] is the observation sequences
associated with speaker r, where o(r)(t) = [o

(r)
t (1), . . . , o

(r)
t (D)]�

is the (Dx1) observation vector which describes the acoustical prop-
erty at time t. Let q = (q(1), . . . ,q(R)) the total set of linguistic
contexts observations, and q(r) = [q(r)(1), . . . ,q(r)(Tr)] is
the linguistic context sequence associated with speaker r, where
q(r)(t) = [q

(r)
1 (t), . . . , q

(r)
L (t)]� is the (L’x1) augmented linguistic

context vector which describes the linguistic properties at time t.

An average context-dependent HMM acoustic model λ
(style)
symbolic

is estimated from the pooled speakers observations. Firstly, a
context-dependent HMM model is estimated for each of the
linguistic contexts. Then, an average context-dependent tree
T(style)

acoustic is derived so as to minimize the description length of the
context-dependent HMM model λ

(style)
acoustic.

The acoustic module models simultaneously source/filter variations,
f0 variations, and the temporal symbolic associated with a speak-
ing style. Speakers f0 were normalized with respect to the speaking
style prior to modelling. Source, filter, and normalized f0 observa-
tion vectors and their dynamic vectors are used to estimate context-
dependent HMM models λ

(style)
acoustic. Context-dependent HMMs are

clustered into acoustically similar models using decision-tree-based
context-clustering (ML-MDL [15]). Multi-Space probability Distri-
butions (MSD) [16] are used to model continuous/discrete parame-
ter f0 sequence to manage voiced/unvoiced regions properly. Each
context-dependent HMM is modelled with a state duration probabil-
ity density functions (PDFs) to account for the temporal structure of
speech [17]. Finally, speech dynamic is modelled according to the
trajectory model and the global variance (GV) that model local and
global speech variations over time [?].

3.2. Generation of the Speech Parameters

During the synthesis, the text is first converted into a concatenated
sequence of context-dependent HMM models λ

(style)
symbolic associated

with the linguistic context sequence q = [q1, . . . ,qN ], where
qn = [q1, . . . , qL]� denotes the (Lx1) linguistic context vector
associated with linguistic unit n.

Firstly, the prosodic symbolic q̄proso is inferred so as to maximize
the log-likelihood of the prosodic symbolic sequence qproso condi-
tionally to the linguistic context sequence q and the model λ(style)

symbolic.

q̄proso = argmax
qproso

P(qproso|q, λ
(style)
symbolic) (2)

• journal: radio review (press review; political, economical, tech-
nological chronicles); almost single speaker monologue with a
few interactions with a lead journalist.

• sport commentary: soccer; two speakers engaged in mono-
logues with speech overlapping during intense soccer sequences
and speech turn changes; almost no interactions.

The speech database consists of natural speech multi-media audio
contents with strongly variable audio quality (background noise:
crowd, audience, recording noise, and reverberation). The speech
prosody characteristics of the speech databased are illustrated in fig-
ure 1.

3. SPEAKING STYLE MODEL

A speaking style model λ(style) is composed of discrete/continuous
context-dependent HMMs that model the symbolic/acoustic speech
characteristics of a speaking style.

λ(style) =
“
λ

(style)
symbolic, λ

(style)
acoustic

”
(1)

During the training, the discrete/continuous context-dependent
HMMs are estimated separately. During the synthesis, the sym-
bolic/acoustic parameters are generated in cascade, from the sym-
bolic representation to the acoustic variations. Additionally, a rich
linguistic description of the text characteristics is automatically ex-
tracted using a linguistic processing chain [9] and used to refine the
context-dependent HMM modelling (see [10] and [11] for a detailed
description of the enriched linguistic contexts).

3.1. Training of the Discrete/Continuous Models

3.1.1. Discrete HMM

For each speaking style, an average context-dependent discrete
HMM λ

(style)
symbolic is estimated from the pooled speakers associated

with the speaking style.

The prosodic grammar consists of a hierarchical prosodic repre-
sentation that was experimented as an alternative to TOBI [12]
for French prosody labelling [13]. The prosodic grammar is
composed of major prosodic boundaries (FM, a boundary which
is right bounded by a pause), minor prosodic boundaries (Fm, an
intermediate boundary), and prosodic prominences (P).

