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Abstract—This paper presents a large-scale similarity search
of professionally acted voices for computer-aided voice casting.
The proposed voice casting system explores GMM-based acoustic
models and multi-label recognition of perceived para-linguistic
content (speaker states and speaker traits, e.g., age/gender,
voice quality, emotion) for the voice casting of professionally
acted voices. First, acoustic models (universal background model,
super-vector, i-vector) are constructed to model the acoustic
space of voices, from which the similarity between voices can be
measured directly in the acoustic space. Second, multiple binary
classification of speaker traits and states is added to the acoustic
models in order to represent the vocal signature of a voice, which
is then used to measure the similarity between voices in the
para-linguistic space. Finally, a similarity search is processed in
order to determine the set of target actors that are the most
similar to the voice of a source actor. In a subjective experiment
conducted in the real-context of cross-language voice casting, the
multi-label scoring system significantly outperforms the acoustic
scoring system. This constitutes a proof of concept for the role
of perceived para-linguistic categories in the perception of voice
similarity.

Index Terms: voice casting, voice similarity, speaker recog-
nition, speaker traits and states, para-linguistics, multi-label
classification.

I. INTRODUCTION

THE production of multi-media content (films, series,
video-games) available to various countries requires the

translation of the speech content from a source language
(typically, English) to a set of target languages (typically,
French, German, Spanish, Japanese, Mandarin). Translation
of the speech content can be simply obtained by subtitles, but
very often the original speech content is totally replaced by
the corresponding speech content in the target language. This
process, referred to as dubbing, is obtained by first translating
the text from the source to the target language, then selecting
actors in the target language, and finally recording the actors
synced to the original speech content. These actors must be
selected so as to preserve as much as possible the voice and
the acting of the original actors. Voice casting denotes the
selection of a voice in a target language that is the most similar
to a voice in a source language, and is usually performed
by human experts who manually select actors according to
a database of available voices in the target language. Beyond
voice casting stands the open scientific issue on the perception
and the measurement of voice similarity: the closer/farther a
source voice is perceived from a target voice, the smaller/larger
the distance should be measured. What defines the perception
voice similarity remains vague: common expressions (i.e.,
gender: male/female, age: young/old) are generally used to

Nicolas Obin and Axel Roebel are with IRCAM, UPMC-Sorbonne Univer-
sités, CNRS, Paris, France.

describe the main traits of a voice/speaker [1], and the role
of voice quality in the perception of voice similarity has been
recently addressed [2]. Also, some recent research in speaker
clustering (e.g., speech retrieval [3], [4], and speech synthesis
[5], [6]) have addressed to some extent the measurement of
speaker/voice similarities.

To the best of our knowledge, this paper is the first scientific
investigation into the measurement of voice similarity for the
voice casting of professionally acted voices. Two alternative
solutions are investigated and compared:
– Intuitively, the use of speaker recognition techniques [7]–
[9] for voice casting appears seducing: the scoring used
in speaker recognition system can be interpreted straight-
forwardly as a similarity measure between voices, and this
similarity can be directly measured in the acoustic space. In
particular, the similarity measure as determined for speaker
recognition has been proven to be extremely accurate in the
local acoustic neighbourhood of a speaker: a speaker can
be authenticated in the presence of close impostor speakers.
However, there is no evidence that this similarity measure
remains valid in the entire acoustic space, and actually
reflects the perception of the similarity between voices.

– Alternatively, the description of a voice by perceived para-
linguistic categories (speaker states and traits [10], [11] e.g.,
age/gender, voice quality, emotions) may efficiently capture
the perception of a voice, and then serve to measure the simi-
larity between voices. Furthermore, common expressions are
widely used by human experts in voice casting to stereotype a
role. For instance, Albus Dumbledore from the movie “Harry
Potter” can be described as a male, old, wise, and breathy
voice. Accordingly, the stereotype may be more important
for voice casting than the actual acoustic similarities.
This paper explores and compares the use of GMM-based

acoustic models and multi-label classification of perceived
para-linguistic categories (e.g., age/gender, voice quality, emo-
tion) for the voice casting of professionally acted voices. This
extends the preliminary work presented in [12] by 1) present-
ing the complete details of the two contributions proposed for
voice casting, one is based on acoustic models derived from
speaker recognition and one is based on multi-label recogni-
tion of perceived para-linguistic categories (speaker traits and
speaker states); and 2) providing a detailed evaluation of para-
linguistic recognition for all considered categories, including
a comparison of MFCC, super-vector, and i-vector acoustic
representations for some classic and novel para-linguistic
categories. First, GMM-based acoustic models and multi-label
classification of speaker traits and states are presented in order
to score the similarity between voices in the acoustic and para-
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linguistic spaces (Section II). Second, the set of categories
used to describe the traits and states of a speaker for the multi-
label scoring is presented (Section III). The performance of
the acoustic and the multi-label scoring is first evaluated in
an objective experiment, and then compared in a subjective
experiment in the real context of professional voice casting
(Section IV).

II. SIMILARITY SCORING FOR VOICE CASTING

This section presents the details of the acoustic models
and scoring derived from speaker recognition, and the multi-
label classification and scoring from perceived para-linguistic
categories for voice casting. The implementation is based on
ircamClassifier [13], a system developed in the context of
Music Information Retrieval (MIR) [14], [15]. This system
includes the Alizée 3.0 speaker recognition [16] and the
LibSvm [17] SVM libraries.

A. Acoustic Space Modeling: Universal Background Model
and GMM supervector

The Universal Background Model (UBM) is used to model
the distribution of the entire acoustic space [7]. This modelling
is usually achieved with a standard Gaussian Mixture Model
(GMM-UBM). The likelihood of the (D×1) feature vector o
describing the acoustic characteristics of speech is defined as:

p(o|λ) =

M∑
i=1

αipi(o) (1)

where M is the number of mixture components,
λ = {αi,µi,Σi}i∈[1,M ] represents the weights, means,
and variances of the i-th Gaussian, and pi(o) = N (o|µi,Σi)
denotes the likelihood of the i-th mixture component, where
N denotes a Gaussian distribution.

Then, the mean parameters µ = {µ1, . . . ,µM} of the
UBM are adapted to each speech recording by using relevance
maximum a posteriori (MAP) adaptation [7]. This is achieved
by updating the means of the mixture components to a
sequence of acoustic observations o = [o1, . . . ,oT ], of length
T . Finally, each speech recording is represented by the mean
vectors of the adapted mixture components:

µadapt = [µadapt
1

>, . . . ,µadapt
M

>]> (2)

where > denotes the transposition operator, and µadapt, re-
ferred to as a GMM-supervector, is the concatenation of all
the mean vectors of the adapted mean parameters of the UBM.

B. Factor Analysis: Total Variability Space and i-vector

An i-vector is the compact representation of a high-
dimensional speech recording into a low-dimensional space
called Total Variability space [9], assuming an affine linear
model (i.e., factor analysis):

µ′ = µ+ Tx (3)

where µ′ is the GMM-supervector of a speech recording, µ
is the GMM-supervector corresponding to the UBM mean

parameters, T is the (DM×q) total variability matrix, and x is
a q-dimensional vector assuming a prior normal distribution,
referred to as an i-vector. The total variability matrix T is
estimated by Expectation-Maximization (EM) [9]. The i-vector
of a speech recording is determined as a MAP point estimate
of the latent variable x [9].

