
Score Following Using
Spectral Analysis and Hidden Markov Models

Nicola Orio, FrançoisDéchelle
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Abstract

This paper presents an approach to score following. The real-
time alignment of a performance with a score is obtained
through the use of a hidden Markov model. The model works
on two levels. The lower level compares the features of the in-
coming signal with the expected ones. Groups of states of the
lower level are embedded in states at the higher level, which
are used to model the performance by taking into account the
possible errors a performer may make. The performer’s po-
sition on the score is computed through a decoding technique
alternative to classic Viterbi decoding. A novel technique for
the training of hidden Markov models is proposed.

1 Introduction

Electroacousticmusicoften requiresthe synchronization
betweenmusiciansandalgorithmsthatsynthesizesound.The
simplestsolutionto thesynchronizationproblem,which has
its rootsin tapemusic,is to askmusiciansto follow thesyn-
thetic performance.This solution,which Vercoedefinedas
the “music-minus-onesyndrome”(Vercoe1984), is highly
demandingfor musicians,who have to play a difficult piece,
while lookingat thescoreandata timerat thesametime,and
who are not allowed to make errors. Moreover, expressive
changesof tempo,which is likely to vary in differentperfor-
mances,arenot possible.Anothersolutionis to aska tech-
nicianto controlthesoundsynthesisparametersin real-time.
Given the complexity of contemporarypieces,this taskwill
requirea well-trainedmusician,ableto follow thescoreand
interactonacomputerinterfaceandrecognizepossiblemusi-
cian’serrors.Therole of hiddenperformeris notparticularly
satisfyingandproneto imprecision.

Theproblemof real-timeautomaticsynchronizationamong
musiciansand computers,which is called score following,
hasbeeninvestigatedsince1984,whenthe first two papers
appeared.This paperpresentsan approachto scorefollow-
ing basedon the useof a two-level HiddenMarkov Model
(HMM). Alignment is computedthroughdecoding.A novel
techniquefor thetrainingof theparametersis proposed.

2 Background

Theproblemof matchinga performancewith a scorecan
be considereda specialcaseof sequencealignment,which
hasbeenextensively addressedin other researchareas,no-
tablyin speechrecognitionandin moleculargenetics.In both
thesedomains,HMMs have becomeextremelypopulardue
theiroutstandingresults.Moreover, they areappliedto all do-
mains(e.g.,hand-gesturerecognition,fault-tolerance)where
it is possibleto take advantageof a trainablemodel of the
processthatis analyzed.Applying HMMs to scorefollowing
seemsthenpromising.

2.1 Overview on Hidden Markov Models

HMMs areprobabilisticfinite-stateautomata,wheretran-
sitionsbetweenstatesareruledby probability functions. At
eachtransition,thenew stateemitsavaluewith agivenprob-
ability. Emissionscanbebothsymbolsfrom afinite alphabet
andcontinuousmultidimensionalvalues. Transitionproba-
bilities areassumedto dependonly onafinite numberof pre-
vious transitions(usuallyone)andthey may be modeledas
a Markov chain. The presenceof transitionswith probabil-
ity equalto zerodefinesa topologyof themodel,limiting the
numberof possiblepaths.
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from time � to time � , which arecalledobservations. The
problemof finding, given a sequenceof observations � � ,
which is theoptimal(in somesense)correspondingsequence
of states� � 
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�� � is calleddecoding. The setof parame-
ters ! of a HMM, namelytransitionandemissionprobabil-
ities, canbe trained to maximizetheprobability of emitting
a givensetof observationsequences.A completediscussion
ontheoryandapplicationsof HMMs canbefoundin (Durbin
et al. 1998)andin (RabinerandJuang1993).

2.2 Early Approaches to Score Following

Therearetwo mainapproachesto scorefollowing in the
literature. They may be definedthe note andthe signal ap-
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Figure1: Graphicalrepresentationof possiblepathbetweenstatesat thehigherlevel (only a g-stateis shown for simplicity);
solidpathsarerelatedto thepresenceof acorrect (a),wrong (b), skip (c), andextra (d) noteat time " .
proaches.Theformerconsidersperformer’serrorasthecause
of mismatch,while assuminga reliable input from a MIDI
instrument;the latter focuseson errorsdue to an incorrect
detectionof soundfeatures,while not explicitly dealingwith
musician’serrors.