Let R be the number of speakers from which an average model
λ

(style)
symbolic is to be estimated. Let qproso = (q

(1)
proso, . . . ,q

(R)
proso)

the total set of prosodic symbolic observations, and
q

(r)
proso = [q

(r)
proso(1), . . . , q

(r)
proso(Nr)] is the prosodic sym-

bolic sequence associated with speaker r, where q
(r)
proso(n)

is the prosodic label associated with syllable n. Let
q = (q(1), . . . ,q(R)) the total set of linguistic contexts
observations, and q(r) = [q(r)(1), . . . ,q(r)(Nr)] is the lin-
guistic context sequence associated with speaker r, where
q(r)(n) = [q

(r)
1 (n), . . . , q

(r)
L (n)]� is the (Lx1) linguistic context

vector which describes the linguistic characteristics associated with
syllable n.

An average context-dependent discrete HMM λ
(style)
symbolic is estimated

from the pooled speakers observations. Firstly, an average context-
dependent tree T(style)

symbolic is derived so as to minimize the infor-

mation entropy of the prosodic symbolic labels qproso condition-
ally to the linguistic contexts q . Then, a context-dependent HMM
model λ

(style)
symbolic is estimated for each terminal node of the context-

dependent tree T(style)
symbolic.

3.1.2. Continuous HMM

For each speaking style, an average acoustic model λ
(style)
acoustic that

includes source/filter variations, f0 variations, and state-durations,
is estimated from the pooled speakers associated with the speaking
style based on the conventional HTS system ([14]).

Let R be the number of speakers from which an average model is to
be estimated. Let o = (o(1), . . . ,o(R)) the total set of observations,
and o(r) = [o(r)(1), . . . ,o(r)(Tr)] is the observation sequences
associated with speaker r, where o(r)(t) = [o

(r)
t (1), . . . , o

(r)
t (D)]�

is the (Dx1) observation vector which describes the acoustical prop-
erty at time t. Let q = (q(1), . . . ,q(R)) the total set of linguistic
contexts observations, and q(r) = [q(r)(1), . . . ,q(r)(Tr)] is
the linguistic context sequence associated with speaker r, where
q(r)(t) = [q

(r)
1 (t), . . . , q

(r)
L (t)]� is the (L’x1) augmented linguistic

context vector which describes the linguistic properties at time t.

An average context-dependent HMM acoustic model λ
(style)
symbolic

is estimated from the pooled speakers observations. Firstly, a
context-dependent HMM model is estimated for each of the
linguistic contexts. Then, an average context-dependent tree
T(style)

acoustic is derived so as to minimize the description length of the
context-dependent HMM model λ

(style)
acoustic.

The acoustic module models simultaneously source/filter variations,
f0 variations, and the temporal symbolic associated with a speak-
ing style. Speakers f0 were normalized with respect to the speaking
style prior to modelling. Source, filter, and normalized f0 observa-
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speech [17]. Finally, speech dynamic is modelled according to the
trajectory model and the global variance (GV) that model local and
global speech variations over time [?].

3.2. Generation of the Speech Parameters
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Two main approaches can be distinguished in prosodic structure modelling: on the one
hand, expert approaches attempt at elaborating formal models that account for the observed
prosodic variations with respect to linguistic, para-linguistic, and extra-linguistic con-
straints. On the other hand, statistical methods attempt at elaborating a statistical model
which accounts for the prosodic variations from the observation of statistical regularities on
large speech corpora.

4.6.1 Expert Models

Expert approaches mostly concern hierarchical prosodic structure mod-
elling, and in particular prosodic frontiers ([Cooper and Paccia-Cooper, 1980,
Gee and Grosjean, 1983, Ferreira, 1988, Abney, 1992, Watson and Gibson, 2004]
for English; [Dell, 1984, Bailly, 1989, Monnin and Grosjean, 1993, Ladd, 1996,
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languages). Expert models assume that a prosodic structure results from the integration
of various and potentially conflictual constraints, in particular syntactic and rhythmic
[?, Dell, 1984] constraints.
The linguistic module mostly concerns the extraction of prominent syn-
tactic boundaries from deep syntactic parsing, based on syntactic con-
stituency (Constituent-Depth [Cooper and Paccia-Cooper, 1980], φ-phrases
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Table 4.2: Illustration of the text-to-prosodic-structure conversion.