C. Inter-Session Compensation: i-vector Transformation

The i-vector transformation is used to project the total
variability of the high-dimensional acoustic space (i.e.,
speaker/class information and session/channel information) in
a low-dimensional space in which the i-vectors distribution
is assumed to be normal for each speaker/class. In order
to compensate for the session/channel information, and to
constrain the i-vector distribution to be normally distributed
for each speaker/class, a large number of methods have
been proposed from Linear Discriminant Analysis [9] (LDA)
for inter-session compensation, to Within-Class Covariance
Normalization (WCCN, [18]), Length Normalization (LN,
[19]), Eigen Factor Radial Normalization (EFR, [20]),
and Sphere Nuisance Normalization (SN, [16], [20]) for
speaker/class normalization.

The Length Normalization (LN) is a simple normalization:

x =
x

||x||
(4)

where ||.|| denotes the L-2 norm.

The Within-Class Covariance Normalization (WCCN) whitens
the covariance matrix of each class:

x̂ = W− 1
2 x (5)

W =
K∑

k=1

p(k)Σ(k)
x (6)

where W is the covariance matrix defined as the weighted
sum of the within-class covariance matrices Σ(k)

x , where K
is the number of classes, and p(k) is the prior probability of
class k.

The Eigen Factor Radial Normalization (EFR) processes re-
cursively standardization and normalization:

x(i+1) =
Σ(i)

x

− 1
2 (x(i) − µ(i)

x )

||Σ(i)
x

− 1
2 (x(i) − µ(i)

x )||
(7)

where µ(i)
x and Σ(i)

x denote the mean vector and covariance
matrix of all i-vectors at iteration i.

The Sphere Nuisance Normalization (SN) is similar to the
Eigen Factor Radial Normalization, except that the covariance
matrix is replaced by the within-class covariance matrix W .

D. Acoustic Scoring

The first contribution of this paper is to investigate the
acoustic scoring derived from speaker recognition to measure
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the similarity between voices for voice casting (Figure 1).
While the Support Vector Machine (SVM) is historically a
milestone in speaker recognition [8], some recent advances
have been proposed to score the similarity between speakers.

Similarity Scoring (cosine, PLDA)

source
speech samples

Acoustic Model (UBM-GMM, i-vector)

MFCC

Feature Extraction

Figure 2: Auditory Attention Model and Gist Extraction

of these features are tuned to different local oriented edges; i.e.
frequency contrast features are tuned to local horizontally ori-
ented edges, which are good for detecting and capturing for-
mants and their changes as discussed later. Next, the multi-scale
feature maps are converted to low level auditory gist features,
which capture and summarize the overall statistics and contex-
tual information of the acoustic scene. Finally, a neural network
is used to discover the relevant oriented edges and to learn the
mapping between the gist features and syllable boundaries.

The rest of the paper is organized as follows. The auditory
attention model together with gist extraction is explained in Sec-
tion 2, which is followed by experimental results in Section 3.
The concluding remarks are presented in Section 4.

2. Auditory Attention Model
The block diagram of the auditory attention model is shown in
Fig 2. As stated earlier, the model is biologically inspired and
hence mimics the processing stages in the human auditory sys-
tem. First, the auditory spectrum of the input sound is computed
based on early stages of the human auditory system. The early
auditory system model used here consists of cochlear filtering,
inner hair cell, and lateral inhibitory stages mimicking the pro-
cess from basilar membrane to the cochlear nucleus in the audi-
tory system [10]. The cochlear filtering is implemented using a
bank of 128 overlapping constant-Q asymmetric band-pass fil-
ters with center frequencies that are uniformly distributed along
a logarithmic frequency axis. For analysis, audio frames of 20
milliseconds (ms) with 10 ms shift are used, i.e. each 10 ms
audio frame is represented by a 128 dimensional vector.

The two-dimensional auditory spectrum with time and fre-
quency axes is analogous to an image of a scene in vision. In the
next stage, multi-scale features, which consist of intensity (I),

frequency contrast (F ), temporal contrast (T ), and orientation
(Oθ) with θ = {45o, 135o}, are extracted from the auditory
spectrum based on the processing stages in the central auditory
system [10, 12].

These features are extracted using 2D spectro-temporal re-
ceptive filters mimicking the analysis stages in the primary au-
ditory cortex. Each of the receptive filters (RF) simulated for
feature extraction is illustrated with gray scaled images in Fig
2 next to its corresponding feature. The excitation phase and
inhibition phase are shown with white and black color, respec-
tively. For example, the frequency contrast filter corresponds
to receptive fields in the primary auditory cortex with an exci-
tatory phase and simultaneous symmetric inhibitory side bands.
Each of these filters is capable of detecting and capturing certain
changes in signal characteristics. For example, the frequency
contrast features are capable of detecting and capturing changes
along the spectral axis, whereas the orientation features are ca-
pable of capturing and detecting moving ripples (i.e. raising
and falling curves). One important point is that in the attention
model feature contrast is computed rather than the absolute fea-
ture strength, which is also crucial for change point detection
and segmentation.

The RF for intensity feature has only an excitation phase
and is implemented using a 2D Gaussian kernel. The RF for
generating frequency contrast, temporal contrast and orientation
features are implemented using 2D Gabor filters with angles 0o,
90o, {45o, 135o}, respectively. The multi-scale features are ob-
tained using a dyadic pyramid: the input spectrum is filtered and
decimated by a factor of two, and this is repeated. Finally, eight
scales are created (if the scene duration is larger than 1.28 s;
otherwise there are fewer scales), yielding size reduction fac-
tors ranging from 1:1 (scale 1) to 1:128 (scale 8). For details of
the feature extraction and filters, one may refer to [10, 12].

After multi-scale features are obtained, the model com-
putes “center-surround” differences by comparing “center” fine
scales with “surround” coarser scales yielding feature maps.
The center-surround operation mimics the properties of local
cortical inhibition and detects local temporal and spatial discon-
tinuities. It is simulated by across scale subtraction (!) between
a center scale c and a surround scale s yielding a feature map
M(c, s):

M(c, s) = |M(c) ! M(s)|, Mε{I, F, T, Oθ} (1)

The across scale subtraction between two scales is computed by
interpolation to the finer scale and point-wise subtraction. Here,
c = {2, 3, 4}, s = c + δ with δε{3, 4} are used, which results
in 30 feature maps when there are eight scales.

Next, an “auditory gist” vector is extracted from the feature
maps of I , F , T ,Oθ such that it covers the whole scene at low
resolution. To do that, each feature map is divided into m-by-n
grid of sub-regions and mean of each sub-region is computed
to capture the overall properties of the map. For a feature map
Mi with height h and width w, the computation of feature can
be written as:

Gk,l
i =

mn

wh

(k+1)w
n

−1∑

u= kw
n

(l+1)h
m

−1∑

v= lh
m

Mi(u, v), (2)

where k = {0, · · · , n − 1}, l = {0, · · · , m − 1}, and feature
map index i = {1, · · · , 30}. An example of gist feature extrac-
tion with m = 4, n = 5 is shown in Fig 2, where a 4 × 5 = 20
dimensional vector is shown to represent a feature map. Af-
ter extracting a gist vector from each feature map, we obtain

426

target 
speech sample

target 
speech database

source
i-vectors (1xq)

target
i-vector (1xq)

Fig. 1. Architecture of the acoustic voice casting system. On bottom, unsu-
pervised acoustic extraction and modelling; on top, supervised/unsupervised
acoustic scoring.