Algorithms concernedwith the note approachare usu-
ally basedon string matchingtechniqueswith someadded
heuristicsto prevent errorsin real-timedecisions,as in the
earlyworksby Dannenberg andMukaino(1988)andVercoe
(1984). A simplertechnique(Puckette1990) is to compare
the incomingeventswith the list of the expectedeventsand
choosethe first exact matchas the candidatefor the align-
ment. Puckette(1995) proposedto merge the noteand the
signalapproachesby introducingtwo differentpitch trackers
(one fastand impreciseand the otherslower but more reli-
able),in orderto dealwith theimprecisionsin notedetection.

2.3 Related Works

Someapproachesto scorefollowing usingstatisticaltools
havebeenpresentedin theliterature.GrubbandDannenberg
(1998) proposeda methodfor calculatingthe position of a
performeron the scorebasedon a probability densityfunc-
tion (pdf) conditionedonboththeestimateddistancewith the
previous positionand the most recentobservations. Obser-
vationsaremultidimensionalfeatures,including fundamen-
tal pitch, spectralenvelope,andamplitudechanges.Cano,
Loscos,andBonada(1999)usedan HMM wherethe emis-
sionswerea numberof relevantsoundfeatures,like energy,
zerocrossing,fundamentalfrequency, with their derivatives.
TheHMM is left-to-right,with self-transitionsmodelingnote
length.Thealignmentis computedthroughViterbi decoding.
Both approacheshave thedisadvantageof relying on thero-
bustnessof algorithmsof pitch tracking.

The approachproposedby Raphael(1999)is strictly re-
latedto thepresentwork. Thealignmentis computedthrough
the useof a HMM. While possibleerrorsmadeby perform-
ersarenot explicitly considered,thereis no dependenceon
pitch tracking routinesbecausestatesdirectly emit spectral
features.Note durationsaremodeledin two differentways,
dependingon their length. A decodingtechniquealternative
to Viterbi is usedfor thealignment,while thetrainingis per-
formedusingclassicalBaum-Welchalgorithm.

3 A Novel Score Follower

Theapproachdescribedin thispapermergesthenoteand
the signalapproachesby explicitly taking into accountper-
former’s errorswhile usingthe audiosignalasthe input. A
two-level HMM is usedfor separatelymodelingthe perfor-
manceasasequenceof musicaleventsandthesignalasase-
quenceof features.Real-timesynchronizationis carriedout
througha decodingtechniquesuitablefor local alignment.A
new techniqueis proposedfor thetrainingof theHMM.

3.1 Modeling the Performance

Statesat the higher level modelthe eventswritten in the
score,togetherwith thepossibleerrorsthattheperformercan
make. Eventsmay be rests,notes,trills, chords,andso on.
Therearetwo categoriesof states:normal states (n-states),
whichcorrespondto eventscorrectlyplayed,andghost states
(g-states),which correspondto a local mismatchbetweenan
event in thescoreandtheactualperformance.Eachevent is
representedby a n-stateandaparallelg-state.

The topologyof the HMM is left-to-right, in accordance
with thetemporalprecedenceof scoreevents.Eachn-stateis



connectedto the subsequentn-stateandg-state.Transitions
from g-statestake into accountthe threeclassesof possible
errors:wrong,extra, andskip notes.As it canbeseenfrom
Figure 1, different pathsin the HMM graphcorrespondto
differenterrors.

It may be arguedthat, even without an explicit carefor
performer’serrors,theHMM shouldberobustenoughto find
the correctalignmentafter an error occurred. A numberof
testsusing HMM with only n-states,showed that the pro-
posedmodel is fasterin finding the correctalignmentafter
someerrors.Moreover, theuseof g-statesallows thesystem
to know when an error hasbeenmadeand thus alternative
actionscanbeprogrammed.