Two main approaches can be distinguished in prosodic structure modelling: on the one
hand, expert approaches attempt at elaborating formal models that account for the observed
prosodic variations with respect to linguistic, para-linguistic, and extra-linguistic con-
straints. On the other hand, statistical methods attempt at elaborating a statistical model
which accounts for the prosodic variations from the observation of statistical regularities on
large speech corpora.

4.6.1 Expert Models

Expert approaches mostly concern hierarchical prosodic structure mod-
elling, and in particular prosodic frontiers ([Cooper and Paccia-Cooper, 1980,
Gee and Grosjean, 1983, Ferreira, 1988, Abney, 1992, Watson and Gibson, 2004]
for English; [Dell, 1984, Bailly, 1989, Monnin and Grosjean, 1993, Ladd, 1996,
Delais-Roussarie, 2000, Mertens, 2004b] for French, [Barbosa, 2006] for some other
languages). Expert models assume that a prosodic structure results from the integration
of various and potentially conflictual constraints, in particular syntactic and rhythmic
[?, Dell, 1984] constraints.
The linguistic module mostly concerns the extraction of prominent syn-
tactic boundaries from deep syntactic parsing, based on syntactic con-
stituency (Constituent-Depth [Cooper and Paccia-Cooper, 1980], φ-phrases
[Gee and Grosjean, 1983, Delais-Roussarie, 2000], Left-hand-side / Right-hand-side
Boundary [Watson and Gibson, 2004]), syntactic dependency (Dependency-Grammar-based

• journal: radio review (press review; political, economical, tech-
nological chronicles); almost single speaker monologue with a
few interactions with a lead journalist.

• sport commentary: soccer; two speakers engaged in mono-
logues with speech overlapping during intense soccer sequences
and speech turn changes; almost no interactions.

The speech database consists of natural speech multi-media audio
contents with strongly variable audio quality (background noise:
crowd, audience, recording noise, and reverberation). The speech
prosody characteristics of the speech databased are illustrated in fig-
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During the training, the discrete/continuous context-dependent
HMMs are estimated separately. During the synthesis, the sym-
bolic/acoustic parameters are generated in cascade, from the sym-
bolic representation to the acoustic variations. Additionally, a rich
linguistic description of the text characteristics is automatically ex-
tracted using a linguistic processing chain [9] and used to refine the
context-dependent HMM modelling (see [10] and [11] for a detailed
description of the enriched linguistic contexts).
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trajectory model and the global variance (GV) that model local and
global speech variations over time [?].
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4.6 Abstract Model: Text To Prosodic Structure

The prosodic structure model is to infer a sequence of prosodic labels that are associated
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prosodic
structure
FM * *
Fm * * *
P * * * *
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Table 4.2: Illustration of the text-to-prosodic-structure conversion.

Two main approaches can be distinguished in prosodic structure modelling: on the one
hand, expert approaches attempt at elaborating formal models that account for the observed
prosodic variations with respect to linguistic, para-linguistic, and extra-linguistic con-
straints. On the other hand, statistical methods attempt at elaborating a statistical model
which accounts for the prosodic variations from the observation of statistical regularities on
large speech corpora.

4.6.1 Expert Models

Expert approaches mostly concern hierarchical prosodic structure mod-
elling, and in particular prosodic frontiers ([Cooper and Paccia-Cooper, 1980,
Gee and Grosjean, 1983, Ferreira, 1988, Abney, 1992, Watson and Gibson, 2004]
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languages). Expert models assume that a prosodic structure results from the integration
of various and potentially conflictual constraints, in particular syntactic and rhythmic
[?, Dell, 1984] constraints.
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⇓
prosodic
structure
FM * *
Fm * * *
P * * * *

syllable Long- temps ## je me suis cou- ché de bonne heure ##
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⇓
prosodic
structure
FM * *
Fm * * *
P * * * *

syllable Long- temps ## je me suis cou- ché de bonne heure ##
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• journal: radio review (press review; political, economical, tech-
nological chronicles); almost single speaker monologue with a
few interactions with a lead journalist.