1) Direct Scoring: Cosine Similarity: First, direct cosine
similarity [21] has been proven to be extremely efficient
for speaker recognition. The cosine similarity measures the
similarity between two speech recordings xsrc and xtgt in the
i-vector acoustic space:

s(xsrc,xtgt) =
〈xsrc,xtgt〉
||xsrc|| ||xgt||

(8)

where < ., . > is the scalar product operator.

Importantly, the cosine similarity assumes that only the
angle between two i-vectors provides information about the
similarity between speech recordings. Furthermore, the cosine
similarity can be computed directly in the acoustic space,
without any prior training.

2) Generative Model: PLDA: One of the last advances is
the introduction of generative models for speaker recogni-
tion [22]. Among them, the Probabilistic Linear Discriminant
Analysis (PLDA) [23] is the most popular generative model
currently used for speaker recognition. In the original form,
PLDA linearly decomposes an i-vector in eigen-speaker and
eigen-channel subspaces (respectively of rank Nspeaker and
Nchannel). In the case where the eigen-channel is assumed to
be full-rank (Nchannel = q) (Gaussian PLDA [24] or simplified
PLDA [19]), each i-vector xs of a speaker s can be expressed
as:

xs = µx + Shs + ε (9)

where µx is the total i-vectors mean vector, S is the
(Nspeaker × q) eigen-speaker matrix, hs is the position of the

i-vector within the eigen-speaker space S (the latent speaker
vector, assumed to be normally distributed), and ε is the q
residual vector with a full covariance matrix. Maximum-
Likelihood (ML) estimation of the PLDA parameters is
described in [23].

Then, the similarity between two speech recordings xsrc

and xtgt can be computed as the likelihood ratio [24]:

s(xsrc,xtgt) =
p(xsrc,xtgt|H1)

p(xsrc|H0) p(xtgt|H0)
(10)

where the hypothesis H1 indicates that both vectors
come from the same latent speaker (respectively, class),
and H0 indicates they come from different latent speakers
(respectively, classes). A closed form solution can be
computed as detailed in [24], [25].

The acoustic scores derived from speaker recognition can
be straightforwardly turned into a similarity measure between
two speech recordings for voice casting, by ignoring the iden-
tification, recognition, verification hard decision of a speaker
identity. The main advantages of the acoustic scoring for voice
casting is that the scoring can be performed directly in the
acoustic space, and the similarity measure has been proven
to be extremely efficient for speaker recognition. Also, the
similarity metric may be strictly unsupervised (e.g., cosine
distance), or supervised by available information (e.g., PLDA).
Since the speaker’s identity is generally the only available
information in the context of voice casting and assuming the
accuracy of speaker recognition systems, this first contribution
will address the use of a similarity metric supervised by
speaker’s identity for voice casting.

E. Multi-Label Scoring

The second contribution of this paper is the use of a
multi-label scoring based on the “semantic” description of a
voice with perceived para-linguistic categories (speaker states
and speaker traits). This multi-label scoring is presented as
an alternative to the acoustic scoring as used for speaker
recognition. First, a multi-label classifier is added on
top of GMM-based acoustic models to assign the labels
corresponding to a speech recording. Then, the posterior
probabilities of each label are concatenated to form a vector
that represents the signature of a voice, which is used to
measure the similarity between voices (Figure 2).

Multi-label classification [26] is commonly used for the
indexing, retrieval, and similarity search of multi-media
content (e.g., [27], [28] for text, [29], [30] for music, [31]
for image, and [32] for video). Multi-label classification
assumes that a media content (text, image, video, sound) can
be described with a set of labels that are independent to each
other. Multi-label classification is opposed to the multi-class
classification commonly used in para-linguistic classification:
the classification does not result to a single label, but to
a vector of multiple co-occurring and non-exclusive labels
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Figure 2: Auditory Attention Model and Gist Extraction

of these features are tuned to different local oriented edges; i.e.
frequency contrast features are tuned to local horizontally ori-
ented edges, which are good for detecting and capturing for-
mants and their changes as discussed later. Next, the multi-scale
feature maps are converted to low level auditory gist features,
which capture and summarize the overall statistics and contex-
tual information of the acoustic scene. Finally, a neural network
is used to discover the relevant oriented edges and to learn the
mapping between the gist features and syllable boundaries.

The rest of the paper is organized as follows. The auditory
attention model together with gist extraction is explained in Sec-
tion 2, which is followed by experimental results in Section 3.
The concluding remarks are presented in Section 4.

2. Auditory Attention Model
The block diagram of the auditory attention model is shown in
Fig 2. As stated earlier, the model is biologically inspired and
hence mimics the processing stages in the human auditory sys-
tem. First, the auditory spectrum of the input sound is computed
based on early stages of the human auditory system. The early
auditory system model used here consists of cochlear filtering,
inner hair cell, and lateral inhibitory stages mimicking the pro-
cess from basilar membrane to the cochlear nucleus in the audi-
tory system [10]. The cochlear filtering is implemented using a
bank of 128 overlapping constant-Q asymmetric band-pass fil-
ters with center frequencies that are uniformly distributed along
a logarithmic frequency axis. For analysis, audio frames of 20
milliseconds (ms) with 10 ms shift are used, i.e. each 10 ms
audio frame is represented by a 128 dimensional vector.

The two-dimensional auditory spectrum with time and fre-
quency axes is analogous to an image of a scene in vision. In the
next stage, multi-scale features, which consist of intensity (I),

frequency contrast (F ), temporal contrast (T ), and orientation
(Oθ) with θ = {45o, 135o}, are extracted from the auditory
spectrum based on the processing stages in the central auditory
system [10, 12].

These features are extracted using 2D spectro-temporal re-
ceptive filters mimicking the analysis stages in the primary au-
ditory cortex. Each of the receptive filters (RF) simulated for
feature extraction is illustrated with gray scaled images in Fig
2 next to its corresponding feature. The excitation phase and
inhibition phase are shown with white and black color, respec-
tively. For example, the frequency contrast filter corresponds
to receptive fields in the primary auditory cortex with an exci-
tatory phase and simultaneous symmetric inhibitory side bands.
Each of these filters is capable of detecting and capturing certain
changes in signal characteristics. For example, the frequency
contrast features are capable of detecting and capturing changes
along the spectral axis, whereas the orientation features are ca-
pable of capturing and detecting moving ripples (i.e. raising
and falling curves). One important point is that in the attention
model feature contrast is computed rather than the absolute fea-
ture strength, which is also crucial for change point detection
and segmentation.

The RF for intensity feature has only an excitation phase
and is implemented using a 2D Gaussian kernel. The RF for
generating frequency contrast, temporal contrast and orientation
features are implemented using 2D Gabor filters with angles 0o,
90o, {45o, 135o}, respectively. The multi-scale features are ob-
tained using a dyadic pyramid: the input spectrum is filtered and
decimated by a factor of two, and this is repeated. Finally, eight
scales are created (if the scene duration is larger than 1.28 s;
otherwise there are fewer scales), yielding size reduction fac-
tors ranging from 1:1 (scale 1) to 1:128 (scale 8). For details of
the feature extraction and filters, one may refer to [10, 12].

