Ircam-Centre Pompidou

Recherche

  • Recherche simple
  • Recherche avancée

    Panier électronique

    Votre panier ne contient aucune notice

    Connexion à la base

  • Identification
    (Identifiez-vous pour accéder aux fonctions de mise à jour. Utilisez votre login-password de courrier électronique)

    Entrepôt OAI-PMH

  • Soumettre une requête

    Consulter la notice détailléeConsulter la notice détaillée
    Version complète en ligneVersion complète en ligne
    Version complète en ligne accessible uniquement depuis l'IrcamVersion complète en ligne accessible uniquement depuis l'Ircam
    Ajouter la notice au panierAjouter la notice au panier
    Retirer la notice du panierRetirer la notice du panier

  • English version
    (full translation not yet available)
  • Liste complète des articles

  • Consultation des notices


    Vue détaillée Vue Refer Vue Labintel Vue BibTeX  

    Catégorie de document Article paru dans une revue
    Titre One hundred ways to process time, frequency, rate and scale in the auditory cortex: a pattern-recognition meta-analysis
    Auteur principal Edgar Hemery
    Co-auteur Jean-Julien Aucouturier
    Paru dans Frontiers in Computational Neuroscience 2014
    Comité de lecture Oui
    Année 2014
    Statut éditorial Non publié
    Résumé

    The mammalian auditory system extracts features from the acoustic environment based on the responses of spatially distributed sets of neurons in the subcortical and primary cortical auditory structures. The characteristic responses of these neurons (linearly approximated by their spectro-temporal receptive fields, or STRFs) suggest that auditory representations are formed on the basis of a time, frequency, rate (temporal modulations) and scale (spectral modulations) analysis of sound. However, how these four dimensions are integrated and processed in subsequent neural networks remains unclear. In this work, we present a new methodology to generate computational insights into the functional organization of such processes. We first propose a systematic framework to explore more than a hundred different computational strategies to process the output of a generic STRF model. We then evaluate these strategies on their ability to compute perceptual distances between pairs of environmental sounds. Finally, we conduct a meta-analysis of the dataset of all these algorithms’ accuracies to examine whether certain combinations of dimensions and certain ways to treat such dimensions are, on the whole, more computationally effective than others. We present an application of this methodology to a dataset of ten environmental sound categories, in which the analysis reveals that (1) models are most effective when they organize STRF data into frequency groupings - which is consistent with the known tonotopic organisation of receptive fields in A1 -, and that (2) models that treat STRF data as time series are no more effective than models that rely only on summary statistics along time - which corroborates recent experimental evidence on texture discrimination by summary statistics.

    Equipe Perception et cognition musicales
    Cote Hemery14a
    Adresse de la version en ligne http://architexte.ircam.fr/textes/Hemery14a/index.pdf

    © Ircam - Centre Pompidou 2005.