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Abstract

This paper presentsan approachto scorefollowing. Thereal-
time alignment of a performance with a score is obtained
through the use of a hidden Markov model. The model works
on two levels. The lower level comparesthe features of thein-
coming signal with the expected ones. Groups of states of the
lower level are embedded in states at the higher level, which
are used to model the performance by taking into account the
possible errors a performer may make. The performer’s po-
sition on the score is computed through a decoding technique
alternative to classic Viterbi decoding. A novel technique for
the training of hidden Markov models is proposed.

1 Introduction

Electroacoustienusicoften requiresthe synchronization
betweermusiciansandalgorithmsthatsynthesizesound.The
simplestsolutionto the synchronizatiorproblem,which has
its rootsin tapemusic,is to askmusiciango follow the syn-
thetic performance.This solution, which Vercoedefinedas
the “music-minus-onesyndrome” (Vercoe1984), is highly
demandindor musicianswho have to play a difficult piece,
while looking atthescoreandatatimeratthesametime,and
who are not allowed to make errors. Moreover, expressie
change®f tempo,whichis likely to vary in differentperfor
mancesarenot possible. Anothersolutionis to aska tech-
nicianto controlthe soundsynthesigarameterf real-time.
Giventhe compleity of contemporanypieces this taskwill
requirea well-trainedmusician,ableto follow the scoreand
interactona computeiinterfaceandrecognizepossiblemusi-
cian'serrors.Therole of hiddenperformeris not particularly
satisfyingandproneto imprecision.

Theproblemof real-timeautomaticsynchronizatiommong
musiciansand computers,which is called score following,
hasbeeninvestigatedsince 1984, whenthe first two papers
appeared.This paperpresentsan approachto scorefollow-
ing basedon the useof a two-level Hidden Markov Model
(HMM). Alignmentis computedhroughdecoding.A novel
techniqueor thetrainingof the parameterss proposed.

2 Background

The problemof matchinga performancevith a scorecan
be considereda specialcaseof sequencealignment,which
hasbeenextensively addressedn otherresearchareas,no-
tablyin speechrecognitionandin moleculargeneticsin both
thesedomains,HMMs have becomeextremely populardue
theiroutstandingesults.Moreover, they areappliedto all do-
mains(e.g.,hand-gestureecognition fault-toleranceyvhere
it is possibleto take advantageof a trainablemodel of the
procesghatis analyzed Applying HMMs to scorefollowing
seemshenpromising.

2.1 Overview on Hidden Markov Models

HMMs areprobabilisticfinite-stateautomatawheretran-
sitionsbetweenstatesareruled by probability functions. At
eachtransition,thenew stateemitsavaluewith agivenprob-
ability. Emissionscanbe bothsymbolsfrom afinite alphabet
and continuousmultidimensionalvalues. Transitionproba-
bilities areassumedo dependdnly on afinite numberof pre-
vious transitions(usually one) and they may be modeledas
a Markov chain. The presencef transitionswith probabil-
ity equalto zerodefinesatopologyof themodel,limiting the
numberof possiblepaths.

States)) = {q1, ¢2, - - -, gn} @arenotobsenable whatcan
beobsenedareonly theiremission®r = {01, 02,...,07}
from time 1 to time T', which are called obsenations. The
problemof finding, given a sequenceof obsenations Or,
whichis theoptimal(in somesenseforrespondingequence
of statesqy, ..., gr is calleddecoding. The setof parame-
ters A of a HMM, namelytransitionandemissionprobabil-
ities, canbetrained to maximizethe probability of emitting
agivensetof obsenationsequencesA completediscussion
ontheoryandapplicationof HMMs canbefoundin (Durbin
etal. 1998)andin (RabinerandJuangl993).