• sport commentary: soccer; two speakers engaged in mono-
logues with speech overlapping during intense soccer sequences
and speech turn changes; almost no interactions.

The speech database consists of natural speech multi-media audio
contents with strongly variable audio quality (background noise:
crowd, audience, recording noise, and reverberation). The speech
prosody characteristics of the speech databased are illustrated in fig-
ure 1.

3. SPEAKING STYLE MODEL

A speaking style model λ(style) is composed of discrete/continuous
context-dependent HMMs that model the symbolic/acoustic speech
characteristics of a speaking style.
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During the training, the discrete/continuous context-dependent
HMMs are estimated separately. During the synthesis, the sym-
bolic/acoustic parameters are generated in cascade, from the sym-
bolic representation to the acoustic variations. Additionally, a rich
linguistic description of the text characteristics is automatically ex-
tracted using a linguistic processing chain [9] and used to refine the
context-dependent HMM modelling (see [10] and [11] for a detailed
description of the enriched linguistic contexts).

3.1. Training of the Discrete/Continuous Models

3.1.1. Discrete HMM

For each speaking style, an average context-dependent discrete
HMM λ

(style)
symbolic is estimated from the pooled speakers associated

with the speaking style.

The prosodic grammar consists of a hierarchical prosodic repre-
sentation that was experimented as an alternative to TOBI [12]
for French prosody labelling [13]. The prosodic grammar is
composed of major prosodic boundaries (FM, a boundary which
is right bounded by a pause), minor prosodic boundaries (Fm, an
intermediate boundary), and prosodic prominences (P).
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3.1.2. Continuous HMM

For each speaking style, an average acoustic model λ
(style)
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includes source/filter variations, f0 variations, and state-durations,
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clustered into acoustically similar models using decision-tree-based
context-clustering (ML-MDL [15]). Multi-Space probability Distri-
butions (MSD) [16] are used to model continuous/discrete parame-
ter f0 sequence to manage voiced/unvoiced regions properly. Each
context-dependent HMM is modelled with a state duration probabil-
ity density functions (PDFs) to account for the temporal structure of
speech [17]. Finally, speech dynamic is modelled according to the
trajectory model and the global variance (GV) that model local and
global speech variations over time [?].
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4.1. Experimental Setup

40 speech utterances (10 per DG) were se-
lected in the speaking style corpus and re-
moved from the training set. Lexical ac-
cess was removed using a band-pass filter
that insured that the lowest frequency of
the fundamental frequency and the high-
est frequency of its first harmonic was in-
cluded. .

4.2. Subjective Evaluation

The evaluation consists of a multiple
choice identification task from speech
prosody perception. The evaluation was
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boundaries set for the analysis were manually adapted depending on the characteristics of
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Figure 2: Generation of discrete/continuous speech pa-
rameters for the sentence: “Longtemps, je me suis couché
de bonne heure” (“For a long time I used to go to bed
early”).

4. Evaluation
The proposed model has been evaluated based on a speaking
style identification perceptual experiment, and compared to a
speaking style identification experiment with natural speech
[15]. For the purpose of such a comparison, it was necessary
to provide a single evaluation scheme for both experiments. In
particular, it was not possible to control the linguistic content of
natural speech utterances which provides evident cues for DG’s
identification (a single keyword would be sufficient to identify a
DG). Thus, such a comparison required to remove lexical access
and to focus on the prosodic dimension only.

4.1. Experimental Setup

40 speech utterances (10 per DG) were selected in the speak-
ing style corpus and removed from the training set. Lexical ac-
cess was removed using a band-pass filter that insured that the
lowest frequency of the fundamental frequency and the highest
frequency of its first harmonic was included.