After multi-scale features are obtained, the model com-
putes “center-surround” differences by comparing “center” fine
scales with “surround” coarser scales yielding feature maps.
The center-surround operation mimics the properties of local
cortical inhibition and detects local temporal and spatial discon-
tinuities. It is simulated by across scale subtraction (!) between
a center scale c and a surround scale s yielding a feature map
M(c, s):

M(c, s) = |M(c) ! M(s)|, Mε{I, F, T, Oθ} (1)

The across scale subtraction between two scales is computed by
interpolation to the finer scale and point-wise subtraction. Here,
c = {2, 3, 4}, s = c + δ with δε{3, 4} are used, which results
in 30 feature maps when there are eight scales.

Next, an “auditory gist” vector is extracted from the feature
maps of I , F , T ,Oθ such that it covers the whole scene at low
resolution. To do that, each feature map is divided into m-by-n
grid of sub-regions and mean of each sub-region is computed
to capture the overall properties of the map. For a feature map
Mi with height h and width w, the computation of feature can
be written as:

Gk,l
i =

mn

wh

(k+1)w
n

−1∑

u= kw
n

(l+1)h
m

−1∑

v= lh
m

Mi(u, v), (2)

where k = {0, · · · , n − 1}, l = {0, · · · , m − 1}, and feature
map index i = {1, · · · , 30}. An example of gist feature extrac-
tion with m = 4, n = 5 is shown in Fig 2, where a 4 × 5 = 20
dimensional vector is shown to represent a feature map. Af-
ter extracting a gist vector from each feature map, we obtain
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Fig. 2. Architecture of the multi-label voice casting system. On bottom,
unsupervised acoustic extraction and modelling; on top, supervised multi-label
recognition and scoring.

(Figure 3). In consequence, multiple labels can be assigned to
a media content. Typically, the emotion content of a speech
recording can be a mix of “sadness” and “fear” and even of
“sadness” and “joy”, whereas the speech recording would be
classified only as “sadness‘’ with multi-class classification.
This provides an extended description of a speech content
that can be further used for similarity search.

For voice casting, a multi-label scoring is constructed by
converting the classification of multiple labels into multiple
binary classifications [14], [26]. First, each label of the
speech description (e.g., the speech recording is creaky) is
turned into a binary representation (i.e., yes/no). Then, a
classifier is trained for each label separately, which results
into C independent one-versus-all classifiers [33]. A complete
description of the labels used in this paper is provided in
Section III.

Here, the Support Vector Machine ( [17]) is used for multi-
label classification. For each label c, the classification of a
vector x (e.g., supervector, i-vector) corresponding to a speech
recording is obtained with regard to the decision function:

fc(x) =

N∑
i=1

ωi
cK(x,xi

c) + bc (11)

where Θc = {wi
c,x

i
c, bc}Ni=1 are the parameters of the

maximum-margin hyperplane determined during training
(respectively weights, support vectors, and offset), and K(., .)
the SVM kernel [34].

label
1

label
2 ... label

C

YES

no no no no

label
1

label
2 ... label

C

Multi-Class SVM
(single label)

Multi-Label SVM
(multi labels)

YES NOYES YES NO

Fig. 3. Multi-class vs. multi-label classification.

In a standard SVM, the binary label corresponding to the
observation vector x is assigned with regard to the sign of the
decision function:

ŷc = sign(fc(x)) (12)

where sign(x) = +1 for x ≥ 0 and −1 otherwise, so that yc
is 1 when the label is positive, and 0 when the label is negative.

Here, the decision function is converted into a posterior
probability estimate for each label c, as detailed in [35]:

ψc = pc(y = 1|x) = p(y = 1|x,Θc), c ∈ [1, · · · , C] (13)

Then, the posterior probabilities of each label are concate-
nated to form a vector that represents the vocal signature
signature of a speech recording:

Ψ = [ψ1, . . . , ψC ]> (14)

where ψc is the posterior probability of the c-th label
conditionally to the observation vector x. Similarly to the
GMM-supervector and the i-vector, the vector Ψ representing
the vocal signature of a speech recording is a single vector
summarizing each speech recording.

Finally, the similarity of a source to a target speech record-
ing is defined as the distance d of their vocal signatures:

s(xsrc,xtgt) = d(Ψsrc,Ψtgt) (15)

where Ψsrc and Ψsrc denotes the vocal signature of the
source and target speech recordings, respectively. Here, d(., .)
is defined as the Kullback-Leibler divergence KL(.||.) which
is a natural distance measure between posterior probabilities
[36], [37].

The main advantage of the multi-label scoring for voice
casting lies on the assumption that the para-linguistic content
of a voice (speaker traits and states) may reflect more explicitly
the perceived similarity between voices. Furthermore, the
multi-label classification system can be used to automatically
tag and search voices based on their perceived para-linguistic
content within large speech databases.
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III. DESCRIPTION OF SPEAKER TRAITS AND STATES

This section presents the details of the para-linguistic
categories used for the multi-label scoring system presented
in Section II-E. A short review on standard description and
recognition of a voice content is first provided, followed
by a specification of the selected description for voice casting.

Common linguistic expressions can be associated with
a voice to describe the perceived “quality” of the voice
[1]. Among them, the age (young/old), sex (male/female),
and emotions are the most widely used expressions
to describe a voice. These expressions can be directly
associated with speaker traits and states: speaker traits denote
persistent/external traits of a speaker (e.g., personality),
and speaker states denote the temporary/internal states of a
speaker (e.g., emotions). The definition and the description
of speaker traits and states has been widely studied in the
literature, from biological speaker traits primitives (e.g., age
and gender), individual, social and cultural speaker traits (e.g.,
voice quality, [38]), to speaker states (e.g., emotions [39]).
Also, research on the automatic recognition of perceived para-
linguistics categories in speech has considerably increased
over the past few years, pushed by the emergence and
needs for human-robot interaction and multi-media retrieval
applications (computational paralinguistics challenges:
speaker age and gender [40], speaker state [10], [41], speaker
traits [11]). The recognition scores obtained for perceived
para-linguistics recognition significantly varies depending
on the task: the classification of the gender of a speaker
is accurate (around 90% for adult speakers [42]), the age
can be reasonably determined (within 10 years on telephone
speech, [43]), while emotion remains an open issue (from
around 80% [44] for acted speech [45], to only 60% for
spontaneous speech [46], [47]). More recently, the recognition
and modeling of voice quality has raised as a novel topic in
para-linguistics recognition [48]–[51].

For voice casting, one must first define a comprehensive set
of para-linguistics categories that can be used by expert voice
casting operators and exploited for voice similarity search.
This set must cover the main traits and states of a speaker, and
fulfill specific ad-hoc needs of expert voice casting operators
(mostly related to acting and stereotypes). The first set of
speaker traits and states comprises standard para-linguistic
categories:

� biological speaker traits: sex (male, female), and age
(child, teenager, young adult, adult, old, very old);

� speaker state: emotion (tender, excited, happy, neutral, sad,
angry, fear, stressed, surprise, other);

A second set comprises categories associated with perceived
acoustic characteristics of the voice:

� phonation: voice quality (breathy, creaky, hoarse), ten-
sion (relaxed, normal, tensed, pressed), vocal effort (whis-
pered/soft, normal, loud/shouted);

� articulation: articulation (hypo, normal, hyper);
� timbre: timbre (clear, dark);

AGE/GENDER
(male/female, ...)