2.2 Early Approachesto Score Following

Therearetwo main approacheso scorefollowing in the
literature. They may be definedthe note andthe signal ap-
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Figurel: Graphicalrepresentationf possiblepathbetweerstatesat the higherlevel (only a g-stateis showvn for simplicity);
solid pathsarerelatedto the presencef a correct (a), wrong (b), skip (c), andextra (d) noteattime ¢.

proachesTheformerconsiderperformerserrorasthecause
of mismatch,while assuminga reliable input from a MIDI
instrument;the latter focuseson errorsdue to an incorrect
detectionof soundfeatureswhile not explicitly dealingwith
musicians errors.

Algorithms concernedwith the note approachare usu-
ally basedon string matchingtechniqueswith someadded
heuristicsto preventerrorsin real-timedecisions,asin the
earlyworks by Dannenbeg andMukaino (1988)andVercoe
(1984). A simplertechnique(Puclette 1990)is to compare
theincoming eventswith the list of the expectedeventsand
choosethe first exact matchasthe candidatefor the align-
ment. Puclette (1995) proposedo meme the note and the
signalapproacheby introducingtwo differentpitch trackers
(onefastandimpreciseand the other slower but morereli-
able),in orderto dealwith theimprecisiongn notedetection.

2.3 Reated Works

Someapproacheto scorefollowing usingstatisticaltools
have beenpresentedh theliterature.GrubbandDannenbey
(1998) proposeda methodfor calculatingthe position of a
performeron the scorebasedon a probability densityfunc-
tion (pdf) conditionedon boththe estimatedlistancewith the
previous position and the mostrecentobsenations. Obser
vationsare multidimensionalfeatures,including fundamen-
tal pitch, spectralervelope,and amplitudechanges.Cano,
Loscos,and Bonada(1999) usedan HMM wherethe emis-
sionswerea numberof relevantsoundfeaturesjike enegy,
zerocrossing fundamentafrequeng, with their derivatives.
TheHMM is left-to-right, with self-transitionsnodelingnote
length. Thealignmentis computedhroughViterbi decoding.
Both approachebave the disadwantageof relying on thero-
bustnes®f algorithmsof pitch tracking.

The approachproposedoy Raphael(1999)is strictly re-
latedto thepresentvork. Thealignmentis computedhrough
the useof a HMM. While possibleerrorsmadeby perform-
ersarenot explicitly consideredthereis no dependencen
pitch tracking routinesbecausestatesdirectly emit spectral
features.Note durationsare modeledin two differentways,
dependingon their length. A decodingtechniquealternatve
to Viterbi is usedfor the alignmentwhile thetrainingis per
formedusingclassicaBaum-Welchalgorithm.

3 A Novd Score Follower

Theapproachdescribedn this papemergesthe noteand
the signal approachesy explicitly taking into accountper
former’s errorswhile usingthe audiosignalasthe input. A
two-level HMM s usedfor separatelymodelingthe perfor
manceasa sequencef musicaleventsandthesignalasa se-
guenceof features.Real-timesynchronizations carriedout
througha decodingtechniquesuitablefor local alignment.A
new techniques proposedor thetraining of the HMM.

3.1 Modeing the Performance

Statesat the higher level modelthe eventswritten in the
score togethemwith the possibleerrorsthatthe performercan
make. Eventsmay be rests,notes,trills, chords,andsoon.
Therearetwo categoriesof states:normal states (n-states),
which correspondo eventscorrectlyplayed,andghost states
(g-states)which correspondo a local mismatchbetweeran
eventin the scoreandthe actualperformance Eacheventis
representetdy a n-stateanda parallelg-state.

Thetopologyof the HMM is left-to-right, in accordance
with thetemporalprecedencef scoreevents.Eachn-stateis



connectedo the subsequent-stateand g-state. Transitions
from g-stategake into accountthe threeclasseof possible
errors:wrong, extra, andskip notes. As it canbe seenfrom
Figure 1, different pathsin the HMM graph correspondo
differenterrors.

It may be arguedthat, even without an explicit carefor
performerserrors,theHMM shouldberobustenoughto find
the correctalignmentafter an error occurred. A numberof
testsusing HMM with only n-states,showved that the pro-
posedmodelis fasterin finding the correctalignmentafter
someerrors. Moreover, the useof g-statesallows the system
to know when an error hasbeenmadeand thus alternatve
actionscanbeprogrammed.