4.2. Subjective Evaluation

The evaluation consists of a multiple choice identification task
from speech prosody perception. The evaluation was conducted
according to crowd-sourcing technique using social networks.
50 subjects (including 25 native French speakers, 15 non-native
French speakers, 10 non-French speakers; 34 expert and 16
naı̈ve listeners) participated in this experiment. Participants
were given a brief description of the different speaking styles.
Then, they were asked to associate a speaking style to each of
the speech utterances. For this purpose, participants were given
three options:

total confidence: select only one speaking style when certain
of the choice;
confusion: select two different speaking styles when two speak-
ing styles are possible;
total indecision: select ”indecision” when completely unsure.
Subjects were asked to use this possibility only as a very last
resort.
Additional informations were gleaned from the participants:
speech expertise (expert, naı̈ve), language (native French
speaker, non-native French speaker, non-French speaker), age,
and listening condition (headphones or not). Expert participants
were actually coming from various domains (speech and audio
technologies, linguistics, musicians). Participants were encour-
aged to use headphones.

5. Results & Discussion
Identification performance was estimated using a measure
based on Cohen’s Kappa statistic [16]. Cohen’s Kappa statis-
tic measures the proportion of agreement between two raters
with correction for random agreement. Our measure monitors
the agreement between the ratings of the participants and the
ground truth. The measure varies from -1 to 1: -1 is perfect
disagreement; 0 is chance; 1 is perfect agreement. Confusion
ratings were considered as equally possible ratings. Total inde-
cision ratings were relatively rare (3% of the total ratings) and
removed. Figure 3 presents the identification confusion matrix.
Overall score reveals fair identification performance (κ =
0.38 ± 0.04) which is comparable to that observed for iden-
tification from natural speech (κnatural = 0.45 ± 0.03). The
identification performance significantly depends on the speak-
ing style (figure 4): sport commentary is substantially identified
(κ = 0.68± 0.05), journal fairly identified (κ = 0.50± 0.06),
political discourse moderately identified (κ = 0.28±0.07), and
mass only slightly identified (κ = 0.12 ± 0.06). In compari-
son with identification from natural speech, the identification is
comparable in the case of the sport commentary and the jour-
nal speaking styles (κnatural = 0.70 ± 0.03 and κnatural =
0.54 ± 0.05, respectively). However, there is a drop in identi-
fication for the political and the mass speaking styles which is
especially significant for the mass style (κnatural = 0.34±0.05
and κnatural = 0.38 ± 0.04, respectively). This indicates that
the model somehow failed to capture the relevant cues of the
corresponding speaking style. Nevertheless, a large confusion
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(b) synthetic speech

Figure 3: Identification confusion matrices. Rows represent
synthesized speaking style. Columns represent identified speak-
ing style.

exists between the political and the mass speech that is inherent
to a similarity in the speaking style and the formal situation in
which the speech occurs. Additionally, the conventional HMM-
based speech synthesis system failed into modelling adequately
the breathiness and the creakiness that is specific to the political
speaking style, especially within unvoiced segments.
ANOVA analysis was conducted to assess whether the iden-
tification performance depends on the language of the partic-
ipants. Analysis reveals a significant effect of the language
(F(2, 59) = 15, p < 0.001) (F(48,2)=5.9, p-value=0.005), and
confirms results obtained for natural speech. This confirms evi-
dence that there exists variations of a speaking style depending
on the language and/or cultural background.
Finally, an informal evaluation of the quality of the synthesized
speech suggests that the speaking style modelling is robust to
the large variety of audio quality.

6. Conclusion
In this study, the ability and the robustness of a HMM-based
speech synthesis system to model the speech characteristics of
various speaking styles were assessed. A discrete/continuous
HMM was presented to model the symbolic and acoustic speech
characteristics of a speaking style, and used to model the aver-
age characteristics of a speaking style that is shared among var-
ious speakers, depending on specific situations of speech com-
munication. The evaluation consisted of an identification ex-
periment of 4 speaking styles based on delexicalized speech,
and compared with a similar experiment on natural speech. The
evaluation showed that the discrete/continuous HMM consis-
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Figure 4: Mean identification scores and 95% confidence inter-
val obtained for natural and synthesized speech.

tently models the speech characteristics of a speaking style, and
is robust to the differences in audio quality. This proves evi-
dence that the discrete/continuous HMM speech synthesis sys-
tem successfully models the speech characteristics of a speak-
ing style in the conditions of real-world applications.
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