VOICE QUALITY
(creaky, breathy, ...)

EMOTIONS
(happy, sad, ...)

etc...

AGE/GENDER

VOICE QUALITY

EMOTIONS

ETC…

binary voice signature vector

Figure 2: Auditory Attention Model and Gist Extraction

of these features are tuned to different local oriented edges; i.e.
frequency contrast features are tuned to local horizontally ori-
ented edges, which are good for detecting and capturing for-
mants and their changes as discussed later. Next, the multi-scale
feature maps are converted to low level auditory gist features,
which capture and summarize the overall statistics and contex-
tual information of the acoustic scene. Finally, a neural network
is used to discover the relevant oriented edges and to learn the
mapping between the gist features and syllable boundaries.

The rest of the paper is organized as follows. The auditory
attention model together with gist extraction is explained in Sec-
tion 2, which is followed by experimental results in Section 3.
The concluding remarks are presented in Section 4.

2. Auditory Attention Model
The block diagram of the auditory attention model is shown in
Fig 2. As stated earlier, the model is biologically inspired and
hence mimics the processing stages in the human auditory sys-
tem. First, the auditory spectrum of the input sound is computed
based on early stages of the human auditory system. The early
auditory system model used here consists of cochlear filtering,
inner hair cell, and lateral inhibitory stages mimicking the pro-
cess from basilar membrane to the cochlear nucleus in the audi-
tory system [10]. The cochlear filtering is implemented using a
bank of 128 overlapping constant-Q asymmetric band-pass fil-
ters with center frequencies that are uniformly distributed along
a logarithmic frequency axis. For analysis, audio frames of 20
milliseconds (ms) with 10 ms shift are used, i.e. each 10 ms
audio frame is represented by a 128 dimensional vector.

The two-dimensional auditory spectrum with time and fre-
quency axes is analogous to an image of a scene in vision. In the
next stage, multi-scale features, which consist of intensity (I),

frequency contrast (F ), temporal contrast (T ), and orientation
(Oθ) with θ = {45o, 135o}, are extracted from the auditory
spectrum based on the processing stages in the central auditory
system [10, 12].

These features are extracted using 2D spectro-temporal re-
ceptive filters mimicking the analysis stages in the primary au-
ditory cortex. Each of the receptive filters (RF) simulated for
feature extraction is illustrated with gray scaled images in Fig
2 next to its corresponding feature. The excitation phase and
inhibition phase are shown with white and black color, respec-
tively. For example, the frequency contrast filter corresponds
to receptive fields in the primary auditory cortex with an exci-
tatory phase and simultaneous symmetric inhibitory side bands.
Each of these filters is capable of detecting and capturing certain
changes in signal characteristics. For example, the frequency
contrast features are capable of detecting and capturing changes
along the spectral axis, whereas the orientation features are ca-
pable of capturing and detecting moving ripples (i.e. raising
and falling curves). One important point is that in the attention
model feature contrast is computed rather than the absolute fea-
ture strength, which is also crucial for change point detection
and segmentation.

The RF for intensity feature has only an excitation phase
and is implemented using a 2D Gaussian kernel. The RF for
generating frequency contrast, temporal contrast and orientation
features are implemented using 2D Gabor filters with angles 0o,
90o, {45o, 135o}, respectively. The multi-scale features are ob-
tained using a dyadic pyramid: the input spectrum is filtered and
decimated by a factor of two, and this is repeated. Finally, eight
scales are created (if the scene duration is larger than 1.28 s;
otherwise there are fewer scales), yielding size reduction fac-
tors ranging from 1:1 (scale 1) to 1:128 (scale 8). For details of
the feature extraction and filters, one may refer to [10, 12].

After multi-scale features are obtained, the model com-
putes “center-surround” differences by comparing “center” fine
scales with “surround” coarser scales yielding feature maps.
The center-surround operation mimics the properties of local
cortical inhibition and detects local temporal and spatial discon-
tinuities. It is simulated by across scale subtraction (!) between
a center scale c and a surround scale s yielding a feature map
M(c, s):

M(c, s) = |M(c) ! M(s)|, Mε{I, F, T, Oθ} (1)

The across scale subtraction between two scales is computed by
interpolation to the finer scale and point-wise subtraction. Here,
c = {2, 3, 4}, s = c + δ with δε{3, 4} are used, which results
in 30 feature maps when there are eight scales.

Next, an “auditory gist” vector is extracted from the feature
maps of I , F , T ,Oθ such that it covers the whole scene at low
resolution. To do that, each feature map is divided into m-by-n
grid of sub-regions and mean of each sub-region is computed
to capture the overall properties of the map. For a feature map
Mi with height h and width w, the computation of feature can
be written as:

Gk,l
i =

mn

wh

(k+1)w
n

−1∑

u= kw
n

(l+1)h
m

−1∑

v= lh
m

Mi(u, v), (2)

where k = {0, · · · , n − 1}, l = {0, · · · , m − 1}, and feature
map index i = {1, · · · , 30}. An example of gist feature extrac-
tion with m = 4, n = 5 is shown in Fig 2, where a 4 × 5 = 20
dimensional vector is shown to represent a feature map. Af-
ter extracting a gist vector from each feature map, we obtain

426

Fig. 4. Multi-label tagging of a speech recording.

� prosody: F0 register (extreme-low, low, medium, high,
extreme-high), F0 range (flat, normal, extended), and speech
rate (slow, normal, fast);

A last set comprises categories associated with the role and
the situation of acting:

� attitude/modality: affirmation, confirmation, exclamation,
interrogation, order, other;

� situation: action, conversation, information, monologue,
other;

� archetype: announcer, artificial intelligence, basic soldier,
brute, commander, hero, neutral, old wise, rookie soldier,
sensual, suffer, veteran soldier, other.

The selected description of a speaker includes 14 classes
(e.g., gender, age, emotion voice quality), and 68 labels
(e.g., for voice quality: breathy, creaky, hoarse). For clarity,
the terms “class” and “label” are here used by analogy to
multi-class and multi-label classification (see Table II): a
class denotes a group containing multiple instances (e.g.,
the emotion class contains multiple instances: angry, happy,
neutral, sad), and a label denote each particular instance (e.g.,
angry, happy, neutral, sad are labels). The multiple labeling of
a speech recording results in a binary vector which represents
the voice signature of the speech recording (Figure 4).

A preliminary phase of manual labeling was conducted in
order to train multi-label classifiers for the recognition of
speaker traits and speaker states, and to process multi-label
scoring for voice casting. Beforehand, a guideline was created
to define each class and each label, accompanied by a set
of representative speech samples, and a PHP web interface
was designed to allow easy and fast on-line annotation of a
speech database. The manual labeling was produced by a non-
expert individual, preliminary trained by two speech experts
(the author, and an expert voice casting operator). First, pilot
campaigns were conducted on small sets of speech recordings
(around 50-100) by the non-expert annotator and the two
expert annotators, until the non-expert annotator presents a
sufficiently satisfactory agreement with the expert annotators.
The final inter-annotator agreement for coding speaker traits
and states has an average Krippendorff’s alpha of α = 0.52
[52], which represents a fairly reliable agreement regarding
the ambiguity and the diversity of the classes considered for
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labeling. Then, a large-scale annotation was conducted on a
selection of 4,000 speech recordings extracted from the 20,000
speech recordings of the French version of the Mass Effect 3
video game, covering 54 speakers interpreting 500 roles, with
a maximum of 10 speech recordings for each role (see section
IV for a detailed description of the speech database).