3.2 Moddingthe Signal

Statesatthelower level modeltheincomingsignal.Each
stateatthe higherlevel is madeby a setof statesatthelower
level. Thesestatestake into account,for eachscoreevent,
thefeaturegelatedto theattack,the sustainandthe possible
silenceat the end. Figure 2 shawvs how statesat the lower
level areconnectedo form asinglestateatthe higherlevel.
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Figure 2: Graphicalrepresentatiorstatesat the lower level
embeddedn a noteeventof the higherlevel (two null states
areadded).

As can be seenin Figure 2, event durationis modeled
usinga clusterof sustainstateswith non-null self-transition
probability. Given n the numberof statesin a clusterand
p their self-transitionprobability, the probability of having a
givendurationhastheform of the negative binomiallaw:

ra= (4] )rast @
Thevaluesn andp canbe choosefor settingthe positionof
themaximumandthe shapeof the curve, which arerelatedto
the expecteddurationandto the precisionin time resolution.
The emissionf the statesat the lower level arerelated
to the probability of emittinga givenspectrum.In particular
it is proposedo modelthe probabilitythattheenegy carried
by thefirst partialsis a givenpercentagef the overall signal
enepy. This canbe performedby computingthe enegy out-
put of a bank of bandpassilters, centeredon the harmonic
sequencef the expectednote, divided by the global enegy
of the signal. The parameterdo be setare the numberof

bandpasfilters, their shapeandbandwidth.A descriptionof
thefiltering stepis givenin (Orio andSchwarz2001).

Togethermwith this feature the log-enepgy of the signalis
used.Moreover, their derivativesarecomputedo betterdeal
with signalattack. Finally, the ratio betweenodd and even
harmonicss computedo preventfrom doublingof octaves.
Oncetheseparameterare set,emissionprobabilitiescanbe
trainedasdiscussedn Section3.4.

Theapproactallowsfor synchronizationwith polyphonic
signals,with the only differencethatthe filterbankis setac-

cordingto thesuperpositiomf thedifferentnotesin thepolyphory.

Moreover, it is possibleto modelthespectrafeatureof more
comple« musicalgesturesastrills andfrequeng vibrato.

3.3 Decoding for the Alignment

Real-timealignmentcanbe carriedoutthroughdecoding.
Viterbi algorithm, which is a techniquewidely used, finds
the statesequence{q, ..., ¢r} that mostlikely generated
the completesequencef obsenationsO~. This criterionis
henceof global optimality, which maynot bethe bestchoice
for scorefollowing. In fact, for real-timealignmentthe main
goalis finding the statelocally correspondingo the actual
note. Thisis a particularcaseof anotheroptimality criterion,
alreadyintroducedn moleculamgenetic§Durbinetal. 1998),
wherethe probability of local alignmentsof eachindividual
stateis maximized.

This criterionmay be appliedby consideringhe optimal
alignmentof only thelaststate thatis theonecorresponding
to the currentpositionin the score. The decodingof the last
stateattime ¢ is performedthroughthe following maximiza-
tion:

g: = argmax P(q; = v;,01, ..., 0; | \) 2

The function to be maximizedcorrespondgo the forward
variables (Rabinerand Juang1993). Like Viterbi, alsothis
decodingcan then be computedusing a dynamicprogram-
mingapproachatalow computationatost. Duringtheonline
computatiorof the forwardvariables scalingcanbe applied
to preventvaluesto exceedthe precisionrangeof the ma-
chine. The comparisorof this decodingwith Viterbi shoved
lower delayin detectingnotechangesandhigherrobustness
to errors.