3.2 Modeling the Signal

Statesat thelower level modeltheincomingsignal.Each
stateat thehigherlevel is madeby a setof statesat thelower
level. Thesestatestake into account,for eachscoreevent,
thefeaturesrelatedto theattack,thesustain,andthepossible
silenceat the end. Figure 2 shows how statesat the lower
level areconnectedto form asinglestateat thehigherlevel.

null attack rest nullsustain

Figure 2: Graphicalrepresentationstatesat the lower level
embeddedin a noteeventof thehigherlevel (two null states
areadded).

As can be seenin Figure 2, event duration is modeled
usinga clusterof sustainstateswith non-null self-transition
probability. Given # the numberof statesin a clusterand$ their self-transitionprobability, theprobabilityof having a
givendurationhastheform of thenegativebinomiallaw:%'&)(+* �-, (/. �# . �10 $32
465 & � . $ * 5 (1)

Thevalues# and $ canbechoosefor settingthepositionof
themaximumandtheshapeof thecurve,whicharerelatedto
theexpecteddurationandto theprecisionin time resolution.

The emissionsof the statesat the lower level arerelated
to theprobabilityof emittinga givenspectrum.In particular,
it is proposedto modeltheprobabilitythattheenergy carried
by thefirst partialsis a givenpercentageof theoverall signal
energy. This canbeperformedby computingtheenergy out-
put of a bankof bandpassfilters, centeredon the harmonic
sequenceof the expectednote,dividedby the globalenergy
of the signal. The parametersto be set are the numberof

bandpassfilters, their shapeandbandwidth.A descriptionof
thefiltering stepis givenin (Orio andSchwarz2001).

Togetherwith this feature,the log-energy of thesignalis
used.Moreover, their derivativesarecomputedto betterdeal
with signalattack. Finally, the ratio betweenodd andeven
harmonicsis computedto prevent from doublingof octaves.
Oncetheseparametersareset,emissionprobabilitiescanbe
trainedasdiscussedin Section3.4.

Theapproachallowsfor synchronizationwith polyphonic
signals,with theonly differencethat thefilterbankis setac-
cordingto thesuperpositionof thedifferentnotesin thepolyphony.
Moreover, it is possibleto modelthespectralfeaturesof more
complex musicalgestures,astrills andfrequency vibrato.

3.3 Decoding for the Alignment

Real-timealignmentcanbecarriedout throughdecoding.
Viterbi algorithm, which is a techniquewidely used,finds
the statesequence���	�	
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thecompletesequenceof observations 8'9 . This criterion is
henceof globaloptimality, which maynot bethebestchoice
for scorefollowing. In fact,for real-timealignmentthemain
goal is finding the statelocally correspondingto the actual
note.This is a particularcaseof anotheroptimality criterion,
alreadyintroducedin moleculargenetics(Durbinetal. 1998),
wherethe probability of local alignmentsof eachindividual
stateis maximized.

This criterionmaybeappliedby consideringtheoptimal
alignmentof only thelaststate,thatis theonecorresponding
to thecurrentpositionin thescore.Thedecodingof the last
stateat time " is performedthroughthefollowing maximiza-
tion: �;:<�>=�?�@7A'=�B %'& ��:<�DC�:�
�����

���
�;
��	:FEG! * (2)

The function to be maximizedcorrespondsto the forward
variables (RabinerandJuang1993). Like Viterbi, alsothis
decodingcan thenbe computedusinga dynamicprogram-
mingapproachatalow computationalcost.Duringtheonline
computationof theforwardvariables,scalingcanbeapplied
to prevent valuesto exceedthe precisionrangeof the ma-
chine.Thecomparisonof this decodingwith Viterbi showed
lower delayin detectingnotechangesandhigherrobustness
to errors.