IV. EXPERIMENTS

Two experiments were conducted to compare acoustic and
multi-label similarity scoring in the context of professional
voice casting. First, an objective experiment was conducted to
determine the parameters of the optimal configurations of the
acoustic and multi-label scoring systems. Then, a subjective
experiment was conducted to compare the optimal acoustic
and multi-label similarity scoring systems in the real context
of professional voice casting. For all comparisons, the acoustic
and multi-label similarity scoring systems share the same
unsupervised acoustic space representation (MFCC, super-
vector, i-vector). The systems differ only by the way the
similarity measure is constructed: for the acoustic scoring,
the similarity metric is defined in the acoustic space, and
supervised with respect to the speaker’s identity; for the multi-
label scoring, the similarity metric is defined in the para-
linguistic space, and supervised with respect to each para-
linguistic label.

A. Objective Experiment

The purpose of the objective experiment is to determine the
optimal configurations of the acoustic and multi-label scoring
systems, in order to select the configurations that will be used
for the subjective comparison. Accordingly, the objective
experiment is only concerned with separate optimization
of the acoustic scoring and multi-label scoring systems.
The acoustic scoring system is optimized with respect to a
speaker recognition experiment, and the multi-label system
is optimized with respect to a perceived para-linguistic
classification experiment. Besides optimization, the objective
experiment explores the use of advanced acoustic modeling
(super-vector, i-vector) for the recognition of a large set of
para-linguistic speech categories, which extends preliminary
research (for age recognition, [43]), and includes novel
para-linguistic categories (e.g., attitude/modality, situation,
archetypes).

The objective experiment was conducted on the French
version of the Mass Effect 3 video game containing 20,000
speech recordings, around 500 roles, around 50 speakers, and
around 20 hours of speech of professional actors. A subset of
4,000 speech recordings was used for the manual annotation
of perceived para-linguistic categories. All speech recordings
were recorded in professional conditions (professional studio
recordings, same recording material, same supervision), and
encoded into a 48 kHz-16 bits high-quality format. The
duration of speech recording varies from 0.1 s to 15 s.
Speech recordings shorter than 1 s were removed from the
speech database. The front-end processing consisted in the
extraction of short-term (20 ms. Hanning window with 50%

overlapping) Mel-frequency cepstral coefficients (MFCC,
13 cepstral coefficient determined with 40 Mel-frequency
bands), without delta and delta-delta. The system setups
were defined as follows: NGMM = 8 to 2048 (number of
GMM-UBM mixture components), q = 10 to 800 (dimension
of i-vector), and shared among the acoustic scoring and
multi-label scoring systems. For the acoustic scoring system,
NLDA = 10 to 200 (dimension of LDA reduction), Nit = 1 for
EFR (length normalization), Nit=3 for sphNorm (number of
iterations), Nspeaker = 10 to 400 and Nchannel = q (dimension
of the speaker and channel spaces for PLDA). For the cosine
and PLDA scoring, the scoring was performed by using
the mean i-vector of the speaker [16]. For the multi-label
scoring, a SVM classifier with a Gaussian kernel [53] was
used for binary classification of each label (Figure 2), each
trained on the subset of manually annotated speech recordings.

The experiment was conducted in the form of a 2-fold cross-
validation for speaker recognition and 5-fold cross-validation
for para-linguistic classification. In k-fold cross-validation, the
dataset is first partitioned into k subsets of equal size, then k-
1 subsets are used for training the model parameters, and the
remaining subset is used for testing the model. This process
is repeated for the k folds. The main advantage of cross-
validation is the explicit consideration of the performance vari-
ability, which can be then be used to assess the statistical dif-
ference between different model configurations (acoustic space
modeling, inter-session compensation, and scoring). Here, the
subsets are constructed by randomly partitioning the available
speech recordings regardless of the speakers. For speaker
recognition, the standard Equal Error Rate (EER) was used
to measure the performance, as determined from the detection
error trade-off (DET) curve [54] by following the NIST SRE
2012 guidelines [55]. For para-linguistic classification, the
balanced accuracy (BA%) is used to measure the recognition
performance [56]. The balanced accuracy is the equivalent for
binary classification of the unweighted average recall (WA%,
[57]) for multi-class classification, a well-established measure
for emotion and other para-linguistics recognition ( [10], [58],
[59]). Indeed, the balanced accuracy is simply defined as
the unweighted average of true and false recalls of a binary
classification. For one label, it is computed as:

BA =
RP +RN

2
=

1

2

(
TP

TP + FN
+

TN
FP + TN

)
(16)

where RP and RN are the positive and negative recalls, and
TP , TN , FP , and FN are the true positive, true negative,
false positive, and true negative counts.

The main idea of these measures is to compensate for
imbalanced datasets when computing the accuracy score. This
is particularly true for para-linguistic binary classification,
where the class of interest (the positive one) is highly
under-represented as compared to the other (e.g., creaky =
yes vs. creaky = no, emotion = sad vs. emotion = not sad,
etc...). For each model configuration, the average balanced
accuracy is obtained by averaging the balanced accuracy
over all folds to compute the per label score, and over
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all labels to compute the overall score. A grid search is
processed to determine the optimal model configuration. First,
cross-validation is processed for each model configuration:
model parameters are estimated on the training set and the
corresponding performance is evaluated on the test set. Then,
the hyper-parameters are tuned for each configuration as the
one maximizing the overall score.

The performance obtained for speaker recognition is
presented in Table I. The optimal performance was obtained
with the i-vector + sphNorm + PLDA scoring method
with the following configuration, 512 GMM (UBM), q =
400 (i-vector), Nspeaker = 50 and Nchannel = 400 (full-rank)
(PLDA). The speaker recognition performance (EER =
2.50%) indicates the robustness of GMM-based acoustic
models to the expressive variability of the speaker, and to the
variability in duration of the speech recordings.

METHOD EER (%)

i-vector + cosine 4.04
i-vector + LDA/WCCN + cosine 3.02
i-vector + PLDA 2.80
i-vector + EFR + PLDA 2.73
i-vector + sphNorm + PLDA 2.50

TABLE I
PERFORMANCE OF SPEAKER RECOGNITION SYSTEMS (EER (%)).