3.4 TrainingtheHMM parameters

Training presentssomedifficulties. Even if rehearsals
canbe usedto collect sampledata,thereis a risk of model
overfitting. For instance,a transitiontowardsa g-statethat
corresponds$o an error that never occurredduring rehearsal
may becomehighly unlikely, with a decreasén robustnesso
new errors. Moreover, training shouldbe performedbefore
the following of a new piece,to allow for synchronization



atfirst rehearsal.Thatis particularly suitablewith new pro-
ductionswhenthescoreis lik ely to changebetweerdifferent
rehearsals.t is proposedo carry out a first training of the
HMM by using a databasef soundsto train the emissions
of the lower level, and a setof automaticgeneratederfor
mancedo train thetransitionsat the higherlevel.

Sampledrom a web databas€Studio-Online2001)have
beenusedto computeemission probabilities. The database
containssample®f all theorchestrainstrumentsplayedwith
differenttechniquesand with differentdynamics. The con-
tinuousmultidimensionafeaturesof the signal,describedn
Section3.2, areassumedo be statisticallyindependentAf-
ter a numberof tests,the exponentialpdf hasbeenchosernto
modeleachof the features. Statesclusteredn a n-stateare
trainedby analyzingthe sampleswith their correctfilterbank.
State<lusteredn a g-statearetrainedby usingthefilterbank
of the paralleln-statebut analyzingsamplesot correspond-
ing to the expectedevent;thatis, if afilterbankis setfor tone
A4, theoutputis computedvhenall tonesbut A4 arefiltered.

Probabilitiesof self-transitionsat the lower level are set
accordingto eventsdurations(seeSection3.2). Hence,only
transition probabilities betweerstatesatthehigherlevel need
to betrained.To this end,a numberof performancess auto-
matically createcandusedasexampledor thetraining. They
include correctperformancesnd performancesvith all the
possibleerrorsaffectingup to four subsequergvents.

Normally, trainingof HMM is performedusingtheBaum-
Welch methodthat maximizesthe probability thatthe model
will emit a given setof sequencesf obsenations. Experi-
mentswith thistrainingshavedthattheprocedurés notsuit-
ablefor the proposedopology becauseduring the training
the meaningof the states(n-statesss. g-states)nay be lost.
Performerserrorscouldnotberecognizedy thesystemand
noalternatve actioncanbeset(i.e.,avoiding changesn local
tempoor no triggeringof events).

A novel techniquehasbeendevelopedfor thetraining of
HMMs. The probability of beingin the correctn-stateor g-
stateis maximized,givena sequencef obsenations.Hence,
insteadof maximizing P(Or | ), asin Baum-Welch tech-
nigue,thefollowing quantityis maximized:
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where,for eachperformancek, T'5) is the total durationof
the performancep,gk) is the correctlast state,oY“) yenes ogk’)
arethe obsenation until time ¢. Performanceiclude both
the onesautomaticallygeneratedindthe onesrecordeddur-
ing rehearsalsThe only differenceis that, for the latter, the
userhasto specifythe correctlast statein caseof mismatch
of thefollower.

It canbe seenthat this techniqueis coherentwith Equa-
tion 2 usedfor the decoding. The calculationcan be per

formedsimilarly to the Baum-Weélchalgorithm,with theonly
differencethat the last statehasto be explicitly includedin
the calculationof the Expectatiorstep.

4 Resultsand Future Work

The proposedapproacho scorefollowing hasbeensuc-
cessfullytestedon a numberof performance®f contempo-
rary music,which areusually moredifficult to follow, using
differentacoustidnstrumentsandthe voice. Testshave been
also developedusing polyphonic performancesand perfor
mancewheretrills, vibrato,andsharpstaccataverepresent,
with goodresults. Rolustnesgo performerserrorshasbeen
testedby usingthe sameperformanceandalteringthe score.
This allowed to testthe methodologyevenif a databasef
real performancesvith errorswill be moreappropriate.

In the future, extensive testswith music studentswho
may be morelikely to make errors,will be carriedout. The
methodologywill be extendedfor dealingwith othersound
eventswhere pitch is irrelevant, like noisesand percussie
sounds. This extensionwill affect the lower level, by in-
troducingnew kinds of emissionprobabilitiesthat betterde-
scribeghesesoundevents.
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