3.4 Training the HMM parameters

Training presentssomedifficulties. Even if rehearsals
canbe usedto collect sampledata,thereis a risk of model
overfitting. For instance,a transitiontowardsa g-statethat
correspondsto an error thatnever occurredduring rehearsal
maybecomehighly unlikely, with adecreasein robustnessto
new errors. Moreover, training shouldbe performedbefore
the following of a new piece, to allow for synchronization



at first rehearsal.That is particularlysuitablewith new pro-
ductionswhenthescoreis likely to changebetweendifferent
rehearsals.It is proposedto carry out a first training of the
HMM by usinga databaseof soundsto train the emissions
of the lower level, anda setof automaticgeneratedperfor-
mancesto train thetransitionsat thehigherlevel.

Samplesfrom a webdatabase(Studio-Online2001)have
beenusedto computeemission probabilities. The database
containssamplesof all theorchestralinstruments,playedwith
different techniquesandwith differentdynamics. The con-
tinuousmultidimensionalfeaturesof thesignal,describedin
Section3.2,areassumedto bestatisticallyindependent.Af-
ter a numberof tests,theexponentialpdf hasbeenchosento
modeleachof the features.Statesclusteredin a n-stateare
trainedby analyzingthesampleswith theircorrectfilterbank.
Statesclusteredin ag-statearetrainedby usingthefilterbank
of theparalleln-statebut analyzingsamplesnot correspond-
ing to theexpectedevent;thatis, if a filterbankis setfor tone
A4, theoutputis computedwhenall tonesbut A4 arefiltered.

Probabilitiesof self-transitionsat the lower level areset
accordingto eventsdurations(seeSection3.2). Hence,only
transition probabilities betweenstatesatthehigherlevelneed
to betrained.To this end,a numberof performancesis auto-
maticallycreatedandusedasexamplesfor thetraining.They
includecorrectperformancesandperformanceswith all the
possibleerrorsaffectingup to four subsequentevents.

Normally, trainingof HMM isperformedusingtheBaum-
Welchmethodthatmaximizestheprobability that themodel
will emit a given setof sequencesof observations. Experi-
mentswith this trainingshowedthattheprocedureis notsuit-
able for the proposedtopology, becauseduring the training
themeaningof thestates(n-statesvs. g-states)maybe lost.
Performer’serrorscouldnotberecognizedby thesystem,and
noalternativeactioncanbeset(i.e.,avoidingchangesin local
tempoor no triggeringof events).

A novel techniquehasbeendevelopedfor thetrainingof
HMMs. Theprobability of beingin thecorrectn-stateor g-
stateis maximized,givenasequenceof observations.Hence,
insteadof maximizing

%'& 8 9 EG! * , as in Baum-Welch tech-
nique,thefollowing quantityis maximized:HIJLK �
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where,for eachperformanceU , � R HVT is the total durationof
the performance,CWR J;T: is the correctlast state, �+R JLT� 
����
�;
��+R JLT:
arethe observationuntil time " . Performancesincludeboth
theonesautomaticallygeneratedandtheonesrecordeddur-
ing rehearsals.Theonly differenceis that, for the latter, the
userhasto specifythecorrectlaststatein caseof mismatch
of thefollower.

It canbe seenthat this techniqueis coherentwith Equa-
tion 2 usedfor the decoding. The calculationcan be per-

formedsimilarly to theBaum-Welchalgorithm,with theonly
differencethat the last statehasto be explicitly includedin
thecalculationof theExpectationstep.

4 Results and Future Work

Theproposedapproachto scorefollowing hasbeensuc-
cessfullytestedon a numberof performancesof contempo-
rary music,which areusuallymoredifficult to follow, using
differentacousticinstrumentsandthevoice. Testshavebeen
also developedusing polyphonicperformancesand perfor-
manceswheretrills, vibrato,andsharpstaccatowerepresent,
with goodresults.Robustnessto performerserrorshasbeen
testedby usingthesameperformanceandalteringthescore.
This allowed to test the methodology, even if a databaseof
realperformanceswith errorswill bemoreappropriate.

In the future, extensive testswith music students,who
maybe morelikely to make errors,will be carriedout. The
methodologywill be extendedfor dealingwith othersound
eventswherepitch is irrelevant, like noisesand percussive
sounds. This extensionwill affect the lower level, by in-
troducingnew kindsof emissionprobabilitiesthatbetterde-
scribesthesesoundevents.
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