The performance obtained for para-linguistic classification
is presented in details in Table II (with the exception of 4
”other” labels and 4 other minor labels, only for the sake
of space purpose), and in summary with 95% confidence
intervals in Figure 5. The 95% confidence interval is computed
by assuming a normal distribution of the cross-validation
scores, and is equal to 1.96 times the standard deviation
of the cross-validation scores, divided by the square root
of the number of folds. The optimal performance was
obtained with the i-vector + EFR + SVM method with
the following configuration: 512 GMM (UBM), and q =
50 (i-vector). In all cases, the i-vector recognition (from
73.45% to 74.62%) has a greater recognition rate than the
super-vector recognition (from 71.08% to 72.32%), and
the MFCC recognition (70.09%). Also, the inter-session
compensation improves the recognition performance, from
71.08% to 72.32% for super-vectors, and from 73.45% to
74.62% for i-vectors. A statistical comparison (one-way
ANOVA [60]) shows that the super-vector recognition rate
is significantly higher than the MFCC recognition rate
(F (1, 18) = 20.52, p − value ≤ 10−4), and that the i-vector
recognition rate is significantly higher than the super-vector
recognition rate (F (1, 18) = 35.20, p − value ≤ 10−5).
Also, the i-vector EFR recognition rate is significantly
higher than the average i-vector recognition rate
(F (1, 58) = 6.78, p − value ≤ 10−2), and is higher
but not significantly with the LN and WCCN recognition
rates (respectively, F (1, 18) = 2.52, p − value = 0.12 and

F (1, 18) = 4.18, p− value = 0.05). For details, the optimal
configuration corresponds to 95.4% for gender, 80.4% for
age, 76.8% for voice quality, 73.6% for tension, 80.3% for
vocal effort, 73.3% for timbre, 62.9% for articulation, 76.7%
for F0 (range and register), 65.6% for speech rate, 66.7% for
attitude/modality, 66.4% for emotion, 78.5% for situation, and
78.2% for archetypes. These scores correspond to one single
and globally optimal configuration for super-vectors, i-vectors,
inter-session compensation, and SVM hyper-parameters in
order to figure out a computationally realistic scenario,
though all individual performances might be improved
through dedicated optimizations. From these observations,
some para-linguistic categories can be consistently recognized
(age, gender, voice quality, tension, vocal effort, timbre,
situation, archetype) while some others remain an open issue
(articulation, F0, speech rate, attitude/modality, and emotion).
In particular, some novel para-linguistic categories specific to
multi-media applications (situation and archetype) are more
recognized than some standard para-linguistic categories
(attitude/modality, emotions). Also, extreme para-linguistic
labels are generally more recognized than standard ones (e.g.,
normal, medium, neutral) which are more ambiguous. As a
conclusion, this generalizes the role of advanced acoustic
modeling (i-vector and inter-session compensation) for
para-linguistic recognition, as preliminarily reported for age
estimation in [43]. Moreover, these constitute encouraging
performances for further similarity search for voice casting.
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Fig. 5. Overall average recognition score (BA%) and 95% confidence interval
obtained for the multi-label classification.

The optimal configurations were further retained for the
subjective comparison of acoustic scoring and multi-label
scoring systems in the real context of professional voice
casting.

B. Subjective Experiment

The real context of voice casting consists in selecting the
actors of a target language (e.g., French, German, Spanish,
Japanese, Mandarin) whose voice is the most similar to actors
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CLASS LABEL MFCC SUPER-VECTOR I-VECTOR

w/o WCCN LN EFR SN w/o WCCN LN EFR SN

GENDER
MALE 92.77 92.93 93.74 93.63 93.69 93.35 94.04 94.99 94.92 95.62 94.69
FEMALE 92.60 93.52 93.95 93.50 93.47 93.61 94.30 94.96 94.82 95.24 94.46

AGE

CHILD 96.40 93.81 95.09 94.94 94.88 94.79 95.78 96.40 96.14 96.30 95.50
TEENAGER 87.03 85.46 87.12 82.24 86.93 86.57 90.08 93.48 91.93 87.56 94.62
YOUNG ADULT 68.95 72.25 73.44 73.16 72.87 73.20 75.10 76.62 75.95 77.50 75.48
ADULT 60.63 64.54 65.61 64.13 63.97 64.84 68.16 69.05 68.49 69.82 68.03
OLD 67.63 70.55 71.93 70.70 70.97 71.22 73.75 74.53 74.74 75.46 73.69
VERY OLD 68.76 67.25 69.41 66.42 67.36 69.14 72.29 73.25 72.59 75.60 72.21

VOICE QUALITY
BREATHY 70.03 70.67 72.12 72.44 72.55 71.14 73.61 73.94 74.60 74.86 74.33
CREAKY 73.63 74.22 75.50 75.66 75.40 75.67 76.14 76.55 78.42 77.71 75.81
HOARSE 71.53 73.21 74.44 73.87 74.50 73.65 77.11 76.91 77.53 77.88 77.26

TENSION

RELAXED 72.50 71.89 73.13 73.01 72.26 73.34 73.62 74.36 75.57 76.05 74.82
NORMAL 64.92 67.65 68.33 67.78 67.58 67.54 68.56 68.91 69.23 69.48 68.60
TENSED 62.05 62.53 63.78 62.55 63.36 62.52 63.32 64.05 64.37 64.58 63.81
PRESSED 80.57 82.16 83.91 83.43 83.33 83.59 83.60 83.95 84.19 84.44 84.03

VOCAL EFFORT
WHISPERED/SOFT 80.24 82.01 83.00 82.64 83.33 82.54 83.27 83.31 83.61 83.28 83.73
NORMAL 68.34 72.50 74.23 72.12 72.08 72.07 73.04 74.47 75.21 76.24 73.87
LOUD/SHOUTED 78.44 77.82 78.35 77.85 77.89 78.63 79.39 80.02 80.95 81.37 79.29

ARTICULATION
HYPO 58.76 58.02 60.26 56.51 56.50 58.41 59.92 61.09 58.78 59.71 59.82
NORMAL 57.29 59.75 58.62 58.66 58.04 58.16 58.87 59.48 59.48 59.78 59.22
HYPER 65.11 68.90 69.99 67.99 68.71 68.07 68.34 68.53 69.17 69.20 68.95

TIMBRE
CLEAR 69.07 70.58 71.91 70.31 70.41 71.00 72.87 73.16 73.45 73.36 73.62
DARK 69.07 70.46 72.13 70.56 70.45 71.14 72.73 73.18 73.85 73.22 73.35

F0 REGISTER

EXTREME-LOW 91.53 90.41 91.17 91.20 91.20 91.04 91.64 92.72 93.04 92.50 92.07
LOW 83.72 85.59 86.25 85.59 86.00 86.14 86.39 86.15 87.10 86.50 86.22
MEDIUM 67.67 70.92 71.87 71.19 71.03 71.28 70.49 71.24 71.50 72.93 71.14
HIGH 72.39 73.86 74.72 74.49 73.95 74.84 73.85 74.13 74.56 75.23 74.12
EXTREME-HIGH 85.83 86.72 88.14 87.57 87.96 88.21 87.57 87.69 88.43 87.64 88.08

F0 RANGE
FLAT 65.22 66.72 69.53 67.03 66.62 67.84 68.88 69.45 70.09 69.40 68.80
NORMAL 57.97 57.83 60.44 61.56 59.96 59.83 61.46 60.36 62.44 62.69 61.09
EXTENDED 56.48 61.42 64.44 64.84 63.80 64.65 68.29 65.42 66.62 66.82 64.85

SPEECH RATE
SLOW 65.72 68.95 69.04 68.32 69.00 68.35 70.32 71.02 72.68 70.27 71.49
NORMAL 58.31 59.00 59.29 59.38 58.93 58.79 59.09 61.11 60.29 60.20 60.05
FAST 63.67 64.99 64.37 64.69 64.22 65.09 69.49 67.96 69.94 68.38 69.57

ATTITUDE /
MODALITY

AFFIRMATION 66.89 69.57 69.40 68.93 69.46 69.66 69.64 69.97 70.05 70.22 69.78
CONFIRMATION 60.51 59.27 61.42 61.42 61.60 62.99 61.81 64.45 63.58 65.49 61.05
EXCLAMATION 67.28 68.04 68.99 67.95 68.27 67.95 68.63 68.69 68.83 69.35 68.90
INTERROGATION 58.08 62.31 62.90 62.14 61.92 62.86 59.80 58.47 61.67 59.07 59.47
ORDER 64.95 66.77 68.26 66.66 67.20 65.98 68.71 68.45 69.60 68.70 68.87

EMOTION

ANGRY 61.98 62.38 63.36 62.85 62.69 62.58 63.40 64.99 64.56 65.11 64.44
EXCITED 66.18 66.74 67.25 66.79 68.10 67.67 67.04 68.18 68.20 68.22 67.41
HAPPY 53.89 55.81 56.45 55.82 56.71 55.42 58.40 59.24 58.96 60.72 59.61
NEUTRAL 61.42 62.99 64.65 64.05 63.45 64.24 65.75 65.23 65.84 65.69 66.01
SAD 60.65 61.99 63.92 63.05 64.05 63.28 62.68 63.78 64.06 64.42 63.15
FEAR 63.59 63.68 64.98 64.04 64.31 63.78 64.45 63.97 64.93 66.85 65.96
STRESSED 80.22 78.71 80.06 79.52 79.89 79.65 79.59 79.56 80.42 81.12 80.09
SURPRISE 57.74 58.00 59.09 57.74 60.58 59.40 58.01 60.46 60.58 60.27 60.97
TENDER 62.33 62.42 64.51 63.25 63.19 63.87 64.31 64.22 64.64 64.87 64.87

SITUATION

ACTION 83.24 81.76 83.26 83.23 82.97 82.63 82.91 82.83 84.28 82.60 82.79
DIALOGUE 73.69 75.79 76.00 75.77 75.60 75.81 77.25 77.03 78.45 77.30 77.80
INFORMATION 69.53 76.22 78.94 77.80 76.90 77.02 78.48 80.22 78.89 81.73 80.07
MONOLOGUE 64.25 65.45 66.06 65.22 66.34 67.99 69.13 66.57 72.54 73.76 68.20

ARCHETYPE

ANNOUNCER 82.63 74.67 81.29 83.72 82.74 79.00 87.99 90.20 89.65 89.60 87.99
ART. INTELLIGENCE 87.78 89.34 87.62 85.19 88.52 87.29 90.86 91.56 89.96 93.24 91.10
BASIC SOLDIER 68.71 70.37 71.02 69.22 69.23 70.56 71.73 72.31 73.29 72.80 71.53
BRUTE 73.39 75.10 76.75 76.98 76.36 76.70 78.00 78.94 79.62 79.74 78.59
COMMANDER 64.96 63.99 66.47 66.00 65.31 66.30 68.49 69.58 70.26 70.58 70.00
HERO 68.58 70.67 75.54 70.90 70.90 73.36 77.52 76.40 76.52 78.11 76.53
ROOKIE SOLDIER 69.23 72.54 73.97 74.26 73.78 73.78 76.87 77.36 79.31 78.98 76.15
VETERAN SOLDIER 70.76 70.89 73.15 71.32 71.56 72.08 72.59 73.81 74.14 74.51 73.40

TOTAL 70.09 71.71 72.32 71.59 71.69 71.08 73.45 73.75 74.36 74.62 73.79

TABLE II
AVERAGE PERFORMANCE (BA%) OF THE MULTI-LABEL CLASSIFICATION.
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of a source language (typically, English). Accordingly, a
subjective experiment was conducted in order to address the
ability of acoustic and multi-label similarity scores to estimate
the perceived similarity between voices for cross-language
voice casting. The objective is to compare the role of acoustic
and para-linguistic information in the human perception of
voice similarity.

The subjective experiment consisted in the comparison
of the two optimal configurations previously determined
for a voice casting from American-English to French. The
American-English (source language) and the French (target
language) versions of the Mass Effect 3 video game were used
for the experiment. First, 50 speech samples were selected
from the American-English version, one speech recording for
each of 50 speakers (50% male, 50% female, around 5 sec. in
duration). For each source speech sample, the 3 most similar
samples were determined in the target speech database for
each scoring system. Then, the source speech sample and the
3 target speech samples determined by the 2 scoring systems
were presented to the listener. For each source speech sample,
the listener was asked to rate the overall similarity of the
target speech samples to the source speech sample on a 5
degree scale: very dissimilar (-2), fairly dissimilar (-1), slightly
similar (0), fairly similar (+1), very similar (+2). 30 French
native individuals participated in the experiment (20 males/ 10
females, 20-35 years old, same headphones, same professional
listening room, paid experiment).

MULTI-LABEL SPEAKER RECO
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Fig. 6. Mean similarity score and 95% confidence interval for the 2 systems.
The similarity scale is very dissimilar (-2), fairly dissimilar (-1), slightly
similar (0), fairly similar (+1), very similar (+2).

The comparison of the 2 scoring systems is presented
in Figure 6. The multi-label scoring system significantly
outperforms the acoustic scoring system in the similarity
judgement for voice casting. For comparison, the target
speech samples determined by the acoustic scoring
(i-vector + sphNorm + PLDA) and the multi-label scoring
(i-vector + EFR (noNorm) + SVM) systems are considered
as slightly similar and fairly similar to the source sample in
average, respectively. This constitutes almost a one degree
difference on the 5 degree scale. A statistical comparison

(one-way ANOVA [60]) shows that the multi-label scoring
system is judged as significantly more similar than the acoustic
scoring system (F (1, 298) = 10.86, p− value ≤ 10−3).

This experiment provides instructive information about the
role of acoustic and para-linguistic information in the per-
ception of voice similarity. First, acoustic information appears
necessary but not sufficient to fully capture the perceived sim-
ilarity between voices. Second, para-linguistic information, as
abstractions extracted from the speech content, provides some
valuable information about the perception of voice similarity.
These observations suggest that the abstraction of a voice
into categories (speaker traits and states) play an important
role in the human perception of voice similarity, which may
prevail over pure acoustic similarity. Beyond, this highlights
the role of stereotypes in the human perception of voice
similarity, which might be particularly true for professionally
acted voices that are generally more stereotyped than everyday
speech.

V. CONCLUSION

In this paper, a large-scale similarity search of voices was
presented to measure the perceived similarity between voices
for computer-aided voice casting. The proposed voice casting
system explored and compared GMM-based acoustic models
and multi-label recognition of perceived para-linguistic content
(e.g., age/gender, voice quality, emotion) to measure the per-
ceived similarity between voices. In a subjective experiment,
the multi-label scoring significantly outperformed acoustic
scoring in the real-context of voice casting, which constitutes
evidence for the role of perceived para-linguistic content in the
perception of voice similarity. This constitutes a preliminary
research on voice similarity search for the voice casting of
professional acted voices. Further research will investigate
the use of short- and long-term speech characteristics (glottal
source [48], [49], prosody [61]) during acoustic modeling, the
elaboration of acoustic scoring more specific to voice casting
and less constrained by speaker’s identity, and the construction
of a similarity scoring that covers the entire expressive range
of actors instead on being based on the particular expression
of a single speech recording. Finally, human experts in voice
casting will be added into the subjective evaluation procedure
in order to compare the judgements of naive and expert
listeners, and to define guidelines for the validation of a voice
casting system.
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